


August 2022

MEETING AGENDA

- 1. Introductions
- 2. Group activities and updates
- 3. Indoor air quality report and aircraft impacts in schools
- 3. Short term health effects of UFP
- 4. Mobile monitoring update and site selection process
- 5. Discussion
- 6. Wrap up

Group Introductions and Updates

UFP Advisory Meeting Updates

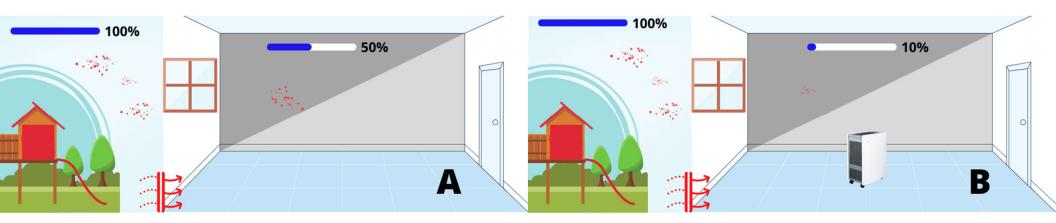
- EPA community air monitoring grant opportunity in Spring 2022
 - PSCAA
 - Community applications
- EPA proposal to align US emissions standards with ICAO PM standards
 - Testimony by may UFP advisory group members
- 2019 Puget Sound UFP monitoring study (Dr. Lianne Sheppard) published

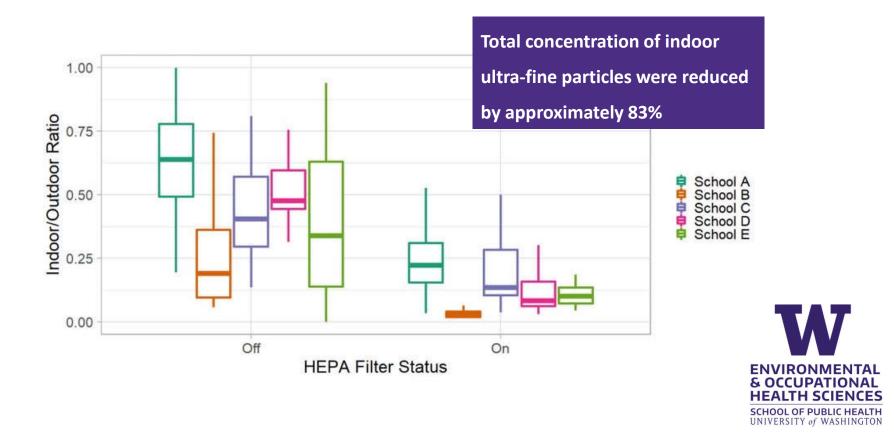
Healthy Schools, Healthy Air

- Inform schools, districts and state legislators on the current ability of building ventilation systems to effectively remove outdoor sources of particles.
- Quantify the current ability of ventilation solutions to remove indoor generated particles.
- Identify any additional benefit and cost of in-room filtration.
- Based on the experimental measures in an unoccupied classroom, describe the size fractioned infiltration rates of 1) ultrafine particles of aircraft origin 2) ultrafine particles of traffic origin and 3) wildfire smoke.
- Communicate study results to partners.
- * Funded (50k) by cities of the cities of SeaTac, Burien, Federal Way, Normandy Park and Des Moines and by the State of Washington

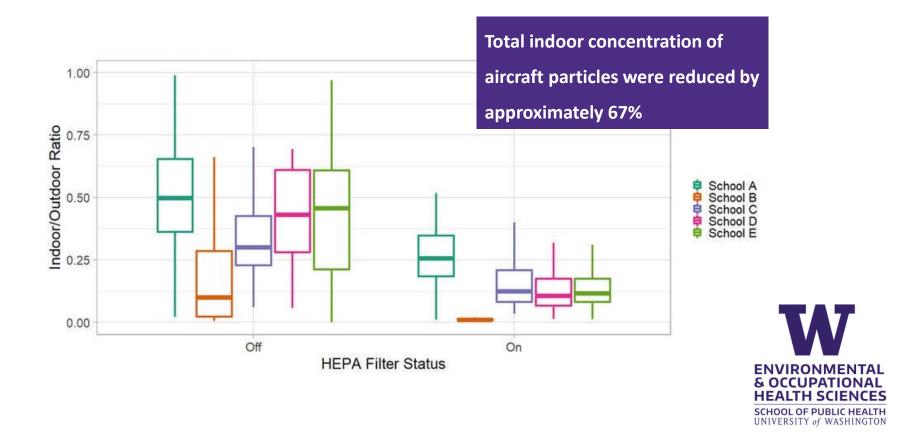
Study Methods

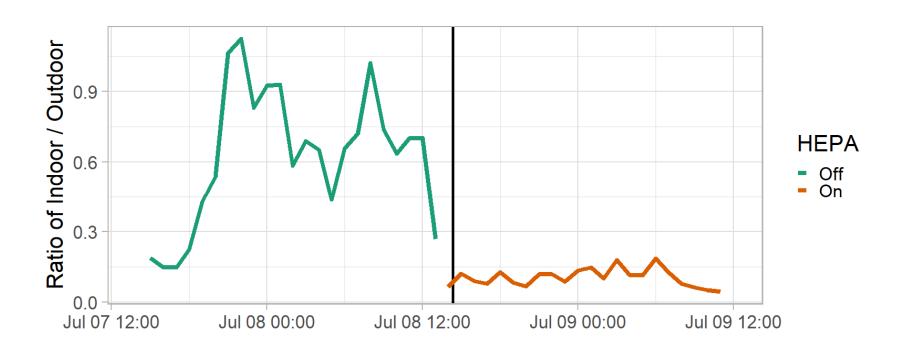
Methodology - Phase I


- Recruited 5 schools across 2 participating school districts
- Sampled at each location twice. Each session lasted 48 hours.
- Measured air exchange rate and infiltration before and after shortterm HEPA filter intervention
- Develop a method to report-back key results
 - Stakeholder meetings
 - Key informant interviews

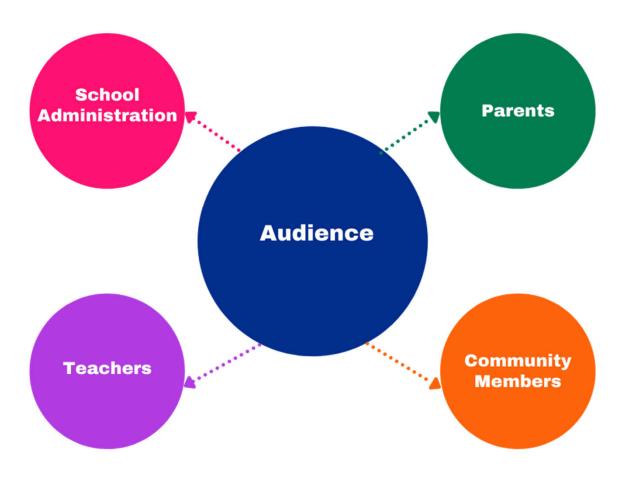

Main Finding - Phase 1

Results


- Ultrafine particles were about 50% of outdoor levels before HEPA air purifiers were installed.
- Ultrafine particles dropped to about 10% of outdoor levels after HEPA purifiers were installed.

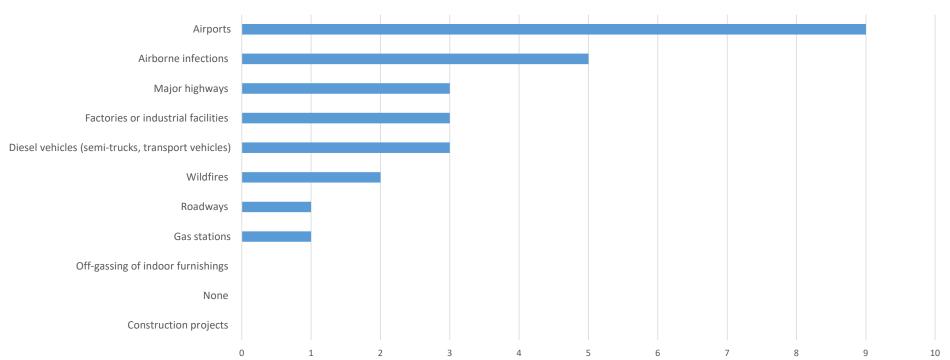

Portable Air Cleaner HEPA Intervention Total UFPs: Ratio of Indoor/Outdoor

Portable Air Cleaner HEPA Intervention Aircraft UFPs: Ratio of Indoor/Outdoor


Ratio of Indoor to Outdoor Concentration

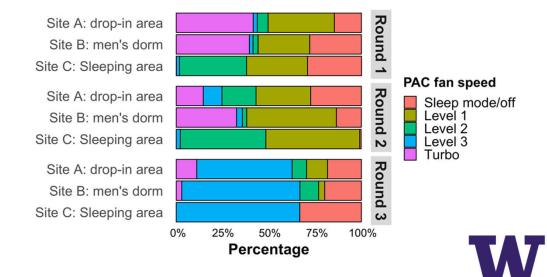
How impacted are schools by Sea-Tac Flights?

	All King County Schools			
A : was a mt	# Arrivals (Median)		# Departures (Median)	
Airport	All Schools	Pilot Study Schools	All Schools	Pilot Study Schools
Sea-Tac Airport	3	61,234	10	53,313
Boeing Field	44.5	18	11	26
Renton Municipal	0	0	0	0
Airport				
All Airports	102.5	61,240	35	53,547


Engaging a Wide Audience

Parent Concerns based on online survey – Phase 1

What types of air pollution sources near or around your school are you most concerned about?



Homeless shelter deployments with King County Public Health

Shirley Huang, Elena Austin and Edmund Seto (ASICS 2022)

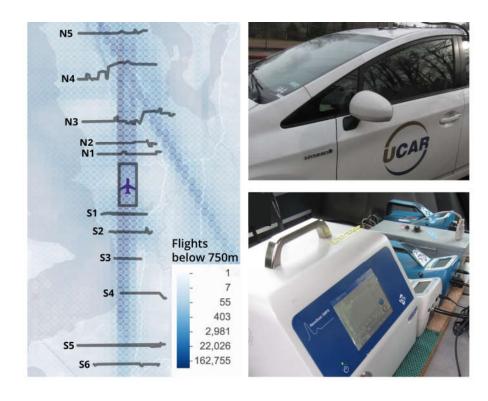
Over three thousand portable air cleaners (PACs) with high-efficiency particulate air (HEPA) filters were distributed by Public Health Seattle & King County (PHSKC) to homeless shelters during the COVID-19 pandemic to control SARS-CoV-2 transmission.

Highlighting the benefit of energy use monitoring in understanding usage.

ENVIRONMENTAL & OCCUPATIONAL HEALTH SCIENCES SCHOOL OF PUBLIC HEALTH UNIVERSITY of WASHINGTON

Upcoming Activities in Phase II

- Wildfire rapid response and sampling (Summer 2022)
- Distribution of intervention equipment to schools (20 schools)
 - Portable HEPA cleaner (if applicable)
 - Power consumption monitors (if applicable)
 - Air quality sensor package
- Outdoor monitoring
- Mobile monitoring



Pilot study – Short Term Health

Mobile Monitoring Updates

Mobile Monitoring Goals

- Developing and refining mobile monitoring to estimate annual exposure concentrations to traffic and aviation air pollutants including NO_x, Black Carbon and size-resolved particles.
- Engage with State and local agencies to develop plans for long-term monitoring
- Identify emissions factors and spatial variations across the area of interest

Mobile Monitoring System Instruments

Particle Detectors

Scanning Mobility Particle

Sizer (SMPS) – UFP size

distribution

Condensation Particle Counter

(CPC) - UFP > 10 nm count

Nephelometer – proxy PM2.5

MicroAeth - Black Carbon

Gas Analyzers

Aerodyne Cavity Attenuation

Phase Shift (CAPS) – NO2

Ecotech Serinus 30 -- CO

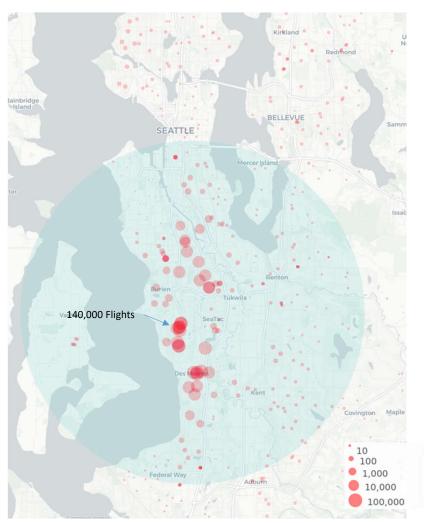
Li-Cor LI-850 - CO2

Battery / Inverter System to Power Instruments

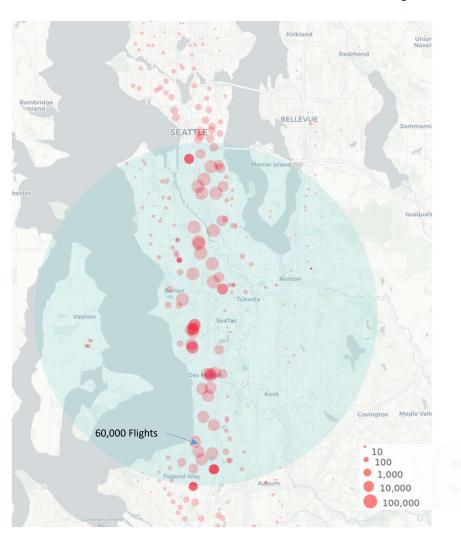
High-capacityelectrical powersystem


Vibration resistant platform

Platform Modifications and System Testing


Particle Analyzers

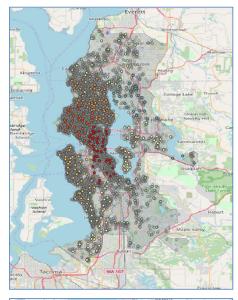
TGas Analyzers

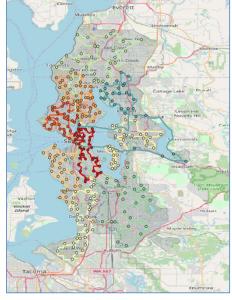

Sea-Tac DEPARTURES (10 mi) below 750 meters per year

All King County Schools			
	# Departures		
Airport	Median	$(25^{th} - 75^{th})$	
		percentile)	
Sea-Tac Airport	10	(3 - 24.75)	
Boeing Field	11	(0 - 60)	
All Airports	35	(5, 204.75)	

	Pilot Study Schools		
	# Departures		
Airport	Median	$(25^{th} - 75^{th})$	
		percentile)	
Sea-Tac Airport	53,313	(6,157 –	
		55,589)	
Boeing Field	26	(25 - 104)	
All Airports	53,547	(6,183 –	
		55,693)	

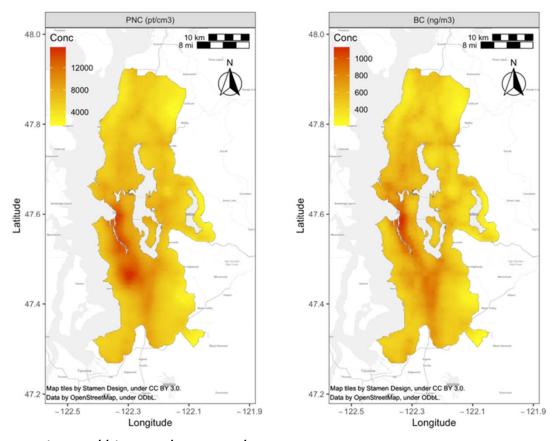
Sea-Tac ARRIVALS (10 mi) below 750 meters per year




All King County Schools			
	# Arrivals		
Airport	Median	$(25^{th} - 75^{th})$	
		percentile)	
Sea-Tac Airport	3	(0 - 36)	
Boeing Field	44.5	(7 - 232)	
All Airports	102.5	(18 - 589)	

Pilot Study Schools		
	# Arrivals	
Airport	Median	$(25^{th} - 75^{th})$
		percentile)
Sea-Tac Airport	61,234	(59,529 –
		154,962)
Boeing Field	18	(8 - 89)
All Airports	61,240	(59,537 –
		155,094)

2019 ACT Mobile Monitoring Campaign


- > 309 stop locations representative of ACT cohort (large, geographically diverse area)
- > 9 fixed driving routes
- > 2-min samples per stop
- > Measured UFPs, BC, PM2.5, CO, CO2, NO2
- > A driving schedule ensured temporally balanced sampling

Baseline UFP in Puget Sound

PI: Dr. Lianne Sheppard, Citation: https://doi.org/10.1021/acs.est.2c01077

Current Efforts

- Finalizing 20 sampling locations within the school districts of Seattle, Renton, Tukwila, Highline
- Engaging with agencies to transfer knowledge and instrumentation
- Deploying instruments at fixed site locations to characterize air quality

Semi-structured Discussion

- Public Health Goals
 - KCPH report on health outcomes
 - Short-term health effects
 - Interventions
 - Health disparities and equity
 - Epidemiology
- Community Involvement
- Collaborations

THANK YOU!

Short Test Drive Data Examples

Measurement	Test drive 1	Test drive 2
SMPS total UFP count average (pt/cm3) median (pt/cm3)	11,802 9,700	15,889 10,500
SMPS Median particle size average (nm) median (nm)	51.6 52.9	40.4 38.9
Nephelometer b-scat average (m^-1) median (m^-1)	1.74 e-5 1.75 e-5	0.91 e-5 0.79 e-5
MicroAeth Black Carbon average (ng/m^3) median (ng/m^3)	1,669 814	1,319 321