

ISES 2024 ANNUAL MEETING | MONTREAL, CANADA

ENVIRONMENTAL & OCCUPATIONAL HEALTH SCIENCES UNIVERSITY of WASHINGTON I SCHOOL OF PUBLIC HEALTH

Assessing Exposures to Source-specific Air Pollution through a Multi-pollutant Mobile Monitoring Campaign in Seattle, WA

Ningrui Liu, Rajni Oshan, Magali Blanco, Lianne Sheppard, Edmund Seto, Timothy Larson, Elena Austin

OCTOBER 24, 2024

1 Introduction

2 Methods

3 Results and discussion

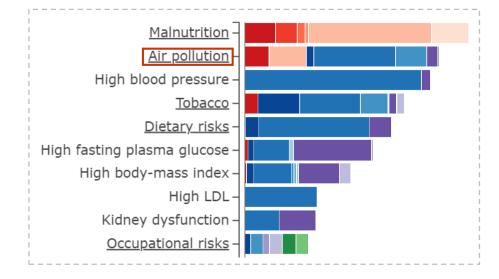
1 Introduction

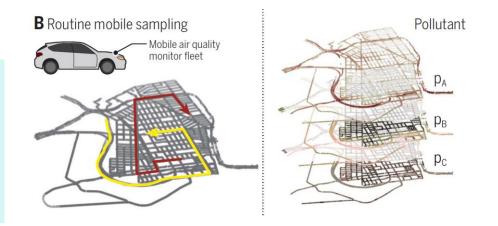
2 Methods

3 Results and discussion

Introduction

Health issues of air pollution


- Adverse health outcomes: cardiovascular diseases, respiratory diseases, lung cancer, etc.
- Global Burden of Disease 2021: Air pollution is the second leading risk factor, accounting for 8.2% of total DALYs.


Mobile monitoring (MM) studies

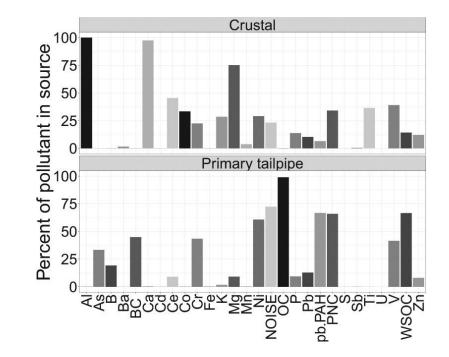
- Drive vehicles with high-quality instruments through fixed routes
- Have higher spatial resolution than regulatory monitoring

RESEARCH GAP OF MM

- More focus on PM_{2.5} than ultrafine particles (UFPs), while health impacts depend on size distribution and chemical composition
- Multi-pollutant spatiotemporal data from MM have not been fully used in health studies.

Introduction

Source apportionment (SA) studies


- Use multi-pollutant data to derive the sources
- Approach: positive matrix factorization (PMF), PCA, et al.
- Many relied on regulatory monitoring data, and few on MM

RESEARCH GAP OF SA-MM

- Few considered particle size distribution
- Few classified traffic-related source into different vehicle types
- Limited time frames (days to weeks)

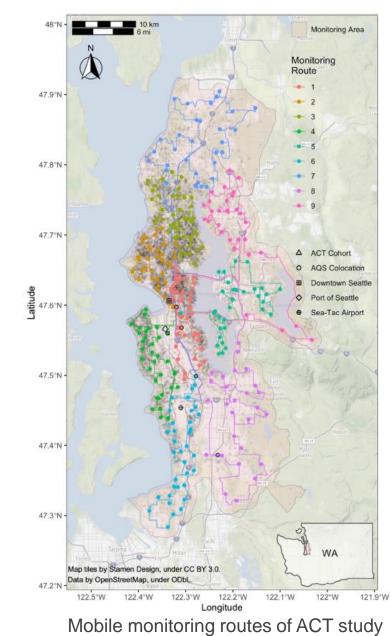
Research aims: PMF + MM

- 1. Characterize emission sources more accurately
- 2. Assess **source-specific** air pollution exposures
- 3. Estimate the **annual average emission factors** for different vehicle types

1 Introduction

2 Methods

3 Results and discussion



Methods

Mobile monitoring campaign in ACT-AP study

Adult Change in Thought Air Pollution

- **Purpose:** Provide high-spatial-resolution air pollution exposure estimates for epidemiological analysis about dementia
- **Pollutants:** Size-resolved ultrafine particle number concentration (PNC), PM_{2.5}, black carbon (BC), total carbon (TC), NO₂, and CO₂
- Location: 309 sites in Seattle, WA
- Time: ~29 repeated measures of air pollutants with a timebalanced design from 2019 to 2020
- A total of 8152 visit-level data were obtained.

Methods

Positive matrix factorization (PMF) analysis

• **PMF model:** EPA PMF 5.0 used for calculations

$$\mathbf{x}_{ij} = \sum_{k=1}^{K} g_{ik} f_{kj} + e_{ij}$$

$$i=1,2,...,l; j=1,2,...,J$$

$$I = 8125 \text{ visits, } J = 18 \text{ species}$$

- ✓ x_{ij} means the concentration of species *j* in sample *i* (*i*=1,2,...,*l*; *j*=1,2,...,*J*)
- ✓ g_{ik} means the **contribution** of source/factor k in sample i (k=1,2,...,K)
- ✓ f_{kj} means the species profile of source/factor k, i.e., the concentration of species j in factor k
- **Robustness of PMF results:** Similar factor profiles were obtained from randomly selected subset of sites (50% of 309 sites).

$$\boldsymbol{x}_{ij,k} = \boldsymbol{g}_{ik} \boldsymbol{f}_{kj}$$

Methods

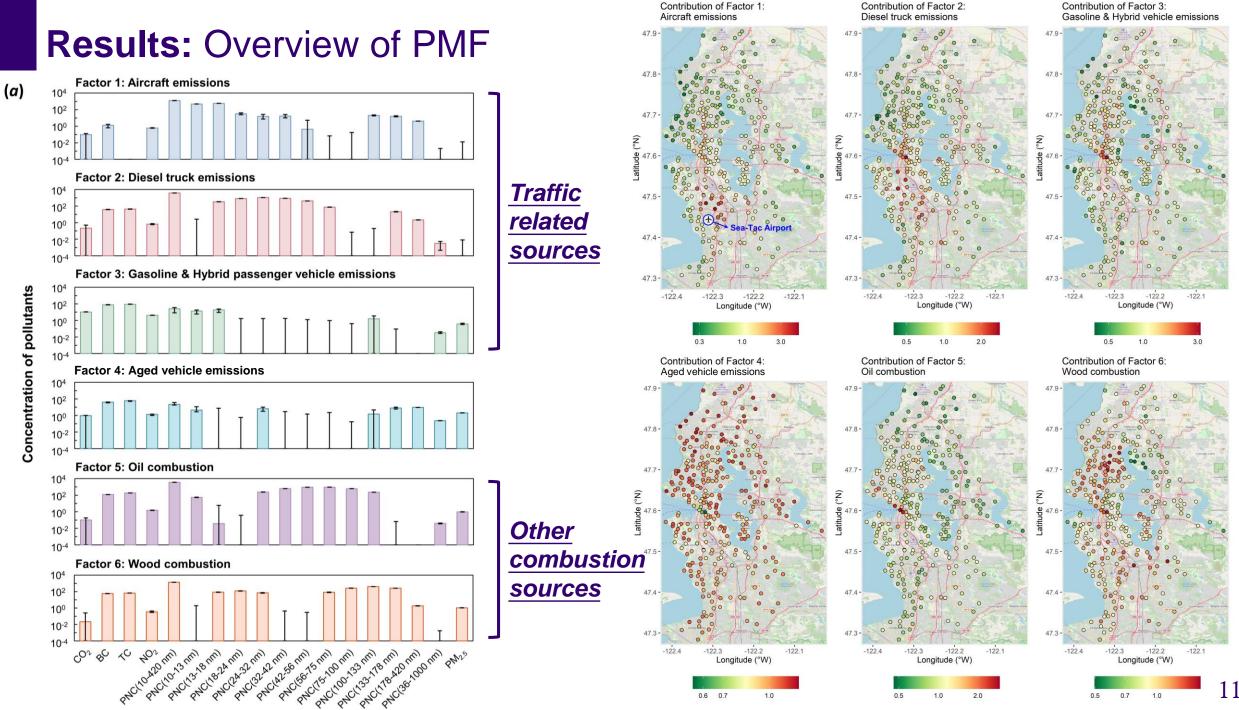
External validation & Factor interpretation

- Particle size distribution: Comparison with known sources in the literature
- Mapping annual average site-specific factor contribution with various external variables: Seasons, rush hours, wind directions, and ambient temperatures
- Land use regression (LUR) model: Using a comprehensive dataset of geospatial covariates, with Elastic Net and partial least squares (PLS) for variable selection
- Ratios between different pollutants: BC/CO₂, BrC/CO₂, NO₂/CO₂, PNC/CO₂, and PM_{2.5}/BC
 * Brown carbon (BrC) = TC BC in the post-PMF analysis.

Traffic-related emission factors (EFs)

$$EF_{j,k} = \frac{\Delta C_{j,k}}{\Delta CO_{2,k}} \times \omega \times 10^3 = Ratio \times \frac{44}{12} \times \omega \times 10^3$$

- ✓ $EF_{j,k}$ is the fuel-based EF of pollutant *j* for source *k*, g/kg fuel
- $\checkmark \triangle \ddot{C}_{j,k}$ is the concentration of pollutant *j* in the profile of source *k*, g/m³ (#/m³ for PNC)
- $\checkmark \triangle CO_{2,k}$ is the background subtracted CO₂ concentration in the profile of source k, g carbon/m³
- $\checkmark \omega$ is the carbon mass fraction in the fuel, set as 0.85 in this study

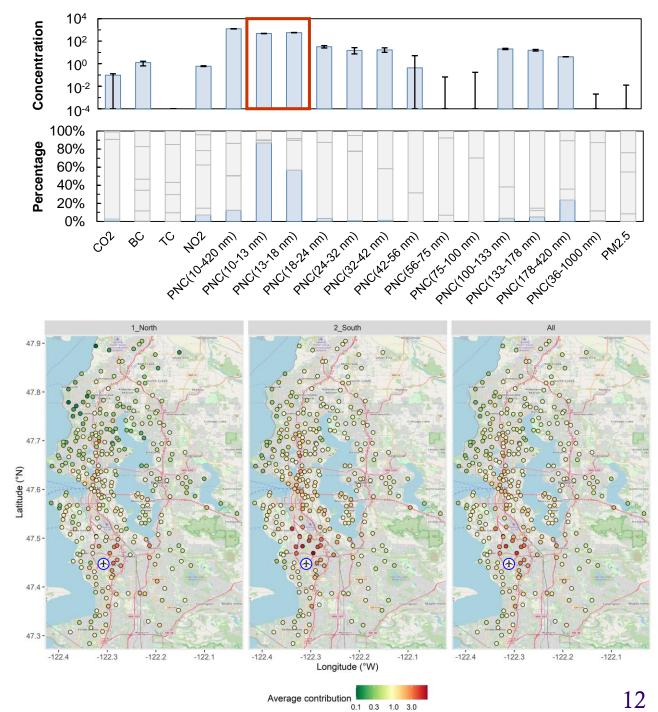

Background CO_2 is defined as the minimum CO_2 among all sites that day.

1 Introduction

2 Methods

3 Results and discussion

Concentration of pollutants


Results: Each source

Factor 1: Aircraft

- Particle size distribution in the literature
 - Dominated by UFPs (10-20 nm)
 - Sometimes with another peak at 100-150 nm
- Mapping with external variables
 - Factor contribution was higher downwind (north) of the SEA/TAC Airport under southerly winds

Important covariates from LUR model

- Distance to the large airport
- Distance to the landing/takeoff air routes
- Ratios
 - Higher PNC/CO₂ than the other two traffic related sources

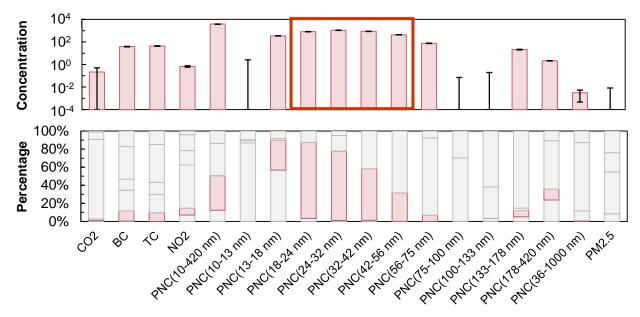
Results: Each source

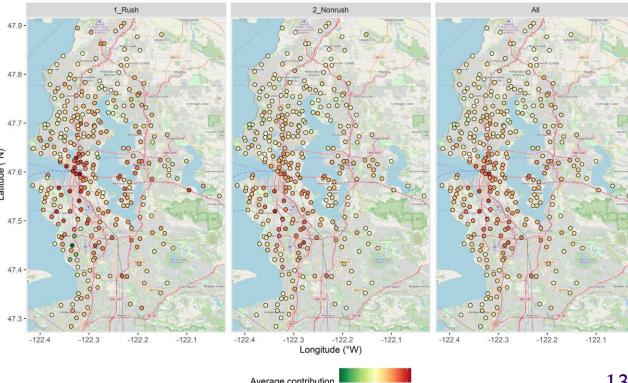
Factor 2: Diesel truck

Particle size distribution in the literature

- Dominated by UFPs (30-50 nm)
- Vary from 10 and 100 nm according to use of diesel particle filters (DPF), selective catalytic reduction (SCR), and light/heavy-duty

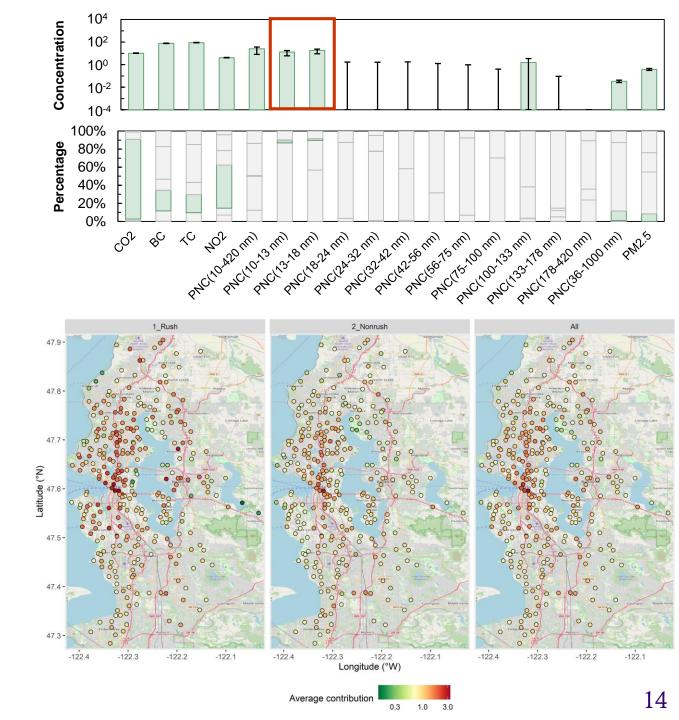
Mapping with external variables


 Factor contribution was higher around downtown Seattle, industrial district, and the SEA/TAC Airport (freight transport).


Important covariates from LUR model

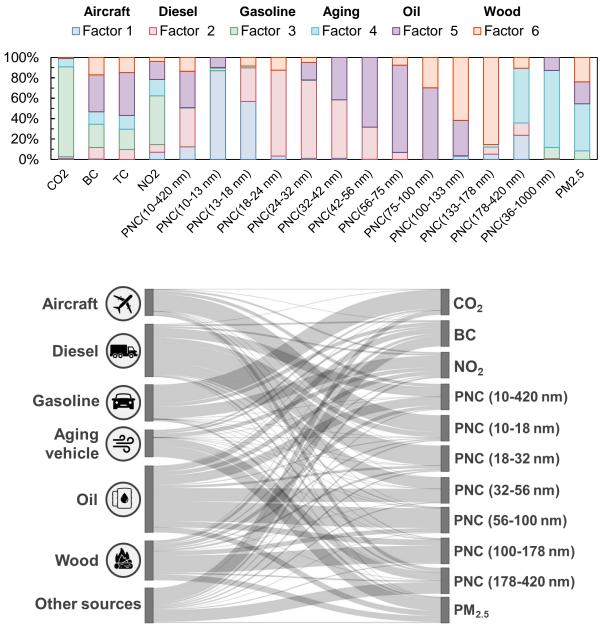
- Primary road density
- Distance to the large airport / air routes
- Proportion of industrial land use
- Proportion of developed high-intensity landcover

Ratios


 Higher BC/CO₂, NO₂/CO₂, and PNC/CO₂ than factor 3 (gasoline)

Results: Each source

- Factor 3: Gasoline & Hybrid passenger vehicle
 - Particle size distribution in the literature – UFPs peak at 10-20 nm (nucleation mode)
 - Mapping with external variables
 - Factor contribution was higher in downtown
 Seattle and along I-5 and S-99 Highway.
 - Higher in rush hours
 - Important covariates from LUR model
 - Road density
 - Bus route density
 - Ratios
 - Lower BC/CO₂, NO₂/CO₂, and PNC/CO₂ than factor 2 (diesel)

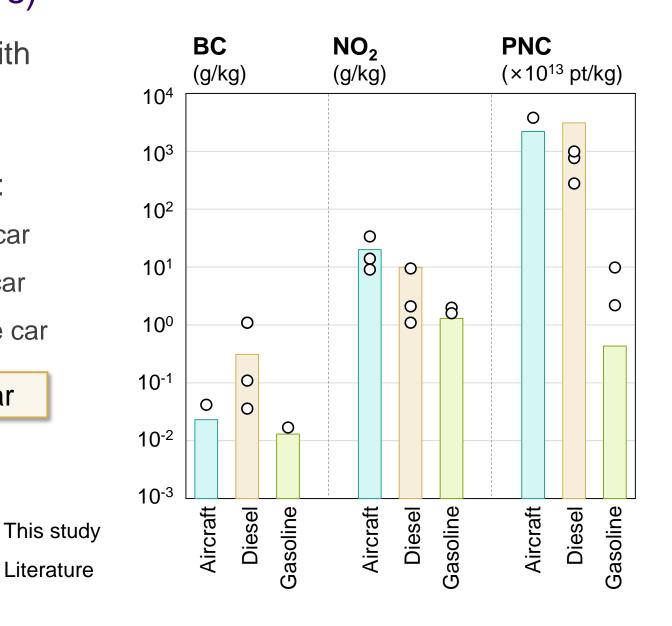


Results: Source-specific exposure

Percentage

Dominant sources for different air pollutants

Pollutant	1st source	2nd source
CO ₂	Gasoline (75%)	Aged (8%)
BC	Oil (22%)	Gasoline (14%)
тс	Oil (29%)	Gasoline (14%)
NO ₂	Gasoline (44%)	Oil (16%)
PNC		
Total (10-420 nm)	Diesel (37%)	Oil (35%)
10-18 nm	Aircraft (64%)	Diesel (20%)
18-32 nm	Diesel (76%)	Oil (10%)
32-56 nm	Oil (52%)	Diesel (43%)
56-100 nm	Oil (77%)	Wood (17%)
100-178 nm	Wood (67%)	Oil (23%)
178-420 nm	Aged (38%)	Aircraft (15%)
PM _{2.5}	Aged (45%)	Wood (23%)



Results: Emission factors (EFs)

- EFs in this study were consistent with reported values in the literature.
- Comparison between vehicle types:
 - BC: Diesel truck >> Aircraft > Gasoline car
 - NO₂: Aircraft > Diesel truck > Gasoline car
 - **PNC**: Diesel truck > Aircraft >> Gasoline car

Aircraft & Diesel truck > Gasoline car

Ο

1 Introduction

2 Method

3 Results and discussion

Conclusions

■ This is the first study to combine a one-year mobile monitoring campaign with PMF analysis to simultaneously estimate source-specific air pollution exposures and emission factors of different vehicle types. → Can be extended to other metropolitan areas

Aim 1 & 2: Source characterization and source-specific exposure

- Traffic-related sources (aircraft, diesel, gasoline): Contribute most to CO₂, NO₂, and UFP (10-56 nm)
- Aged vehicle emission source: Contribute most to PM_{2.5} and UFP (178-420 nm)
- Other combustion sources (oil, wood): Contribute most to BC, TC, and UFP (32-178 nm)

Aim 3: Traffic-related emission factor

• EFs of BC, NO₂, and total PNC were higher for aircraft and diesel trucks, and lower for gasoline vehicles, consistent with previous studies.

Limitations

- Chemical composition of particles were not considered (e.g., levoglucosan for woodsmoke).
- PMF was applied in this study, assuming spatiotemporally stable factor profiles.
- Next step: use the source-specific air pollution exposure for epidemiological analysis

ISES 2024 ANNUAL MEETING | MONTREAL, CANADA

ENVIRONMENTAL & OCCUPATIONAL HEALTH SCIENCES UNIVERSITY of WASHINGTON I SCHOOL OF PUBLIC HEALTH

Thank you for your attention Questions?

Contact: liunr24@uw.edu (Ningrui Liu)

Funding sources: NIEHS R01ES026187 and NIEHS 2P30 ES007033-26 **Conflict of interests:** No conflicts of interests **Employment:** Department of Environmental & Occupational Health Sciences, University of Washington