Annual Stormwater Monitoring Report

į

RECEIVED

for

DEC 01 1998

DEPT. OF ECOLOGY

Seattle-Tacoma International Airport

for the period June 1, 1997 through June 30, 1998

November 1998

AR 033384

Exhibit-2089

LIST	OF TA	ABLESi
LIST	OF FI	GURESiv
LIST	OF AC	CRONYMSv
EXEC	UTIVI	E SUMMARY ES-1
1.0	INTE	RODUCTION
2.0	MET	HODS2-1
	2.1	GENERAL
	2.2	DESCRIPTION AND CATEGORIES OF SUBBASINS
	2.3	SAMPLING LOCATIONS
	2.4	STORM SAMPLING PROCEDURES AND ANALYTES2-3
3.0	SAM	PLING RESULTS
	3.1	GENERAL
	3.2	GRAB SAMPLE RESULTS
	3.3	COMPOSITE SAMPLE RESULTS. 3-5 3.3.1 Suspended Solids and Turbidity. 3-6 3.3.2 Biochemical Oxygen Demand (BOD ₅) 3-6 3.3.3 Ammonia 3-7 3.3.4 Surfactants 3-8 3.3.5 Metals 3-8 3.3.6 Deicing Event Samples 3-12

i

.

4.0	PER	FORMANCE OF BEST MANAGEMENT PRACTICES
	4.1	GENERAL4-1
	4.2	SDN2 BMPs4-1
	4.3	SDS1 BMPs4-2
	4.4	SDE4 BMPs4-3
·	4.5	TAXI YARD BMPs4-4
	4.6	SUBBASIN SDE4: POLLUTANT SOURCE TRACING
	4.7	RUNWAY SKID MARK MATERIAL REMOVAL4-5
	4.8	OTHER BMPs4-6
5.0	CONCLUSIONS	
6.0	IDENTIFIED NEW INITIATIVES	
7.0	REF	ERENCES

LIST OF TABLES

TABLE 1	SUMMARY OF SAMPLING CHANGES UNDER NEW PERMIT
TABLE 2	OUTFALL NOMENCLATURE CROSS REFERENCE
TABLE 3	OFFSITE INFLUENCES IN STIA MONITORING LOCATIONS
TABLE 4	POLLUTANT ANALYTES, METHODS, AND DETECTION LIMITS
TABLE 5	STORMWATER QUALITY COMPARATORS
TABLE 6	OTHER METALS (TOTAL RECOVERABLE, MG/I)

November 1996

ii

976079.23

LIST OF TABLES (continued)

- TABLE 7
 DECREASES IN POLLUTANTS IN SDS1 STORMWATER

 AFTER BMPs
 AFTER SMPs
- TABLE 8 SDE4 SOURCE TRACING RESULTS
- TABLE 9 METALS IN AIRCRAFT TIRE SKID MARK MATERIAL REMOVED FROM STIA RUNWAYS

LIST OF FIGURES

- FIGURE 1 COMPREHENSIVE STORM DRAINAGE SYSTEM PLAN AND DESIGN
- FIGURE 2 FOG FOR CURRENT YEAR
- FIGURE 3 TPH (IR) COMPARED IN BOX PLOT FOR CURRENT YEAR
- FIGURE 4 TPH-DX COMPARED IN BOX PLOT FOR CURRENT YEAR
- FIGURE 5 IMPROVEMENTS IN SDN1 DATA ABOVE PUBLIC ROADS
- FIGURE 6 CHANGES IN SDS1 AFTER BMPs
- FIGURE 7 FECAL COLIFORMS
- FIGURE 8 TSS FOR CURRENT YEAR
- FIGURE 9 TURBIDITY FOR CURRENT YEAR
- FIGURE 10 BOD₅ FOR PERMIT HISTORY
- FIGURE 11 BOD₅ FOR CURRENT PERIOD
- FIGURE 12 AMMONIA FOR CURRENT YEAR
- FIGURE 13 SURFACTANTS FOR CURRENT YEAR
- FIGURE 14 TOTAL COPPER FOR PERMIT HISTORY

November 1996

976079.23

LIST OF FIGURES (continued)

FIGURE 15TOTAL COPPER FOR CURRENT YEARFIGURE 16TOTAL LEAD FOR PERMIT HISTORYFIGURE 17TOTAL LEAD FOR CURRENT YEARFIGURE 18TOTAL ZINC FOR PERMIT HISTORYFIGURE 19TOTAL ZINC FOR CURRENT YEARFIGURE 20TOTAL GLYCOLS FOR CURRENT YEARFIGURE 21TOTAL GLYCOLS FOR PERMIT HISTORYFIGURE 22TOTAL GLYCOLS BY REPORTING YEAR

APPENDICES

APPENDIX A	HYDRAULIC AND HYDROLOGIC ESTIMATIONS
APPENDIX B	SUMMARIZED ANALYTICAL DATA FOR MONITORED STORM EVENTS
APPENDIX C	FIELD QUALITY CONTROL DATA
APPENDIX D	BMP TABLES AND FIGURES

AR 033388

November 1996

iv

976079.23

LIST OF ACRONYMS

-

Acronym	Definition	-
		_
AMA	Aircraft Movement Area (mainly runways, toxingers)	j
BMP	best management practice	
BOD ₅	5-day biochemical oxygen demand	
DMR	discharge monitoring report	I
Ecology	Washington State Department of Ecology	I
EPA	U.S. Environmental Protection Account	I
FAA	Federal Aviation Administration	I
FOG	fats, oils and grease	I
GC	gas-chromatographic	l
IR	infrared absorbance	l
IWS	industrial waste system (including the piping)	l
MDL	method detection limit	
NPDES	National Pollutant Discharge Flimination System	
NTU	nephelometric turbidity unit	
Port	Port of Seattle	ĺ
ppb	parts per billion, same as µg/l or ppm/1000	
ppm	parts per million, same as mo/l	
RPD	relative percent differnce	
SRES	Stormwater Receiving Environment Study	
STIA	Seattle-Tacoma International Airport	
SWPPP	Stormwater Pollution Prevention Plan	
	toxicity characteristic leaching procedure	
	total petroleum hydrocarbons	
155	total suspended solids	
WAC	Washington Administrative Code	

November 1998

976079.23

EXECUTIVE SUMMARY

This Annual Stormwater Monitoring Report has been prepared pursuant to Special Condition S2.E of the National Pollutant Discharge Elimination System (NPDES) permit for the Port of Seattle's (Port) Seattle-Tacoma International Airport (STIA). Special Condition S2.E of the permit states: "On or before October 1¹ of each year, the Permittee shall submit a report to the Department summarizing the results of the stormwater monitoring conducted pursuant to Special Condition S2.B or S3.E of this permit during the preceding twelve (12) month period from July 1 through June 30. The report shall present the analytical data, the Port's conclusions as to what is being learned from the data, and any new initiatives to be undertaken as part of the Stormwater Pollution Prevention Plan (SWPPP) for Airport Operations required in Special Condition S12." Special Condition 2SB also requires inclusion of specific storm events and hydraulic information.

The required hydraulic and hydrologic data are included in Appendix A. Analytical results are tabulated and summarized for each outfall in Appendix B. Field quality control data are presented in Appendix C.

The Port's stormwater data are compared to other generally accepted reference comparators. Box plots are used to present the sampling data. Box plots provided in numerous figures illustrate the central tendency, spread, and skew of the data.

In summary, STIA stormwater quality is better than regionally comparable runoff quality. Results continue to demonstrate that stormwater quality at the airfield outfalls under typical conditions is consistently better than regional commercial and industrial areas. Results also show that there are differences in stormwater quality between landside and airfield subbasins. However, the data tend to indicate that runoff from non-Port public roadways unfavorably biases STIA stormwater, especially in the landside outfall

November 1998

1

976079.23

A request for submittal extension until November 30, 1998 was granted to the Port by Washington State Department of Ecology (Ecology).

samples. Nonetheless, overall STIA results are generally lower than results for roadways and commercial areas.

Monitoring in the past year indicates improvements in stormwater quality after best management practices (BMPs) were implemented, especially those BMPs that rerouted drainage from the storm drain system to the IWS. BMPs implemented over the past year and performance data are discussed in Section 4.

Evaluation of the stormwater discharges at STIA is an ongoing process. A key factor in attaining improved water quality is implementation of BMPs. BMPs are evaluated as part of the SWPPP and are part of the NPDES permit requirement. Based on the data and conclusions presented in this report, as well as other knowledge regarding STIA activities, the following potential new initiatives have been identified.

- 1. Evaluate monitoring requirements in the permit and request modifications as appropriate, based on the effectiveness of BMPs or other changes at STIA.
- 2. Continue to investigate possible sources of fecal coliforms in SDE4 discharges.
- Explore rerouting of drainage from several minor SDS3 drain inlets beneath the overhangs of the C Concourse that could be responsible for isolated elevated BOD₅ concentrations in SDS3.
- 4. Continue to monitor glycols in SDS1 discharges to verify the effectiveness of two capital BMPs designed to reduce and eliminate glycols and other pollutants by rerouting drainage to the IWS or sealing minor inlets.
- 5. Require contractors to implement source control and BMP related to construction activities.
- 6. Continue to evaluate tenant activities.
- 7. Revise and update the SWPPP on a regular basis.

November 1998

ES-2

976079.23

1.0 INTRODUCTION

This Annual Stormwater Monitoring Report has been prepared pursuant to Special Condition S2.E of the National Pollutant Discharge Elimination System (NPDES) permit for the Port of Seattle's (Port) Sea-Tac International Airport (STIA). Special Condition S2.E of the permit states: "On or before October 1¹ of each year, the Permittee shall submit a report to the Department summarizing the results of the stormwater monitoring conducted pursuant to Special Condition S2.B or S3.E of this permit during the preceding twelve (12) month period from July 1 through June 30. The report shall present the analytical data, the Port's conclusions as to what is being learned from the data, and any new initiatives to be undertaken as part of the Stormwater Pollution Prevention Plan for Airport Operations required in Special Condition S12."

Additionally, the permit requires in Special Condition S2B that: "The permittee shall include the following data for each storm event in the Annual Stormwater Monitoring Summary Report...: date, duration, the number of dry hours preceding the storm event, total rainfall during the storm event (inches), maximum flow rate during the rain event (gallons per minute), and the total flow from the rain event (gallons). The Permittee shall also include a monthly summary of daily rainfall...".

This report summarizes and discusses the required data, the conclusions, and potential new initiatives to be undertaken. Some of these initiatives have also been identified in the STIA Stormwater Pollution Prevention Plan (SWPPP).

This report consists of the following sections:

 Chapter 2 presents the methods used to comply with reporting requirements including background information on the sampling requirements and subbasin descriptions

November 1998

¹ A request for submittal extension until November 30, 1998 was granted to the Port by Washington State Department of Ecology (Ecology).

- Chapter 3 presents the sampling results including a discussion of the data
- Chapter 4 presents a summary BMP performance
- Chapter 5 provides conclusions based on the data
- Chapter 6 includes a discussion of potential new initiatives at STIA
- Chapter 7 contains documents cited and used in the preparation of this report.

November 1998

1-2

976079.23

2.0 METHODS

2.1 GENERAL

The following describes the methods used to gather information required in this report. The STIA stormwater monitoring program has been in place since 1993 pursuant to the NPDES permit. The permit was renewed in early 1998 and replaced with permit number WA-002465-1, issued February 20, 1998, and effective March 1, 1998. The Port conducted the required monitoring activities according to the specific guidelines and criteria of the Procedure Manual for Stormwater Monitoring (Port 1998a).

The new permit effective 1 March 1998 changed the sampling frequencies and parameters. Table 1 outlines the changes to the sampling program.

2.2 DESCRIPTION AND CATEGORIES OF SUBBASINS

Subbasin names are coded according to location: EY = engineering yard, TY = taxi yard, SDS1 - storm drain South number 1, SDW3 = storm drain West number 3, etc. The NPDES permit refers to outfalls by number; however, this report refers to subbasins and their outfalls by location (see Table 2). The Port identifies all manholes according to an alphanumeric scheme, some of which are referred to in this report.

Figure 1 shows the individual stormwater drainage subbasins and the STIA stormwater management boundaries. STIA stormwater subbasins have been classified into the general categories listed in Table 2. These categories group subbasins together that have similar land use and other characteristics. These categories include "landside," "airfield," and other non-specific, low-activity areas. Airfield subbasins SDS3, SDS4, SDN3, and SDN4 drain the Aircraft Movement Area (AMA), which includes the airport runways, taxiways, and open space. Airfield subbasins represent approximately 65

November 1998

976079.23

percent of the total STIA storm drainage area. Drainage area calculations are included at the end of the hydraulic and hydrologic estimates included in Appendix A.

In previous reports, the SDS1 subbasin was included in the "terminal" category. However, several stormwater diversion projects were undertaken near the terminal as a best management practice (BMP). SDS1 now drains mostly rooftops, minor ramp areas, and the currently expanding drainage from South 188th Street.² Therefore, it falls into neither category.

The remaining subbasins (SDE4, SDN1, EY, and TY) are associated with the activities on the "landside" of the airport, primarily public roads, parking, and passenger vehicle areas. Although 11 percent of the total impervious area of SDE4 drains portions of Taxiways A and B, the "landside" designation is appropriate because roads, parking, and other vehicle areas make up more than 50 percent of the total impervious area. Outfall SDN2 now discharges to the Industrial Waste System (IWS) via two pump stations constructed as BMPs in 1997.

2.3 SAMPLING LOCATIONS

The Port monitors stormwater discharges at 14 locations, one for each subbasin within the boundary of the permit. Figure 1 shows the location of the outfalls and monitoring locations.

Four monitoring locations (subbasins SDE4, SDN1, EY, and TY) are upstream from the final discharge point. Runoff contributions from other, non-STIA sources enter these storm drains and therefore necessitate monitoring at the first location, often a manhole, upstream of the majority of offsite inputs. Table 3 lists these offsite influences. Eliminating all offsite runoff is not possible for sampling stations in SDE4, SDS1, SDS2, and SDS3.

November 1998

976079.23

² Drainage from recent S. 188th Street improvements, outside the Port's jurisdiction, is increasing the SDS1 drainage area.

2.4 STORM SAMPLING PROCEDURES AND ANALYTES

The Port's Procedure Manual for Stormwater Monitoring (Port 1998a) describes the criteria for sampling storm events, and describes all relevant sampling, programming, and handling necessary to comply with requirements of the permit. Table 4 lists required sampling frequencies, pollutant analytes, methods, and detection limits.

November 1998

976079.23

3.0 SAMPLING RESULTS

3.1 GENERAL

Data are discussed separately for results from grab samples, composite samples, and deicing event (glycol) samples because of the differences in sampling protocols (i.e., grab samples versus composite samples) and because some rainfall events sampled did not meet the "storm" standards. Following these discussions is a summary of data relating to BMP performance.

The required hydraulic and hydrologic data are included in Appendix A. Analytical results were validated according to the representativeness standards described in the Port's Procedure Manual for Stormwater Monitoring (Port 1998a). Analytical results are tabulated and summarized for each outfall in Appendix B. Field quality control data are presented in Appendix C. It should be noted that data previously submitted to Ecology in the monthly discharge monitoring reports (DMRs) represent samples collected from strictly those storms and sampling routines that fully met the standards of the Procedure Manual. This report summarizes all data collected at storm drain outfalls.

3.1.1 Method of Data Presentation and Comparisons

This report compares the Port's stormwater data to other generally accepted reference comparators listed in Table 5. In general, the reference comparator was selected as the more conservative of two City of Bellevue studies because they were comprehensive, local studies, and had similar sampling protocols.

Appendix A summarizes daily rainfall on a monthly basis graphically and in tabular form. In addition, the storm event information, including total rainfall, maximum flow rate, and total flow is included in Appendix A. In the past 13 months ending June 1998,

November 1998

976079.23

rainfall meeting "storm" standards³ occurred on 29 occasions. One month, July 1997, had no rainfall that qualified as a storm. The Port sampled 18 (62 percent) of these "storms," plus three other rainfall events ("non-storms") that did not meet the 0.20-inch minimum rainfall. To meet permit sampling requirements, it was necessary to sample a high proportion of all "storms." Despite incomplete, and therefore non-representative composite samples that resulted in these cases, the grab samples can still provide useful information.

"Non-storm" grab samples were collected on the same basis as grab samples taken from true "storms"; usually within minutes of the onset of runoff. Therefore, given the consistent sampling protocol, all grab sample results can be aggregated regardless of total rainfall.

Box plots (Figures 2 through 23) are used to present the sampling data. Box plots illustrate the central tendency, spread, and skew of the data. The bold line within a box represents the median value, while the bottom and top of a box show the 25th and 75th percentiles, respectively. In other words, 50 percent of the time the data fall within values highlighted by the box. SPSS software was used to generate the box plots (SPSS 1993).

The size of the box shows the variability, and the "whiskers" show the largest values that are not considered statistical outliers. When summarizing data to compare typical values, outliers usually represent unusual conditions, atypical of what one could expect on a day-to-day basis. SPSS reports two types of outliers: those more than 1.5 box-lengths from the 75th percentile as "o", and those more than 3.0 boxlengths as "*" each captioned with the date of occurrence (SPSS 1993). General box plots showing difference between runoff quality for each of the three subbasin activity types (airfield, terminal, and landside) may have smaller scales than the box plots showing the data of each outfall. The general box plots show the overall difference between the subbasin

3

November 1998

976079.23

A "storm" event is defined as having total rainfall of at least 0.20 inch, separated by more than 12 hours of dry weather from past or subsequent events, and preceded by a period of 48 hours with no more than 0.10 inch rainfall from discrete events.

categories while the outfall box plots have increased scales as appropriate to show outlying values.

Although outliers and anomalies exist in the data, the following discussion of the data focuses on the median values of the sampling results and the observed trends.

3.2 GRAB SAMPLE RESULTS

The following discussion includes results from all grab samples collected in the past year. The entire data set for grab sample results comprises 224 samples from "storms", plus 8 results from samples of other rainfall events that did not reach the minimum rainfall standard of 0.20 inches.

3.2.1 Fats, Oils, and Grease (FOG) and Total Petroleum Hydrocarbon (TPH)

The renewed NPDES permit changed several analytical parameters. The TPH method was changed from an infrared absorbance (IR) method (WTPH 418.1) to a gaschromatographic (GC) method (NWTPH-Dx.) Because the new TPH method became effective 9 months into the current reporting cycle, data from both methods are presented in this section.

The results from the current year presented in Figures 2 and 3 continue to demonstrate that concentrations of petroleum-type pollutants in STIA stormwater are consistently less than in stormwater from other urban areas. The following bulleted items present a discussion of these results.

• STIA stormwater overall continues to have less petroleum-type pollutants than typical urban runoff. During the past year, more than 95 percent of STIA results were less than the Bellevue 1996 median of 3.7 miligrams per liter (mg/l), and only a single sample exceeded this value. The overall STIA median was

November 1998

976079.23

0.5 mg/l for TPH (IR), and 0.7 mg/l for TPH (GC). Overall, TPH was not detected above 1 mg/l in the majority of samples [65 percent of a total of 54 samples analyzed for TPH(IR)].

- Airfield stormwater (SDS3, SDS4, SDN3, and SDN4) contains far less FOG and TPH concentrations than runoff from the landside subbasins (SDE4, SDN1, and TY.) TPH was not detected in 73 (92 percent) of the 79 airfield outfall samples collected in the past four years.
- Most of the TPH detected in landside runoff is likely attributable to cars and trucks. Figure 4 shows that motor oil represents the majority of the TPH at these outfalls (SDE4, SDN1, and TY.)
- The IWS effectively isolates aviation-related fuel spills and drips from the storm drains. Detectable TPH concentrations are infrequent and low in stormwater from SDS subbasins, which are contiguous with aircraft service (IWS) areas.
- In the box plots, "SDN1" refers to samples collected at manhole SDN1-27.
 "SDN1up" refers to samples collected from manhole SDN1-22, upstream of offsite runoff from 9.9 acres of public roads.⁴ Moving the SDN1 sampling station to a point above the influences of offsite runoff (non-Port, public roadway) decreased FOG and TPH concentration results in SDN1 outfall data and removed a high bias imparted to previous samples. This is shown graphically in Figure 5.
- FOG and TPH concentrations detected in SDS1 samples seem to be decreasing. Figure 6 shows a decrease in the ranges and median of FOG and TPH concentrations for samples collected after completion of two BMPs (discussed in Section 4) that rerouted stormwater in aircraft services area.

November 1998

3-4

With Ecology's concurrence, in October 1996 the Port changed the sampling location for SDN1 from manhole SDN1-27 to manhole SDN1-22, upgradient from public road runoff.

3.2.2 Fecal Coliforms

Overall, the median value for fecal coliforms in 187 samples to date was 30 per 100 ml, with 75 percent of the results less than 230 per 100 ml. These results indicate that STIA stormwater contains fewer fecal coliforms than typical urban stormwater. More than 75 of the airfield subbasin samples showed fecal coliforms less than the comparative value of 201 per 100 ml.

Small animals and birds inhabit many of the respective drainage areas and are believed to be the sources of these infrequent findings. Urban stormwater often contains fecal coliforms in elevated numbers, and sanitary sewage is not always implicated.

In past reports, the Port showed that fecal coliforms were found principally in the landside subbasin SDE4. Current results for 5 of 10 SDE4 samples showed elevated results greater than or equal to 500 per 100 ml. However, four samples showed fecal coliforms less than this comparator. The 10th sample is not representative due to holding time being exceeded by 9+ hours. The Port is conducting a source tracing study intended to identify potential sources of contamination. Preliminary results, included in Section 4.6, do not indicate sanitary sewage as a source in storm or baseflows. Uncontaminated baseflow samples indicate that there is no continuous source of fecal coliform bacteria. Investigations are ongoing and results will be presented in subsequent Annual Stormwater Monitoring Reports.

3.3 COMPOSITE SAMPLE RESULTS

Results from composite samples are segregated from grab samples which represent only instantaneous values. Composite sample results, especially those from samples that comprise the entire hydrograph, represent an average value over a longer time period.

November 1998

976079.23

3.3.1 Suspended Solids and Turbidity

STIA outfalls continue to discharge typically less total suspended solids (TSS) and turbidity than urban areas. In the 4 year sampling history at STIA, more than 85 percent of the 230 TSS samples and 191 turbidity samples were below the comparative values of 50 mg/l, and 29 NTUs, respectively. As shown in Figures 8 and 9 results for the past year continue to be consistently low. Because of this consistency with past findings, only current year data are shown in the box plots.

The airfield outfalls continue to produce less TSS and turbidity than the landside subbasins (SDE4, SDN1 and TY). Results from all but two of 36 samples from the principal airfield subbasins (SDS3, SDN3, and SDN4) were less than one-half the regional comparative median values. Because these airfield outfalls represent about 61 percent of the total SDS area, the majority of STIA runoff is much lower in suspended material than runoff from comparable regional urban areas. Vehicle roadways and parking lots predominate in the landside subbasins and are surmised to be a principal source of suspended material.

3.3.2 Biochemical Oxygen Demand (BOD₅)

At STIA, principal sources of BOD_5 have been aircraft deicing glycols and ground (runway, taxiway, and roadway) deicing chemicals. Results for the past year continue to indicate overall low levels of BOD_5 in STIA stormwater. The median of 5.4 mg/l from 39 samples collected in the past year was below the 6.6 mg/l regional urban comparator (Bura 1984, see Table 5). Airfield outfalls (SDS3, SDS4, SDN3, and SDN4) continued to be generally lower in BOD_5 concentrations than landside outfalls SDE4 and SDN1. These observations are visible in overall data collected in the past 4 years (see Figures 10 and 11). These figures show that data from the past year are lower than previous results, notably for SDS1.

November 1998

976079.23

Principal sources of BOD₅ concentrations in the past were associated primarily with major winter weather episodes and the accompanying deicing events. Acetate-based ground surface deicers were the primary sources of BOD₅, with isolated indications of aircraft deicing glycols. All known direct sources of glycols have been eliminated from the storm drains.

In the past year, only two limited periods of winter weather (January 3, 1998 and January 9-13, 1998) occurred where the Port applied chemicals to ground surfaces (primarily runways and taxiways.) Compared to past years, snowfall and chemical usage, including aircraft glycols, was far less (Port 1998b, Port 1997c.) During the January 12, 1998 event, BOD₅ results ranged from non-detectable to 213 mg/l at the five outfalls sampled. Because glycol concentrations were either very low or not detected in these samples, the elevated BOD₅ concentrations were attributable to the acetate-based runway (ground) deicing chemicals.

It is important to note that the entire drainage area of outfall SDN2 was re-routed to the IWS in 1997 as a result of two BMPs, discussed in Section 4 of this report. These BMPs in SDN2 (two pump stations) eliminated drainage from areas that had been previous sources of BOD₅ resulting from aircraft and ground deicing materials. As a direct result of these BMPs, the vast majority of the runoff from SDN2 for the past year was pumped to the IWS. No discharges to the SDS were recorded during the 11-13 January snow event.

3.3.3 Ammonia

The current permit deleted ammonia from the list of required sample analytes. The principal source of ammonia in past stormwater samples was the urea applied as a runway deicer. The Port completely discontinued the use of urea by the end of 1996.

In the past year, ammonia concentrations in 20 samples from seven STIA outfalls continued to be well below any acute toxicity standard (see Figure 12). Because of the

November 1998

976079.23

consistency with past findings, only current year data are shown on Figure 12. More than 75 percent of all data were below the regional comparator of 0.17 mg/l. In addition, ammonia was not detected in 35 percent of the samples. The maximum value detected was 0.24 mg/l at SDE4 on 16 December 1997. The current data show that ammonia concentration has decreased to background levels airport-wide.

3.3.4 Surfactants

The current permit deleted surfactants from the list of required sample analytes. Results from samples collected in the first eight months of the past year are included in Appendix B.

In the past year, 99 percent of the 20 sample results were less than 1 mg/l, and more than 70 percent were less than 0.2 mg/l. The maximum surfactant detected was 0.95 mg/l. Surfactant concentrations continue to be below levels of concern. This information is consistent with past reports. Because of the consistency with past findings, only current year data are shown in Figure 13.

3.3.5 Metals

This report presents total recoverable metals data for stormwater discharges from STIA outfalls as required in the NPDES permit. The discussion below focuses on copper, lead, and zinc; The remaining metals results are summarized in tabular form in Appendix B.

Washington State Water Quality Standards (WAC 173-201A) apply to the receiving waters, not to the discharges from a particular outfall. Stormwater discharges are diluted in receiving waters. Therefore, it is inappropriate to compare outfall sample results directly with Ecology or the U.S. Environmental Protection Agency (EPA) standards.

November 1998

3-8

976079.23

The Washington water quality standards for copper, lead, and zinc are based on the dissolved fraction of the metal. The dissolved fraction is generally used to determine potential toxicity, an approximation of what is actually available (i.e., the bioavailable fraction for uptake by aquatic organisms).

3.3.5.1 <u>General Results</u>. General results are discussed below; more detailed discussion follows under the bullets of the three predominant metals: copper, lead, and zinc. In addition, a summary of other metal data is provided as a final bullet.

Although copper concentrations detected in STIA outfalls exceed associated with typical urban sources, the concentrations are less than those associated with Interstate 5 runoff.

Airfield outfalls continue to contain less lead and zinc concentrations than typical urban sources. In the four-year permit sampling history, over 95 percent of the results for lead and zinc in airfield outfalls were below the median for comparable regional data for commercial areas. In addition, the entire data set for lead and zinc in 73 samples from airfield outfalls was less than the mean concentrations for highway runoff⁵. This is significant given that the commercial/industrial comparators cited (see Table 5) are conservative and reflect instream sample concentrations after outfall discharges mixed with receiving waters.

It should also be noted that lead and zinc concentrations detected in STIA airfield outfalls were far lower in lead and zinc than the landside outfalls. This is likely due to the amount of passenger vehicle usage in the landside areas, much of which is beyond the Port's jurisdiction. Finally, in the past four years, 98 percent of all lead results from the airfield outfalls were less than the acute standard.

November 1998

976079.23

⁵ The 1980-81 highway study median value for lead is 0.47 mg/l (Chui, Horner and Mar, 1982.) Since this study, the sources of lead in stormwater discharges nationwide have decreased considerably due to the phase-out of leaded gasoline.

Copper. Copper concentrations in STIA stormwater continue to be lowest in discharges from two of the airfield outfalls, SDN3 and SDS4. Copper concentrations have declined significantly in SDS1 runoff since the rerouting of the storm drainage to the IWS in June 1997. As shown in Figures 14 and 15, the landside outfalls SDE4 and SDN1 display higher copper as well as do the airfield outfalls SDS3 and SDN4. However, these figures also show that the majority of STIA copper data were lower than in runoff from Interstate 5 (see Table 5). In addition, copper in urban runoff commonly exceeds the receiving water standards as demonstrated by several regional studies. Copper concentrations detected in landside outfall samples is likely related to the heavy vehicle activity within SDE4 and SDN1.

Unlike the other airfield outfalls, subbasin SDS3 has elevated copper concentrations.

- Lead. Lead concentrations continue to be lowest in the airfield subbasins as shown in Figures 16 and 17. Overall, more than 75 percent of STIA lead data was lower than comparable regional data, shown by the upper reference line in Figure 16. In addition, more than 80 percent of the lead concentrations in STIA samples were well below the acute toxicity standard of 0.016 mg/l for total lead. This standard is calculated at 28 mg/l total hardness, a conservative value that represents the 10th percentile recorded for the SRES (Port 1997b.)
 Landside subbasins SDE4 and SDN1 tended to contain higher concentrations of lead than other outfalls (see Figure 18). The Port believes that vehicle activity in these subbasins is a potential source of lead. Much of this non-industrial vehicle activity takes place on public roadways that drain to the Port's outfalls and monitoring locations.
- <u>Zinc</u>. At all outfalls, zinc concentrations observed at STIA during the past four years of monitoring were considerably lower than the comparative value for highways (0.638 mg/l), and current data continue with these patterns as shown in Figure 19.

November 1998

3-10

976079.23

Zinc concentrations continue to be lowest in the airfield subbasins as indicated by the reference line in Figure 18. The majority (97 percent) of zinc data for the four airfield outfalls was lower than the median (0.161 mg/l) from the City of Bellevue's 1996 study. Total zinc concentrations for landside outfalls SDE4 and SDN1 were higher than those of the airfield outfalls (see Figure 18). The landside subbasins experience considerable vehicle traffic where tire wear is a likely source of zinc (EPA 1993). Roads and parking areas constitute more than 50 percent of the impervious surfaces draining to SDE4 and SDN1.

In October 1996, the Port changed the sampling location for SDN1 from manhole SDN1-27 to manhole SDN1-22, upgradient from public road runoff. The changing of SDN1 sampling station resulted in generally lower zinc concentrations (see Figure 18). This difference indicates that runoff from Highway SR518 elevated zinc concentrations in samples collected at the downgradient location. This apparent difference in SDN1 data suggests that data collected prior to altering the location should be considered to contain a high bias.

In terms of potential toxicity, STIA monitoring results indicate that over 63 percent of the data from the four airfield outfalls was less than the toxic standard for total zinc calculated to be 0.04 mg/l using a highly conservative hardness value. In contract, the Bellevue 1996 study showed 61 percent of the 178 zinc samples taken exceeded the EPA standard. Given that all comparative regional zinc data in Table 5 are median values, most regional data would also exceed the standard.

All zinc results for landside outfalls SDE4 and SDN1 exceeded this standard. Again, comparing STIA outfall results directly to any water quality standard for surface water is extremely conservative since no account is made for mixing or the mitigating effects of the receiving water. The Port considers that roadway runoff is responsible for the elevated zinc values in the landside outfalls.

November 1998

3-11

976079.23

Finally, zinc concentrations have decreased considerably for outfall SDS1 discharges in the period since the Port rerouted 1.8 acres of aircraft service area to the IWS.

<u>Other Metals</u>. Table 6 shows a summary of results for other metals analyzed in recently collected samples. These data are from samples collected between June 1997 and March 1998. Analysis requirements for these metals were deleted in the new NPDES permit. The vast majority of results for these other metals were non-detectable. Although nickel was detected, the 95th percentile of 0.017 mg/l was nearly 30 times less than the acute toxic standard for total recoverable nickel.

3.3.6 Deicing Event Samples

3.3.6.1 <u>Background</u>. The Port's Annual Glycol Reports (Port 1996, 1997c, 1998b) detail the history of glycol application airport-wide. These reports summarize data reported by the airlines for the volumes of both ethylene and propylene glycol applied and number of aircraft treated each day. The Federal Aviation Administration (FAA) authorizes only ethylene and propylene glycols for aircraft deicing and anti-icing. Port tenants perform all glycol application at STIA (applied by airlines or their ground service providers). However, to ensure public safety, aircraft pilots make the ultimate decision on whether to apply glycols or not.

As of June 1997, all ramp areas where aircraft are routinely deiced drain to the IWS. Prior to this date, drainage from several aircraft service areas of limited extent flowed to the SDS. As a result, the Port completed necessary SWPPP actions by implementing seven BMPs that rerouted this drainage to the IWS from the four affected SDS subbasins (SDE4, SDS1, SDS3, and SDN2.)

November 1998

3-12

976079.23

The glycol data discussed below encompass mostly composite samples collected during periods of aircraft deicing, representing average values during a storm event discharge.

3.3.6.2 <u>Results</u>. Overall, the 1997-1998 deicing season was much less severe than in the past two seasons. In contrast to the past, only a few inches of snow fell, which melted rapidly, during the single snow event of 12 January 1998. Little or no snow was plowed from aircraft service areas. As a result, about 30 percent fewer aircraft were deiced than in previous years, using from 65 to 81 percent less glycol than in the previous 12 month periods (Port 1998b.)

Comparing current year data to past years shows considerably lower glycol concentrations in STIA discharges (see Figure 20 through Figure 22). The 1998 data show much lower glycol concentrations due to: (1) less deicing activity as a result of recent warmer and drier weather patterns, and (2) multiple BMPs instituted to remove aircraft service areas from the storm drainage system.

In the past year, glycols were analyzed in 30 stormwater samples from seven outfalls. The majority of samples were collected at the monthly sampling locations (SDE4, SDS3, and SDN4.) Total glycol concentrations ranged from non-detectable to a maximum of 32 mg/l. The majority of these results (83 percent) were below the detection limits. Glycols were not detected during nine of the 11 "routine" aircraft deicing events sampled, with a maximum concentration of 32 mg/l detected in the 8 March 1998 sample from SDS3.

November 1998

4.0 PERFORMANCE OF BEST MANAGEMENT PRACTICES

4.1 GENERAL

The following sections describe how recent stormwater monitoring data support the positive performance of many best management practices (BMPs) implemented in the past two years. Conclusions regarding BMP performance are presented below. Lists of completed overall BMPs and completed capital BMPs are included in Appendix D, Table D1 and Table D2, respectively. These tables are also included in the SWPPP.

4.2 SDN2 BMPs

Recent flow data show that the two pump stations in the former SDN2 area are effective. The entire drainage area of SDN2 was effectively rerouted to the IWS by late 1997. Two BMPs are likely responsible for this change:

- The North Cargo Pump Station, completed and online in July 1997, removing 39.8 acres of taxiways, hardstands, and Cargo area 2.
- 2. The North Snowmelt Pump Station, completed and online in late 1997, removing drainage from the remaining 6.6 acres of SDN2, a small fraction of which is used to store snow plowed from nearby areas.

The Port has elected to operate these two pump stations continuously, well beyond the sole need to remove sources of glycols and BOD₅ from SDN2. These BMPS were originally intended to operate only in winter weather during cargo aircraft deicing, and when snow was plowed and melting in the storage area. Because of continuous operation, the majority of runoff is prevented from discharging at SDN2.

Continuous flow monitoring data at these pump stations and the SDN2 outfall show that only a single bypass occurred between 1 March and 30 June 1998. This was the only occasion that

November 1998

976079.23

stormwater discharged from SDN2. The bypass occurred when rainfall exceeded the design rate of about 0.22 inches/hour. The bypass was less than an hour in duration, representing the peak of the hydrograph. Because no aircraft-deicing occurred in the SDN2 subbasin during or immediately before this bypass, sampling was not required per permit condition S2.4.

4.3 SDS1 BMPs

In the past two years, the Port rerouted drainage from storm drains to the IWS from two aircraft service areas totaling 35 acres in SDS1. The objective was not only to reduce glycols, but also to remove other potential pollutants that may be present in drainage from aircraft service areas. The effects of reducing glycols are discussed in Section. 3.3.6.

The first area rerouted drained about 1.8 acres of ramp near gate B12. Previous stormwater samples collected at the SDS1 outfall contained glycols at elevated concentrations during cold weather. As a result, the Port rerouted drainage from inlets SDS1-98 and SDS1-99 to the IWS via a structural reroute from manhole SDS1-100 to manhole IWS-190B.

The second area rerouted, about 16.8 acres, drained mostly ramp areas near the A and B concourses. This area previously drained to SDS1 only when higher peak flows surcharged manhole structure IWS-510 (designated SDS1-110 prior to the reroute). Monitoring data in the IWS510 outlet to SDS1 showed the resulting bypasses to SDS1 were of relatively short duration directly tied to periods of intense rainfall. The data showed that these bypasses occurred when rainfall exceeded about 0.2 inches/hour. Otherwise, all drainage from this second area normally discharges to the IWS.

Because of the unpredictability of these high-flow bypasses from IWS-510 to SDS1, there were few opportunities to collect samples explicitly for purposes of comparing data for conditions before and after this BMP was implemented. As a result only three of 20 storms monitored in the past 4-year period took place during these bypasses. Therefore, insufficient data is available to evaluate the effect this latter BMP had upon SDS1 discharges.

November 1998

976079.23

In recent samples, glycols were not detected in four of five samples collected at SDS1. Importantly, glycols were not detected in samples from the January 12 snow event where six aircraft were deiced in the area previously draining to SDS1. A minor amount of propylene glycol (6.1 mg/l) was detected in the 8 March 1998 sample. The Port is investigating removing the remaining ramp area of approximately 1 acre.

Figure D1 (in Appendix D) illustrates that prior to the drainage rerouting, glycols in SDS1 discharges were associated with deicing events involving a single aircraft. Sampling after the BMPs were implemented (Figure D1) shows that no glycols were detected for the two deicing events where more than 10 aircraft were deiced in the vicinity of the former SDS1 drainage area. Comparison of these two figures to past information shows the improvement. Comparing data from the five storm samples collected subsequent to the first BMP discussed above, with the results of the 15 samples collected prior to this BMP shows a decrease in other pollutants, especially metals (see Table 7 and the Box Plot in Figure D3, Appendix D).

Future samples from ongoing monitoring at SDS1 should help to determine the presence and degree of reduction in these parameters. Next year's data set should allow more statistical analysis for significance testing of these differences.

4.4 SDE4 BMPs

Between 1994 and 1997, the Port completed four BMPs in the SDE4 subbasin, rerouting drainage to the IWS from a total of over 17 acres. In order of completion, these BMPs include reroutes from SDE4 to the IWS for the following:

- 1. A flush gutter near gates D6-D9, removing approximately 5.3 acres of aircraft service area.
- 2. A flush gutter near Air Cargo 4, removing approximately 4.4 acres of aircraft service area.

November 1998

976079.23

- 3. A new pump station for flush gutter drainage near the North Satellite, removing 6.6 acres of ramp located intermediate between gates N11-N16 and the taxiways.
- 4. The North snowmelt pump station, removing 0.75 acres of snow storage area.

Because of these multiple changes on different dates, it is difficult to split the SDE4 data into "before" and "after" conditions. The net effect of these BMPs was about a 10 percent reduction in the total SDE4 subbasin area, and about a 13 percent reduction in impervious surface area. Removing these areas from SDE4 eliminated the remaining known aircraft service areas from the SDS. Similar to SDS1, the recent weather pattern has not yielded conditions sufficient to discern effects attributable to the many BMPs implemented in past years. However in the past year, glycols were detected in only one of a total of 8 samples collected. Glycol concentrations in this sample, collected during the only winter weather period in the past year, were very low (11.1 mg/l.) Though aircraft and runway deicing occurred during this event, it is not comparable to those of past years.

4.5 TAXI YARD BMPs

Data support favorable effects of various BMPs implemented at the Taxi Yard (TY). These BMPs include the use of oil-absorbent media in the catch basin insert "socks" ("Streamguard" units), and increased vigilance by the STITA Taxi Association, which leases this site.

Recent data continue to show low indicators of petroleum products in discharges. The median concentration for FOG in recent samples continues to remain below the comparative value of 3.7 mg/l. The TPH results from the first two samples collected pursuant to the current permit show very low values of just over 1 ppm. Data for TSS continue to be less than one half the BURP median of 50 mg/l.

The Port also built a car wash facility in the TY. The facility drains to the sanitary sewer and effectively separates vehicle washing from the storm drain system.

November 1998

976079.23

4.6 SUBBASIN SDE4: POLLUTANT SOURCE TRACING

As stated in the report (Section 3.2.2), fecal coliforms occasionally exceed levels typical of stormwater. The Port began a source tracing effort early in 1998 to identify the potential sources. Initial storm samples did not indicate distinct sources, and do not indicate gross contamination from sanitary sewage. Two baseflow samples, one each collected during the wet and dry season, were not contaminated, and had very low to non-detectable results. Table 7 summarizes the data for these initial samples. Manhole SDE4-47 is the NPDES sampling "outfall" location for SDE4. Other locations listed in the table are upgradient of this location.

According to the literature, surfactants, fluoride, ammonia and potassium are suitable indicators of potential contamination. Results can be compared to ranges indicating various sources of contamination. Ratios of ammonia to potassium of 0.9 and greater can be used to indicate the presence of sanitary wastewater (Lalor, Pitt, and Field, 1993.) Except for one occasion, results in Table 8 show these ratios at far less than 0.9. Fluoride concentrations indicate the presence of domestic water in baseflow samples, yet other parameters show that these baseflows are not contaminated with fecal coliforms, ammonia, or surfactants.

The source tracing effort is currently focusing more detail on the SDE4 drainage system by sampling up to 12 different progressively upgradient locations sequentially. These sampling locations isolate drainage sub-areas.

4.7 RUNWAY SKID MARK MATERIAL REMOVAL

To maintain proper braking friction for aircraft, the Port periodically removes accumulated material from skid marks deposited by landing aircraft. About biannually, this material is pressure washed from the runways, collected, and disposed as solid waste. About 7 cubic yards (5 m³) of solids are removed annually. The waste was analyzed using toxicity characteristic leaching procedure (TCLP) for metals to ensure that it is properly disposed in accordance with applicable regulations.

November 1998

4-5

976079.23

AR 033414

Table 9 shows the results from recent composite samples of this particulate waste material, and estimates total annual mass removed for copper and zinc. Because lead was not detected, no estimates are provided. In terms of total mass, these estimates show that this process removes about 68 pounds (31 kg) of zinc, and 12 pounds (5.5 kg) of copper annually. Considering only the leachable fractions, much less is removed. Nonetheless, this practice amounts to a BMP for metals abatement, taking place primarily in SDS3 and to a lesser extent in SDN3 and SDS4.

4.8 OTHER BMPs

Other operational and source control BMPs are used at STIA including: employee, contractor, and tenant training in stormwater pollution prevention, implementation of a Spill Prevention, Control and Countermeasure Plan, implementation of Integrated Pest Management BMPs, pavement sweeping and periodic runway rubber removal, inspections for illicit connections and designation of the stormwater management team. The effects of these activities are difficult to quantify but are likely to have an impact on stormwater pollution prevention.

November 1998

976079.23

5.0 CONCLUSIONS

Overall, STIA stormwater quality is better than regionally comparable data. Results continue to demonstrate that stormwater quality at the airfield outfalls under typical conditions is consistently better than regional commercial and industrial areas. Results also show that there are differences in stormwater quality between landside and airfield subbasins. However, the data tend to indicate that runoff from non-Port public roadways unfavorably biases STIA stormwater, especially in the landside outfall samples. Nonetheless, overall STIA results are generally lower than results for roadways and commercial areas.

Monitoring in the past year indicates improvements in stormwater quality after BMPs were implemented especially as those BMPs that rerouted drainage from the SDS to the IWS. BMPs implemented over the past year and performance data were discussed in Chapter 4.

November 1998

6.0 PROPOSED NEW INITIATIVES

Evaluation of the stormwater discharges at STIA is an ongoing process. A key factor in attaining improved water quality is implementation of BMPs. BMPs are evaluated as part of the SWPPP and are part of the NPDES permit requirement. Based on the data and conclusions presented in this report, as well as other knowledge regarding STIA activities, the following potential new initiatives have been identified.

- 1. Evaluate monitoring requirements in the permit and request modifications as appropriate, based on the effectiveness of BMPs or other changes at STIA.
- 2. Continue to investigate possible sources of fecal coliforms in SDE4 discharges.
- 3. Explore rerouting of drainage from several minor SDS3 drain inlets beneath the overhangs of the C Concourse that could be responsible for isolated elevated BOD₅ concentrations in SDS3.
- 4. Continue to monitor glycols in SDS1 discharges to verify the effectiveness of two capital BMPs designed to reduce and eliminate glycols and other pollutants by rerouting drainage to the IWS or sealing minor inlets.
- 5. Require contractor to implement source controls and BMP related to construction activities.
- 6. Continue to evaluate tenant activities.
- 7. Continue to revise and update the SWPPP on a regular basis.

November 1998

976079.23

7.0 REFERENCES

American Public Health Association. 1995. *Standard Methods for the Examination of Water and Wastewater*. 19th Edition. American Public Health Association, WA DC.

Booth and Horner. 1995. Fundamentals of Urban Surface Water Management, Chapter IV. Course manual for class offered in cooperation with University of Washington Engineering Professional Programs, Seattle, WA. September 1995.

Chui, T.W., Horner, R.R., and Mar, B.W. 1982. *Pollutant Loading Model for Highway Runoff.* Journal of the Environmental Engineering Division, Proceedings of the American Society of Civil Engineers, Vol 108, No. EE6, December, 1982.

Lalor, M.M., Pitt, R.E., and Field, R. 1993. Analysis of NPDES Stormwater Permit Field Screening Data to Identify Inappropriate Discharge Sources in Residential and Commercial Land Use Areas. Paper AC93-042-004. Presented at the 66th Annual Conference and Exposition of the Water Environment Federation, Anaheim, California, October 3-7, 1993. Water Environment Federation, Alexandria, VA.

Port of Seattle. 1996. *Annual Glycol Report*. Memorandum dated May 17, 1996 from Port of Seattle to WDOE (Lisa Zinner).

Port of Seattle. 1997a. Annual Stormwater Monitoring Report for the period July 1, 1996 through May 31, 1997. Scott Tobiason, Port of Seattle, September 29, 1997.

Port of Seattle. 1997b. Stormwater Receiving Environment Monitoring Report for NPDES Permit No. WA-002465-1. Port of Seattle, June 1997.

Port of Seattle. 1997c. Annual Glycol Report. Memorandum dated April 30, 1997 from Port of Seattle to WDOE (Lisa Zinner).

Port of Seattle. 1998a. *Procedure Manual for Stormwater Monitoring*. Port of Seattle, May 21, 1998.

Port of Seattle. 1998b. Annual Glycol Report.

SPSS. 1993. SPSS for Windows, Base System User's Guide Release 6.0. SPSS Inc., Chicago IL, © 1993.

November 1998

7-1

976079.23

United States Environmental Protection Agency. 1993. *Stormwater discharges potentially addressed by Phase II of the NPDES Program*. Draft report to Congress. October, 1993.

November 1998

976079.23
Tables

TABLE 1 SUMMARY OF SAMPLING CHANGES UNDER NEW PERMIT

Change	Outfalls Affected
Increase sampling frequency from quarterly to monthly	SDE4 (002), SDS3 (005), SDN1 (006), SDN4 (011)
Decrease sampling frequency from quarterly to semi-annually	EY (012), TY (013)
Decrease sampling frequency from quarterly to annually	SDS1 (003), SDS4 (009), SDN3 (008)
Delete parameters: NH ₃ , surfactants, FOG	all
Change TPH method from WTPH 418.1 to NWTPH-Dx	all
Bypass sampling required (for N. Cargo and N. Snowmelt IWS Pump Stations)	SDN2 (007)

November 1998

976079.23

AR 033421

TABLE 2 OUTFALL NOMENCLATURE CROSS REFERENCE

Outfall Number in	Port	
Permit	Nomenciature	Category
002	SDE4	landside
003	SDS1	none
004	SDS2	none
005	SDS3	airfield
006	SDN1	landside
007	SDN2	Drains to IWS
008	SDN3	airfield
009	SDS4	airfield
010	SDW3	none
011	SDN4	airfield
012	EY	landside
013	TY	landside
014	В	none
015	D	none

November 1998

976079.23

TABLE 3 OFFSITE INFLUENCES IN STIA MONITORING LOCATIONS^(a)

Outfall (manhole)	Total Area (ac)	Offsite Area (ac)	Percent Offsite	Comment
SDE4 (SDE4-47)	149	0.6	<1%	Offsite area of SR99.
SDS1 (outfall)	10.7	5.1	47%	Offsite area of S. 188th St. includes area added by City in Fall 1997
SDS2 (outfall)	13.2	2.9+	21%	Offsite 16th Ave S., S. 188th St, and possible non-Port commercial area.
SDS3 (outfall)	462	3	<1%	Approximate offsite area of S. 188th St.
SDN1 (manhole SDN1-27)	24+	9.9+	>40%	Former SDN1 location includes public road runoff. Additional 49 acres enters below this point.
SDN1up (SDN1-22)	13.8	0	0%	Air cargo road is about 1/2 of SDN1.

Note:

(a) All area estimates are as of 27 October 1998 and subject to change.

November 1998

<u> </u>			Subbasins						
Analyte	Method ^(a)	Detection limit (MDL) mg/l	SDE4, SDS3, SDN1, SDN4	EY TY, SDN2	SDS1, SDN2	SDS1, SDS2,SDN3, SDS4, SDW3, B, D			
рН	150.1	0.10	X	X	Х				
FOG (Oil and Grease)	413.1	1.0	n/a	n/a	n/a	n/a			
TPH (IR)	418.1 mod ⁽⁰⁾	1.0	n/a	n/a		n/a			
TPH (GC)	NWTPH-Dx	0.15	X	x	X	Y			
Fecal coliforms	9221 E	2	X			X			
TSS (total suspended solids)	160.2	0.50	x	x	X	×			
Turbidity	180.1	0.10	X		<u> </u>	X			
BOD₅	405.1	4.0	X		<u> </u>				
Total Ammonia	350.2S	0.010	n/a	n/a	 n/a	n/a			
Total Glycols ^(c)	GC FID	4	X		<u> </u>	Y			
Total Recoverable copper, lead, zinc ^(d)	200	varies	x		~	<u> </u>			
Surfactants	425.1	0.10	X*	X					

TABLE 4 POLLUTANT ANALYTES, METHODS AND DETECTION LIMITS

(a) Method refers to EPA-600/4-79-020, March 1979. Fecal coliform method refers to 18th edition of Standard Methods for the Examination of Water and Wastewater, or as revised.

(b) Washington State Department of Ecology method WTPH-418.1 Modified.

(c) Analyzed by Gas Chromatograph, Flame Ionization Detector.

(d) Lead by atomic absorption (AA) furnace, copper and zinc by ICP.

November 1998

976079.23

			-				
Pollutant	Units	NURP, 1983	BURP, Metro, 1984 1982		Bellevue, 1996 ^(b)	Highway Runoff	WA State Standard ^(c)
рН	std units		5.2 - 7.4		7.2 - 7.8		6.5 - 8.5
FOG	mg/l		2.5	7.8	3.7	30 ^(d)	no criteria
TPH	mg/l				3.7		no criteria
Fecal coliforms	mpn per 100 ml	1000 to 21000	980		201		50
BOD₅	mg/l	9	6.6				no criteria
TSS	mg/l	100	50		82.3	106 ^(e)	no criteria
Turb	mg/l		19		29.4		based on background
NH3 ⁽¹⁾	mg/l		0.17		0.58		6.8 - 32.6 ^(g)
glycols	mg/l	no	t analyze	d in any	of these stu	ıdies	no criteria
Surf	mg/l				<mdl< td=""><td></td><td>no criteria</td></mdl<>		no criteria
Cd (TR) ^(h)	µg/l			0.7	1		0.93 ^(h)
Cr (TR) ^(h)	µg/l			7	6.9		612 ^(h)
Cu (TR) ^(h)	µg/l	34		20	10.4	43 ^(e)	5.3 ^(h)
Pb (TR) ^(h)	µg/i	144	170	210	26.3	466 ^(e)	16 ^(h)
Zn (TR) ^(h)	µg/l	160	120	110	161.4	638 ^(e)	40 ^(h)
As (TR) ^(h)	µg/l			13			360 ^(h)
Ni (TR) ^(h)	µg/i			11	7.3		483 ^(h)
statistic re	ported:	median	mean ^(I) , <i>median</i>	mean	log- normal median	mean	metals criteria ^(h) at hardness = 28 mg/l

TABLE 5 STORMWATER QUALITY COMPARATORS^(a)

Notes:

(a) Comparative Values in bold. Blank space means no data available, reported, or applicable.

(b) Bellevue, 1996 data for "Sturtevant Creek, downstream" site.

(c) Standards are for class AA receiving waters, see WAC 173-201A.

(d) Highway runoff in England (see Booth and Homer, 1995).

(e) Highway runoff from an 15 location in Seattle with 57,000 ADT, 43 to 54 storm samples in 1980-81 (Chui, Mar, and Homer, 1982).

(f) Ammonia values and standards expressed as total ammonia, not as ammonia-nitrogen.

(g) Ammonia standards for pH 6.5 to 8.0 and temperatures 5° to 20°C.

(h) Total recoverable metals. WA State acute standards expressed as total recoverable, calculated at 28 mg/l hardness using Ecology's "TSDCALC6.XLW" spreadsheet. The hardness value is the 10th percentile for the receiving waters (source: Stormwater Receiving Environment Monitoring Report, Port, 1997b). Hardness can vary between season.

(i) For Turb, Cr, Cu, Pb, and Zn, BURP 1984 data was mean of grab samples, therefore Bellevue, 1996 data are better comparators because they represent median.

November 1998

976079.23

TABLE 6 OTHER METALS (TOTAL RECOVERABLE, MG/I)

	Sb	AS	Be	Cd	Cr	Hg	Ni	Se	Ag	TI
1998 Data set count	17	17		18	17	17	17	17	17	17
median	0.002	0.002	0.001	0.0003	0.005	0.0001	0.007	0.002	0.0005	0.001
95th	0.002	0.005	0.001	0.0009	0.006	0.0003	0.017	0.004	0.0005	0.001
75th	0.002	0.002	0.001	0.0003	0.005	0.0001	0.012	0.002	0.0005	0.001
25th	0.002	0.002	0.001	0.0003	0.005	0.0001	0.003	0.002	0.0005	0.001
#non-detected	17	13	16	14	16	14	6	14	17	16
%non-detected	100%	76%	94%	78%	94%	82%	35%	82%	100%	94%
acute (@ 28 ppm	9	0.36	0.13	0.0009	0.612	0.002	0.483	0.02	0.0005	1.4

Acute criteria derived from Ecology's worksheet "TSDCALC6.xls".

November 1998

976079.23

TABLE 7

Outfail SDS1 (003)	TSS	BOD5	Cu	Pb	Zn
Pre-BMP mean	22.4	26.8	0.062	0.020	0.178
Pre-BMP median	17.0	16.5	0.042	0.013	0.188
sample size	15	16	15	15	15
CV, %	4%	4%	60%	108%	38%
Post-BMP mean	11.2	5.0	0.023	0.010	0.102
Post-BMP median	9.0	5.5	0.022	0.005	0.082
sample size	4	4	5	5	5
CV, %	10%	12%	45%	98%	29%
% change in mean % change in median	-50% -47%	-81% -67%	-62% -48%	-50% -62%	-43% -56%

DECREASES IN POLLUTANTS IN SDS1 STORMWATER AFTER BMPS

Changes assume independence between concentrations from concurrent storm events.

November 1998

976079.23

TABLE 8

			fecals, #/100mi	fecels, #/100ml			K +		Mard	RODE	Cond	
Date	event	location	(MF)	(MPN)	FI-, mg/l	NH3, mg/l	mg/l	NH3/K+	mara, mg/l	mg/l	us ∠us	ma/
5-Jan	rain	SDE 4-47	420	1	0.22	0.042	1.08	0.04	26.5	<12	56	n/a
5-Jan	rain	SDE4-43	80	1	0.06	0.094	0.629	0.15	34.2	<12	57	n/a
5-Jan	rain	SDE 3-91	960		0.09	0.223	1.54	0.14	36.6	<48	104	n/a
5-Jan	rain	SDE4-31	1460		0.14	0.019	0.25	0.08	14.1	<12	33	n/ai
5-Jan	rain	SDE 3-93	540		0.12	0.027	0.848	0.03	21.8	<12	40	n/a
9-Jan	basefiow	SDE 4-47	2		0.7	0.027	1.1	0.02	49.1	4	104	0.053
9-Jan	baseflow	SDE 4-43	no flow		no flow	no flow	no flow	no flow	no flow	no flowi	no tow	no flow
9-Jan	baseflow	SDE 3-91	no flow		no flow	no flow	no flow	no flow	no flow	no flow	no flow	no flow
9-Jan	baseflow	SDE4-31	4		1.0	0.005	0.619	0.01	34.4	4	65	€0.025
9-Jan	baseflow	SDE 3-93	4		0.4	0.005	2.3	0.00	71.6	4	162	0.049
15-Jul	rain	SDE 4-47		>1800								
14-Aug	baseflow	SDE 4-47	70		1.07	0.021	1.01	0.02	31.5	₫.0		0.036
16-Aug	storm	SDE 4-47	1220	500		0.169	1.58	0.11	35.4		101	0.203
18-Sep	rain	SDE4-47	10800	500								
24-Sep	storm	SDE 4-47		>1600	0.325	0.953	1.48	0.64	37.4		111	0.477
3-0ct	storm	SDE4-47	>186000	>1600		_		1				

SDE4 SOURCE TRACING RESULTS

November 1998

976079.23

TABLE 9

METALS IN AIRCRAFT TIRE SKID MARK MATERIAL **REMOVED FROM STIA RUNWAYS**

	· · ·	· Cu	Metal Pb	Zn
sample				
results	TCLP1 (mg/l)	0.042	0 025	6 25
	TCLP2 (mg/l)	n/a	0.05	n/a
	avg TCLP (mg/l)	0.042	0.0375	6 25
	total (mg/kg)	1294	93.4	7300
	sample density (g/cc)		0.847	
mass			T	
estimates	kg/m3 (TCLP)	0.0007	0.0006	0.11
	kg/m3 (totai)	1.1	0.1	6.3
	lb/yd3 (total)	1.9	0.1	10.6
	relative fraction leached	0.06%	0.80%	1.69%
	approx volume removed**, m3		5	
	approx mass removed (TCLP), kg	0.004	0.003	0.53
	approx mass removed (total), ko	5.5	0.40	31.3

*lead not detected in both TCLP analyses. 1. Sampled by Scott Tobiason 8/14/98, analyzed by Aquatic Research, Inc 2. Sampled by Sarah Olson 9/10/98, analyzed by Philip Environmental ** estimate of total solids volume removed and

976079.23

November 1998

Figures

SECTION O SECTION

FIGURE 2 FOG FOR CURRENT YEAR

976079.23

FIGURE 3 TPH (IR) COMPARED IN BOX PLOT FOR CURRENT YEAR

November 1998

976079.23

FIGURE 4 TPH-DX COMPARED IN BOX PLOT FOR CURRENT YEAR

November 1998

976079.23

FIGURE 5 IMPROVEMENTS IN SDN1 DATA ABOVE PUBLIC ROADS

November 1998

976079.23

FIGURE 6 CHANGES IN SDS1 AFTER BMPS

November 1998

976079.23

FIGURE 7 FECAL COLIFORMS

November 1998

FIGURE 8 TSS FOR CURRENT YEAR

AR 033438

November 1998

FIGURE 9 TURBIDITY FOR CURRENT YEAR

November 1998

976079.23

FIGURE 10 BOD₅ FOR PERMIT HISTORY¹

November 1998

976079.23

¹ Because of the scale shown, 8 outlying values from data taken in previous years are not visible. Six of these occurred during major winter-weather deicing periods, and were related to ground deicing chemicals as explained in past Annual Stormwater Reports. One other outlier on 9/13/94 in SDN1was probably due to an inappropriate connection, since corrected, which was discussed in the 1997 Annual Stormwater Report.

FIGURE 11 BOD5 FOR CURRENT PERIOD

November 1998

976079.23

FIGURE 12 AMMONIA FOR CURRENT YEAR

November 1998

976079.23

FIGURE 13 SURFACTANTS FOR CURRENT YEAR

976079.23

AR 033443

November 1998

FIGURE 14 TOTAL COPPER FOR PERMIT HISTORY

976079.23

FIGURE 15 TOTAL COPPER FOR CURRENT YEAR

November 1998

FIGURE 16 TOTAL LEAD FOR PERMIT HISTORY¹²

November 1998

976079.23

¹ With Ecology's concurrence, in October 1996 the Port moved the sampling location for SDN1 from manhole SDN1-27 to manhole SDN1-22, upgradient from public road runoff. The previous downgradient location was more convenient for sampling access, yet incorporated runoff from these non-Port areas. This report and the 1997 Annual Stormwater Report show considerably less FOG, TPH, and Zinc in samples taken at the location upgradient of this non-Port property.

² Because of the scale shown, 3 outliers at SDE4 are not visible: they are 0.104 mg/l on 2/3/96, 0.098 mg/l on 4/16/96, and 0.076 mg/l on 1/16/97. A single outlier at SDS1 is also not visible, 0.088 on 4/15/96.

FIGURE 17 TOTAL LEAD FOR CURRENT YEAR

AR 033447

November 1998

FIGURE 18 TOTAL ZINC FOR PERMIT HISTORY

November 1998

976079.23

FIGURE 19 TOTAL ZINC FOR CURRENT YEAR

FIGURE 20 TOTAL GLYCOLS FOR CURRENT YEAR

976079.23

FIGURE 21 TOTAL GLYCOLS FOR PERMIT HISTORY

November 1998

976079.23

FIGURE 22 TOTAL GLYCOLS BY REPORTING YEAR

976079.23

Appendix A

Hydraulic and Hydrologic Estimations

APPENDIX A

HYDRAULIC AND HYDROLOGIC ESTIMATIONS

This appendix presents hydraulic information required by the STIA NPDES permit. Paragraph 2 of Section C of NPDES permit special condition S3 states "The Permittee shall submit the following data for the storm event used: date, duration, the number of dry hours preceding the storm event, total rainfall during the storm event (inches), maximum flow rate (gallons per minute), and the total flow from the rain event (gallons)." Table A1 presents a summary of monitored storm events. Tables A2 and A3 present estimates of runoff volumes and peak discharge rates. Daily runoff values are presented in Table A4 and illustrated in the attached bar graphs shown as Figure A1.

Peak discharges presented in Table A3 are estimated by the "rational method" for each storm event sampled in the preceding year. The peak rate of each storm depends upon the time-of-concentration, or T_c , for the particular subbasin and the rainfall distribution of the particular storm. The WATERWORKS model was used to develop the T_c values presented in Table A5. A peak discharge, Q_p , is then estimated by the rational method using the following equation:

 $Q_{p} (gpm) = \frac{Cx | x A x 43560 \text{ ft}^{3}/\text{ac } x 7.48 \text{ gal/ft}^{3}}{12 \text{ in/ft } x 60 \text{ min/hr}}$

where:

C = runoff coefficient = (0.90(A_i) + 0.25(A_p))/A where : A_i = the impervious area in acres, and A_p = the pervious area in acres I = peak intensity in inches/hour

A = subbasin area in acres

The Port's rain gauge records rainfall at 5-minute intervals, thereby resolving rainfall rates, or "intensities" for periods as short as 5-minutes. The rainfall record for the storm of interest is examined to determine the peak intensity for the time

November 1998

A-1

976079.23

span that matches the time-of-concentration. The rain gauge allows the user to aggregate rainfall for multiples of the 5-minute recording interval that best approaches the times of concentration desired. This basin-specific intensity was then translated to an hourly peak intensity using the following equation:

 $1 = i \times 60/T_{c}$

where:

- i = maximum rainfall depth (inches) of a time equal to the time of concentration
- T_c = the time of concentration, displayed in Table A5.

For example, the T_e for SDE-4 is 21 minutes; therefore, the rainfall record for the storm of interest is examined to find the one period of 20 minutes that has the greatest rainfall depth.

As additional information, Table A6 provides changes in boundaries or percent of impervious surfaces.

November 1998

976079.23

Tables

MONITORED STORM EVENTS

	Depth,	Dur,	48hrant,		
Stormdate	Ŀ.	Ţ	. <u>.</u>	dryant, hr Event Type*	Comment
06/03/97	0.26	16	0	76 NPDES	
06/16/97	0.36	28	0	135 NPDES	
06/21/97	0.27	11.8	0.12	68 NPDES	
08/25/97	0.2	10.5	0.07	96 NPDES	
10/28/97	0.47	10.8	0.08	26 NPDES	···
11/06/97	0.16	4.4	0.01	72 NPDES	
11/16/97	0.47	12.6	0	222 NPDES	
11/19/97	0.65	39	0.12	24 NPDES	rain data missing: ant data actimated
12/15/97	-	33	0	87 NPDES	
01/12/98	1.13	48	0	123 NPDES	"2" snow preceded event
01/29/98	0.2	14	0	107 NPDES	
03/01/98	0.98	86	0.07	6 NPDES	
03/08/98	0.86	27	0	132 NPDES	
04/07/98	0.03	0.5	0.04	87 non-storm	non storm
04/09/98	0.09	17	0	62 non-storm	non storm
04/23/98	0.46	20	0	264 NPDES	
05/09/98	0.12	œ	0	360 non-storm	non storm
05/14/98	0.21	ω	0.01	125 NPDES	
05/24/98	0.58	1	0	87 NPDES	
06/10/98	0.28	10	0	288 NPDES	
06/24/98	0.43	4	0	288 NPDES	<u> </u>
* see criteria i	in Proced	lure Mai	nual for Stu	ormwater Monitoring (PO	S 1998a)
"dur" is rainfa	Il duratio	n in hou	ILS		

"48hrant" is the total rainfall in the 48 hours preceding the event monitored "dryant" is the duration of the antecedent dry period to the last measurable rainfall

ESTIMATED RUNOFF VOLUMES FOR STORM EVENTS MONITORED JUNE 1997 THROUGH JUNE 1998

F SDW-3 SDN-4 FY TY B D 89,000 9,000 5,000 5,000 104,000 0 12,000 5,000 5,000 104,000 0 160,000 5,000 9,000 104,000 0 160,000 5,000 9,000 104,000 0 340,000 7,000 17,000 104,000 0 333,000 7,000 17,000 17,000 0 233,000 27,000 17,000 1,000 1,466,000 1,400 1,7000 1,000 1,000	003 004 005 006 008 009	
00 31,000 5,000 5,000 5,000 5,000 104,000 0 128,000 199,000 26,000 160,000 5,000 104,000 00 128,000 199,000 241,000 160,000 5,000 9,000 00 128,000 199,000 241,000 160,000 5,000 9,000 00 128,000 609,000 241,000 34,0000 5,000 9,000 00 330,000 609,000 241,000 34,000 6,000 4,000 9,000 00 333,000 609,000 25,000 34,000 7,000 4,000 9,000 00 279,000 279,000 27,000 17,000 9,000 <	SDS-1 SDS-2 SC	
53,000 53,000 12,000 10,000 00 128,000 199,000 26,000 160,000 17,000 17,000 17,000 17,000 11,000 <td>2 000</td>	2 000	
00 128,000 26,000 26,000 160,000 5,000 9,000 0 128,000 199,000 241,000 160,000 5,000 9,000 0 199,000 241,000 340,000 609,000 241,000 9,000 0 330,000 609,000 241,000 334,000 9,000 0 333,000 609,000 292,000 334,000 4,000 00 279,000 0 279,000 17,000 4,000 00 1 1,005,000 1,005,000 17,000 1,000 00 141,000 141,000 1,493,000 19,000 6,000 00 141,000 1,493,000 19,000 6,000 1,466,000	non' i	
00 128,000 199,000 241,000 5,000 5,000 9,000 1,000 1,1,000 1,1,000		
199,000 241,000 5,000 9,000 9,000 330,000 609,000 340,000 9,000 9,000 9,000 00 333,000 609,000 384,000 7,000 4,000 9,000 00 323,000 384,000 333,000 7,000 17,000 9,000 00 323,000 25,000 333,000 17,000 9,000 9,000 00 323,000 292,000 275,000 17,000 9,000 9,000 00 1,005,000 292,000 27,000 17,000 9,000 9,000 01 1,005,000 292,000 27,000 17,000 9,000 9,000 01 1,005,000 1,005,000 1,005,000 9,000 9,000 9,000 9,000 01 1,1,000 1,1,493,000 19,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 <td>2,000 2,29</td>	2,000 2,29	
199,000 241,000 9,000 1,1,000 0,000 1,1,000		
330,000 609,000 340,000 540,000 540,000 56,000 384,000 7,000 4,000 6,000 7,000 6,000 7,000 6,000 7,000 6,000 7,000 <td>1,000</td>	1,000	
00 892,000 384,000 7,000 4,000 7,000 4,000 7,000 1,1,000 0	5,000	
00 25,000 26,000 4,000 4,000 6,000 7,000 4,000 7,000 <th7< td=""><td>9,000 6,98</td></th7<>	9,000 6,98	
00 323,000 607,000 333,000 77,000 72,000 71,000 72,000 71,000 72,000 71,000 72,000 71,000 72,000 71,000 72,000 71,000 72,000 71,000 72,000 71,000 72,000 72,000 72,000 <th 72,000<="" <="" td=""><td>26</td></th>	<td>26</td>	26
00 279,000 607,000 292,000 27,000 17,000 0 0 0 0 1,005,000 1,005,000 1,005,000 1,005,000 1,005,000 1,005,000 1,005,000 1,005,000 1,005,000 1,005,000 1,005,000 1,005,000 1,005,000 1,493,000 19,000	5,807	
0 0	1,000 4,92	
0 0 0 1,005,000 1,005,000 1 1,005,000 1 <td>_</td>	_	
00 1,005,000 1,005,000 0 00 15,000 1 1,005,000 00 141,000 1,493,000 19,000 00 306,000 1,466,000 6,000 1 1,466,000 1,466,000		
00 15,000 00 15,000 00 141,000 00 19,000 00 00 00 00 00 00 141,000 0	1,005	
00 141,000 1,493,000 19,000 6,000 00 306,000 1,466,000 6,000 6,000 1 1,466,000 1,466,000 6,000 6,000		
00 306,000 1,493,000 19,000 6,000 1,466,000	141	
JU JU6,000 6,000 stain gage at Sea-Tac Airport 1,466,000 6,000		
rain gage at Sea-Tac Airport	905 	
rain gage at Sea-1 ac Airport	vine and/or Davi of Clash	
	fic enaineering models	
	tions above apply for rai	
fall from 0.1" to 2.0"	11 13 4	
fall from 0.1" to 2.0" 22 14 70 63 14 30 11 1 50 34	0,531 358,412 12,544	
tall from 0.1" to 2.0" 22 14 70 63 14 30 14 50 34 09 366,557 1,900,668 1,721,462 380,134 820,002 40 186 21 179 1 346 759 200 456	9.2 1	
fall from 0.1" to 2.0" 63 14 30 1 1 50 34 22 14 70 63 14 820,002 40,186 1,346,759 920,466 24 10.2 27 20.8 7 8 1 1 1 3	1.5 12.2	
fall from 0.1" to 2.0" 63 14 30 1 1 50 34 22 14 70 63 14 30 1 1 1 50 34 09 366,557 1,900,668 1,721,462 380,134 820,002 40,186 21,179 1,346,759 920,466 24 10.2 27 20.8 7 8 1 1 1 3.2 38 3.3 43 42.6 7 23 0 0 48 30.7	0.30	

0.31 286,594

0.27 358,955

0.46 0.58 797,466 218,577 42.6

951,692

0.74 271,660

224 238 0.57 7,089,492

0.67 0.81 0.30 2,723,386 235,004 107,252

Cr est runoff, gal/in

19,061

339,133 31,225

ESTIMATED PEAK RUNOFF RATES FOR STORM EVENTS MONITORED JUNE 1997 THROUGH JUNE 1998

Monitored	Peak RI		P	eak Ru	Inoff R	ates fo	or Sea-	Tac Ai	rport S	ub-Ba	sins.	map		Γ
Event	(in/hr)	002	003	004	005	900	800	600	010	011	012	013	014	015
Date		SDE4	SDS-1	SDS-2	SDS-3	SDN-1	SDN-3	SDS-4	SDW-3	SDN-4	Ы	בׂ	60	0
06/03/97	0.06	2723	235	107	7087	272	951	797	219	339	31	19	359	287
06/16/97	0.07	3176	274	125	8269	317	1110	930	255	396	36	22	419	334
06/21/97	0.06	2723	235	107	7087	272	951	797	219	339	.	19	359	287
08/25/97	0.05	2269	196	89	5906	226	793	664	182	283	26	16	299	239
10/28/97	0.07	3176	274	125	8269	317	1110	930	255	396	36	22	419	334
11/06/97	90.0	2723	235	107	7087	272	951	797	219	339	31	19	359	287
11/16/97	0.18	8168	705	322	21262	815	2854	2392	656	1017	2	57	1077	860
11/19/97	0.15	6806	587	268	17718	679	2378	1993	546	848	78	48	897	716
12/15/97	0.10	4538	392	179	11812	453	1586	1329	364	565	52	32	598	478
01/12/98	0.24	10890	940	429	28349	1086	3806	3189	874	1356	125	76	1435	1146
01/29/98	90.0	2723	235	107	7087	272	951	797	219	339	٣	19	359	287
03/01/98	60.0	4084	352	161	10631	407	1427	1196	328	509	4	29	538	430
03/08/98	0.05	2269	196	89	5906	226	793	664	182	283	58	16	299	239
04/07/98	0.03	1361	117	54	3544	136	476	399	109	170	16	10	179	143
04/09/98	0.02	908	78	36	2362	9	317	266	73	113	<u>e</u>	9	120	<u>96</u>
04/23/98	0.03	1361	÷	54	3544	136	476	399	109	170	16	10	179	143
86/60/90	0.02	908	78	36	2362	9	317	266	73	113	<u>e</u>	9	120	96
05/14/98	0.05	2269	196	89	5906	226	793	664	182	283	26	16	299	239
05/24/98	0.06	2723	235	107	7087	272	951	797	219	339	3	19	359	287
06/10/98	0.03	1361	117	54	3544	136	476	399	109	170	16	9	179	143
06/24/98	0.14	6353	548	250	16537	634	2220	1860	510	161	2	44	837	669
Rainfall data	from Port of	Seattle	and/or N	ational V	Veather	Service I	rain gag	e at Sea	-Tac Air	л Хот	1	1		
Peak runoff i	rates based u	ipon "rat	lional me	thod": Q	=CIA.)							
"A" Dacin Ar	- V - 200	110	Ļ	:			ļ				ŀ			

A, DASIN ACAS, AC	142	-	2	462	14	2	63	4	30	-	-	50	34
	00					I						2	5
I, IIME OF CONCENTATION	N7	5	20	80	10	55	501	40	50	ŝ	40	UX	Q
	2		ŀ					2	8	,	^	2	3
AU, Area Impervious, Ac	2	9.Z	-	22	10.2	27	20.8	~	œ	-	-	-	2 2
								•	•	•	•	-	2
"Ap", Area Pernous, Ac	ZC	<u>.</u>	12.2	238	3.0	43	47.6	7	33	C	c	a	20.7
						?		-	2	,	>	2	2.22
UC, runor coemicient =(4	19.0	0.81	0.30	0.57	0.74	0.50	0.46	0.58	0.41	0 78	0 90	1 27	1.0
									;	5	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	j	2

1997-98	RAINFALL	AT	SEA-TAC	AIRPORT
		•		

Day	Jun-97	Jui-97	Aug-97	Sep-97	Oct-97	Nov-97	Dec-97	Jan-98	Feb-98	Mar-98	Apr-98	May-9	3 Jun-98
Rainfall in ir	nches												
	1 0.01	0.01	0	0.03	0.59	0	0	0.58	0.08	0.59	0	0.01	0.01
	2 0.01	0	0	0	0.2	0	0	0.01	0.1	0.17	0	0.01	0
	3 0.25	0	0	0	0.59	0.16	0	0.11	0.05	0.05	0.03	0.01	0
4	4 0	0	0	0	0.49	0	0	0.31	0.1	0	0	0.0	0.01
	5 0	0.13	0	0	0	0.15	0	0.95	0.03	0	0	0	0
<u> </u>	6 0	0.02	Ó	0	0.2	0.22	0.01	0.37	0.01	0	0.01	0	0
	7 0	0.21	0	0	0.11	0.7	0.14	0.3	0.01	0	0.1	0	0
8	3 0	0.5	0	0	0.69	0	0.01	0.01	0.18	0.19	0	0.01	0.01
	0	0.02	0	0	0.02	0	0.08	0	0	0.7	0.03	0.04	0.23
10	0 0	0.32	0	0.01	0.07	0	0.06	0	0.17	0.15	0.09	0.01	0.08
11	0.06	0.01	0	0.01	0	0	0	0.01	0.33	0	0.14	0.01	0
12	2 0	0	0	0.01	0	0	0	0.22	0.5	0.01	0.02	0.01	0
13	5 0	0	0	0.3	0.02	0	0	0.16	0.18	0.01	0.01	0.02	0.01
14	0	0	0	0.04	0.1	0	0.01	0.8	0.1	0	0	0.23	0.01
15		0	0	0.48	0	0	0.57	0.05	0.03	0.06	0	0.01	0
10	0.02	0	0	0.81	0.01	0.49	1.17	0.52	0.03	0.04	0	· 0	0
17	0.36	0	0	0.74	0.21	0.11	0.03	0.18	0.13	0.01	0	0.01	0
		0	0	0.03	0	0.01	0	0.39	0.31	0	0.01	0.01	0
19	0.02		0	0	0	0.65	0.02	0.02	0.1	0	0.01	0.01	0
20	0.18	0	0.07	0	0	0.01	0.18	0.07	0.18	0	0	0.01	0
21	0.09			0	0	0.01	0	0.31	0.13	0.19	0.01	0.01	0
22	0.01	0	0 00	0	0.02	0.21	0.08	0.19	0.03	0.79	0	0	0.01
	0.02		0.08	0	0.01	0.46	0.02	0.88	0	0.43	0.5	0.01	0.07
24			0.12	0	0	0.11	0	0.27	0.01	0.25	0.08	0.65	0.45
25			0.07	0.37	0	0.01	0	0.19	0.16	0.16	0	0.14	0.01
20			0.41	0.44	0.08	0	0.04	0.01	0.01	0.01	0	0.37	0.01
- 28	0.45		0.25	0.01		0.01	0.03	0.01	0.05	0.01	0	0.52	0.01
20	0.45		0.03	0.01	1.9	0.18	0.01	0.04	0.66	0	0	0	0
30	0.01	- 0	0	0.16	1.2	0.35	0	0.23		0	0	0.01	0
31	0.01	- 0		0.10		0.03	- 0	0.01		0.06	0	0.01	0
daily max	0.45	0.5	0.41	0.91			0.1	0		0.12		0	
total	1 49	1 22	1.03	2 45	5.54	- 0.7	1.17	0.95	0.66	0.79	0.5	0.65	0.45
% avg*	99%	161%	90%	184%	17104	3.07	2.00	1240	3.67	4.0	1.04	2.13	0.92
vtd	1.49	271	3 74	7 10	12.7	16.57	43%	134%	92%	113%	45%	125%	61%
%avo*	99%	120%	110%	136%	1/0%	11602	0494	20.33	30	34	35.04	37.17	new year
avg*	1.5	0.76	1 14	1.88	3 23	5.83	5 07	5 20	101%	102%	99%	100%	new year
avg cum*	1.5	2.26	34	5.28	8.51	14 34	20.31	25.60	3.99	3.54	2.33	1.7	1.5
# "storms"	4		<u> </u>	2	2	<u> </u>	20.31	20.09	29.00	33.22	35.55	37.25	new year
# sampled	3	ō	1	Ō	1	3	4	4	1	3	1	2	2
month max*	3.82	2.39	4.59	5 95	8.95	10 71	11.85	12 02	0.11	2	1	2	2
month min*	0.13	T	0.01	T -	0.31	0.74	1 27	0.59	9.11	0.4	0.53	4.76	3.82
			0.01		0.01	0.74	1.3/	0.00	0.30	0.57	0.33	0.12	0.13

*Source: National Weather Service (http://161.55.224.1/smith/climate/search.html)

29 possible "storm" events 18 Sampled events (in bold in table) 3 non-"storms" sampled (grabs only)

1997-98 RAINFALL AT SEA-TAC AIRPORT

November 1998

976079.23

1997-98 RAINFALL AT SEA-TAC AIRPORT

November 1998

976079.23

November 1998

976079.23

1997-98 RAINFALL AT SEA-TAC AIRPORT

November 1998

976079.23

1997-98 RAINFALL AT SEA-TAC AIRPORT

November 1998

976079.23

Subbasin	Outfall Number	A _p (acres)	A _i (acres)	Total Area (ac)	С	T _c
SDE-4	002	52	97	149	0.77	21
SDS-1	003	0	6	6	.90	TBD
SDS-2	004	5	0	5	.25	60
SDS-3	005	222	202	424	0.56	78
SDN-1	006	0	14	14	90	10
SDN-2	007	7	29	36	.00	50
SDN-3	008	43	17	60	23	55
SDS-4	009	32	25	57	0.54	50
SDW-3	010	14	10	24	52	30
SDN-4	011	20	6	29	.52	30
Eng Yard	012	0	15	15	0.40	
Taxi Yard	013	0	2	1.0	.90	5
Subbasin B	014	40	0	40	.90	
Subbasin D	015	35	2	37	0.25	TBD

SUMMARY OF SUBBASIN HYDROLOGIC CHARACTERISTICS

November 1998

I ABLE A6 Summary of SDS/IWS Drainage Basin Areas in 1994 and 1998 SUBJECT TO CORRECTION AND REFINEMENT ...

	0,000	5 X X X X		ā								Currer	nt (19	68)			
		L LEAL	(146)	Changes	3	rrent (19	<u>98)</u>		total	percent of		total p	ercent of	┢	tota	percent o	
Orainana Bacin	Viero,	viaduu,	1 0131	1994-1998	Perv	Imperv.	Total		631	ch Creek		S	SO			Airfield	
Willer Creek CDC	(acres)	(acres)	(acres)	(See below)	(acres)	(acres)	(acres)		perv	mperv	total .	perv im	perv	total	perv	imperv	total
SDN-1 (above monitoring)	n 330	10 54	13 84	5					i								Ī
SDN-1 (POS helow more				2	67.0	17.01	13.50		3%	16%	8%	0.6%	2.4%	1.4%			
SDN-1 (offsite below mon	97.00 FC		24.0	ł	0.42	5.00	5.42		0.4%	8%	3%	0.1%	1.2%	0.6%			
	00.00	90.21	40.94	;	33.88	12.06	45.94		33%	19%	28%	6.3%	2.8%	4.8%			
2-NOS	13.11	33.56	46.67	1,8	00.0	0.0	0.00		%0	%0	%0	%0`0	%0.0	%U U	760	700	è
	49.80	20.11	69.91	14	42.86	27.04	69.90		42%	44%	42%	8 0%	6 3%	7 3%	120		
4-NOS	27.08	3.14	30.22	15	22.56	7.65	30.21		22%	12%	18%	4.2%	1.8%	3.1%	%2	%n	% *
Des Moines Creek SDS															!	2	2
SDE-4	55 24	123 12	178 3G	2 2 0 1 2 1 7	54 74	00.70								-			
SDS.1	1 10	10.02		2,0,3,12,17	4/.1c	97.39	149.13		12%	27%	19%	9.7% 2	2.7%	15.5%			
		06.01	12.40	n	1.47	9.23	10.70		0.3%	2.5%	1%	0.3%	2.2%	1 1%			
2-606	12.18	1.03	13.21	:	12.18	1.03	13.21		3%	0.3%	2%	2.3%	0.2%	707			
5-505 500 -	259.11	186.47	445.58	4,14,15	238.05	224.28	462.33		55%	62%	58%	44.5% 5	707 6		1000		
SUS-4	38.56	19.39	57.95	10,11	42.63	20.79	63.42	_	10%	769	76.0				04.60	%0%	14%
W-3	14.30	10.55	24.85	14	7.04	6.98	14.02		2%	1 0%				% 0.0	%71	%/	10%
ß	53.81	1.42	55.23	14	48.22	1.35	49.57	<u> </u>	1102		2 2	%.C	% O.1	%C			
٥	34.02	0.35	34.37	14.15.16	30.66	3.20	33 BG	-	۶ è	8, 4 .0	%0	9.0%	0.3%	5.1%			-
					20.00	0.0	23.00		٤	0.9%	4%	5.7%	0.7%	3.5%			
Other SDS]
Taxi Yard	00.0	0.78	0.78	:	000	0 7 B	0 7 B										
Engineering Yard	0.28	1.20	1.48	ł	0.28	1.20	1.48										
SMI																	
	¢/.H	246.11	257.86	4,5,6,7,12,13,1	6.30	285.71	292.01	Detail of D	rainage	Basin Cha	ndes			ť			ſ
North Showmell PS	1	:	1	8	6.39	0.24	6.63	(boundary :	and/or ne	rcent imne				5	ange in		
Central Snowmelt PS	:	ł	1	6	0.05	0.70	0.75	Action			(ennia)		:		age Area		Total
South Snowmelt PS	:	1	1	CF		0.24							~	ear F		To:	Acres
North Cargo Area PS	1	1	;	? -	9.0				N0. 1 (S	11A-9707):	North Ca	rgo Area Pui	np S 1	997 S	DN-2	IWS	39.79
North Satellite PS	I	1		- ~		00.00	19.79	Z. SWPPP	No. 2: Ca	Irgo Area	I (at SDE	2-29)	Ŧ	996 S	DE-4	SMI	4 40
IWS-510 Diversion	0 42	23 87	32 20		5.0	10,44	5.13	3. SWPPP	No. 3: (S	TIA-9452)	North Sat	ellite Pump	Stati 19	995 S	DE-4	SMI	663
	1	10.20	67.00	0'0	0.42	16.05	16.47	4. SWPPP	No. 4: G	ste C8 (at 9	SDS2-17/	2	Ŧ	395 S	DS-3	SM	0.07
TOTAL								5. SWPPP	No. 5: Sc	uth Satelli	le Apron	(at SDS1-10	0) 19	997 S	DS-1	SMI	1 75
Miller Creek SDS	127 50	84.44	112 00					6. SWPPP	No. 6: G	ite B5 (incl	uded in S	WPPP No	1	995 S	DS-1	SM	0.25
M of SDS	21%	10%	2005	1	10.001	01.96	164.97	7.					ţ	1 966	MS	SMI	IG R7
inter of total	246		0/07		%.F.	14%	11%	8. STIA-975	59: North	Snowmelt	Pump St	ation	1	S 866	C'NU	UNIC	6 63
Pro Majara Crook CDC	%. I Z	871	%0I		19%	8%	12%	9. STIA-975	59: Centra	al (Firestati	on) Snow	melt Pump :	Stati 19	866	DE-4		32.0
Ues Moines Creek SUS	406./U	5 15.565	10.225	ł	431.99	364.25	796.24	10. STIA-97	59: Sout	h Snowme	It Pump (tation	¥				0.10
Other SUS	0.28	1.98	2.26	ł	0.28	1.98	2.26	11. STIA-96	02: Runv	vay 34R S	afetv Fill		ź ¥			200	0.34
total airfield	387.66 2	262.67 6	50.33		346.10	279.76 (525.86	12. STIA-97	23: Term	inal Garan	e Evnanc	u ci				4-00	5.88
% of SDS	65%	60%	63%		65%	65%	65%	13. Tenant	Fed.Fv (e Lapana		~ `	198 198	DE-4	MS	4 76
total SDS	596.57 4	139.70 #	****		535.28	428.19	963.47	14 STIA 07	74. Third			:	<u>,</u>	16/ SI		- MS	0 33
% of total	88%	61%	78%		96%	55%	7000	15 STIA 04	20. tataa	Runway 1	0K-34L	Iterconnecti	10 I 10	.M 86	3,8,D SI	DS-3 1	7 02
IWS	12.17 2	78.98 2	91.15	;	19 93	349.81	27 DY	10. 011A-94	zu. inter	connecting	I axway:	5 16R-34L	5	94 00	change	-	0 00
% of total	2%	39%	22%		4%	45%	28%	10. 311A-30	39: 0 00	/ Equipmer	nt Storage	e Shelter	10	96 oc	change	U	00 0
Total drainage	608.74 7	18.68 #1	****		555.21	778.00 #				nh lichil al		(e (at 5053-	33, 19	94 SI	E-4	ws	5 26

AR 033467

NOTE: See corresponding figures that follow.

Appendix A

Figures

Appendix B

Summarized Analytical Data for All Monitored Storm Events

60
ã
2
ō
- 1
F
E
•
ц.
Ē
_
=
-

																	24 Brror, see letter of May	04 In the second	04 Birror, see letter of May ors (SDE4 030597	04 error, see letter of Mary ors (SDE4 030597	24 Brror, see letter of May ore (SDE4 030597	04 error, see letter of May pre (SDE4 030597 xceeded holding time	14 error, see letter of May bre (SDE4 030597 coeeded holding time	04 error, see letter of May pre (SDE4 030597 xceeded holding time	04 error, see letter of Mary ors (SDE4 030597 xceeded holding time	34 Brror, see letter of May ors (SDE4 030597 orseeded holding time	24 error, see letter of May ors (SDE4 0305697 xceeded holding time	A error, see letter of Mary ors (SDE4 030597 xceeded holding time	M error, see letter of May ors (SDE4 030597 xceeded holding itme	M error, see letter of May ors (SDE4 030597 xceeded holding itme	A error, see letter of Mary ors (SDE4 030597 xceeded holding time	04 error, see letter of Mary xreeded holding time xceeded holding time	14 error, see letter of May bre (SDE4 030597 xceeded holding time	24 error, see letter of Mary xrs (SDE4 030597 xceeded holding time	14 error, see letter of Mary xrs (SDE4 030597 xceeded holding time	34 error, see letter of Mary ors (SDE4 030597 xceeded holding time	04 error, see letter of May pre (SDE4 03058)7 xceeded holding time xceeded holding time	0.4 error, see letter of May ors (SDE4 030597 creeded holding time xceeded holding time unts not representative unts not representative mp failed, focals make	24 error, see letter of May pre (SDE4 0305697 pre (SDE4 0305697 pr	04 Birror, see letter of May bror, see letter of May bror, see letter of May bror (SDE4 030597 bror (S	04 error, see letter of May pre (SDE4 030597 xceeded holding time with not representative mp faited, fecals make	14 mor, see letter of Mary pre (SDE4 030597 presentetive whits not representative mp failed, fecals make	34 error, see letter of May ors (SDE4 030597 xceeded holding time xceeded holding time utis not representative mp failed, fecals make	34 error, see letter of May ors (SDE4 030597 xceeded holding time xceeded holding time uths not representative inp failed, fecals make
	ejuem wood									comp failed		backup data in case short on data for 96 Q				FOG result not representative, laboratory (15, 1997	backup FOG/TPH for March 1997 Lab erro				fecal colform result not representative: ex	NON-"STORM"	NON-"STORM"		NON-"STORM"											Fecals exceeded 30 hour holding time, resi	foam seen downstream in DM Creek. con up for 7/3/96				Reno delced 4 aircraft 4/13/97			
ation, mg/l	Factor		3	8		8	22	8	17	220		8	28 58		8			180	1.1.1	8	500	110	800	500	1600	8	8	9		8		200	50 MAL	4	3	#		130	1600	350	23	00011312	80	
oncentr	H S												_								ŝ	9	3.05	2.48	2.4	2.9	1.8																	
alyte c	THAT																						5	100.00	0.0	5	9.0																	
nple an	Ěč																				1.58	3.4	3.1	2.5	2.53	2	2.77																	
rab sar	Her g		28	1.1	3.6	50 VB	8.8	3.9	3.35		2.64	1.8	1.97	9	5	3.06	1.2	1.46	2.09	2.3	1.5	24	2.27	3.5	7	2.8	-		2.0	5.4	100	9.0X	1.8	0.32	8	0.35		0.42	0.35	2.9	2.6	0.95	0.84	
3	FOG		9 9	ALKS 0.55	5.7	5.9	17	2.8	2.8		3.1	2.9	3.3	8	10 1-14 M	8	-	1.6	COLUMN N	1.8									4.0 ()	2.0	3.3	1.2	970 a 34	5.2	C.I.			101 H	2.4		50	870 FR	SOF 125	۲.
	f		7	9.9	6.9	7.1	7.9	7.1	6.39	1	7.31	6.61	6.45	8	6.17	6.33		•	6.5	6.59	7.15	7.03	6.06	\$	7.03	6.93	5 S	2.78 9.78		6.4	7.2	1.1	7.1	9.92 1	5	5.88		5.36	6.81	6.62	7.13	~	5.86 1	Γ
	ground mont delce?	1995 20	1995 mo	1995 no	1996 no	1996 no	1996 YES	1996 no	1996 no	1997 00	1997 po	1997 no	1997 no	1997 no	1997 no	1997 no	1997 no	1996 no	1996 ho	1996 no	1998 no	1996 no	1996 no	1996 no	1996 no	1996 no	1996 no	1995 NO 4006 VEC	1990 150	1995 no	1996 no	1996 no	1996 no	1996 no		1997 no	1997 no	1997 no	1997 no	1997 no	1997 no	1996 no	1998 no	
		PDFS	IPDES	IPDES	IPDES	IPDES	IPDES	tipAg	PDES	POES	IPDES	IPDES	POES	IPDES	tpAg	PDES	PDES	PDES	PDES	PDES	PDES	PDES	PDES	POES	PDES	PDES	PDES	PDES	PDES	PDES	PDES	PDES	PDES	PDES	Bweln	PDES	PDES	tipAg	POES	PDES	PDES	POES	PDES	0-44
	ryant. ha	49	2		~	4	_	0)	<u> </u>		292	22	8	154	1095	424	7	135 N	282	87 1	8	87 N	62 N	264 N	360 N	125 N	N 897			Z	Z	Z	Z	Z	0	2	Z	325 S	2	154 N	Ž	135 N	26 N	14 14
	, ř	1	62	1	8	8	80		9	5		•	37	23	58	8	8	28	0.8	33	ŝ	0.5	12	8	8	- 0	•	2 3	8 «	28	8	12	ឧ	<u>9</u> •	•	2	3	27	7.5	23	5	28	0.8	ę
tics	depth,	0.28	0.21	0.29	0.41	0.28	1.6	0.21	0.49	12.0	620	0	8.0	1.21	4.0	0.39	1.64	0.36	0.47	-	96 .0	0.03	60 .0	0.46	0.12	0.21		7.0	- 6	0.7	0.4	0.35	0.37	9	3	0.23	0.27	-	0.82	1.21	0.31	0.36	0.47	200
racteris	event	Ę	E C	Eot	torm	tot	For	Eot	E	E	E	OUSTOL	E	E	Ę	tot	Ē	E	E	Ē	mote	onstor	onstor	tom	onstor	E	E	E		E	mo	E	E	E		E	to t	E	E	Ę	Ę	Ę	E	
storm chai	s torm date	11/11/94	17/95 5	4/10/95 8	7/26/95 s	10/25/95 8	2/3/96	3/22/96 4	4/15/96 =	001/11/	\$ 96/C/6	U 96/61/21	12/19/96 \$	1/16/97 8	1/27/97 \$	3/5/87	5/30/97 8	6/16/97 st	10/26/97 \$	12/15/97 \$	3/1/98	4/7/96 m	4/9/98	4/23/96 st	2/9/98 n	5/14/96 5	B D6/17/0	2/15/05 at	5/11/05 al	6/4/95 st	8/6/95 st	10/15/95 st	1/13/96 st	4/15/96 st	0007771	7/3/96 st	117/96	8/2/96 st	12/4/96 st	1/16/97 st	4/13/97 st	6/16/97 st	OV28/97 sti	
nple data only	POSID	SDE4 111394	SDE4 010795	SDE4 041095	SDE4 072695	SDE4 102695	SDE4 020496 GRAB	SDE4 032296 GRAB	SDE4 041696 GRAB	20124 U/1 / 20 GKAB	SDE4 090396 GRAB	SDE4 121596 GRAB	SDE4 121996 GRAB	SDE4 011697 GRAB	SDE4 012797 GRAB	SDE4 030597 GRAB	SDE4 053097	SDE4 061697 GRAB	SDE4 102897 GRAB	SDE4 121597 GRAB	SDE4 030198 GRAB	SDE4 040798 GRAB	SDE4 041098 GRAB	SDE4 042398 GRAB	SDE4 050998 GRAB	SDE4 051498 GRAB	50E4 062490 GMAB	5051 101994	2031 021093	SDS1 060495	SDS1 080795	SDS1 101695	5DS1 011396 GRAB	SDS1 041696 GRAB	0000 067760 I C/IC	5DS1 070396 GRAB	IDS1 071796 GRAB	DS1 080296 GRAB	DS1 120496 GRAB	OS1 011697 GRAB	DS1 041397 GRAB	DS1 061797 GRAB	DS1 102897 GRAB 1	
Grab san	outfall	SDE4	SDEA	SDE4	SDE4	SDE4	SDEA	SDEA	SDE4		SDEA		SDEA	SDE4	SDEA	SDE4	SDE4	SDE4	SDE4	SDE4	SDE4	SDE4	SDE4	SDE4	SOE4	SOEA				SDS1 S	SDS1 S	SDS1 &	SDS1	SDS1		SDS1 S	sps1 s	SDS1 S	SDS1 S	SDS1 S	SDS1 S	SDS1 S	DS1 S	

201 100 00 00 00 00 00 00 00 00 00 00 00	 			STIP A Monthly 4	I STIP AG	t STIP AG	I STIP AG	I STIP AG
	440 720 230 230 200 220 200 200 200 200 200 2	440 780 233 233 233 233 233 233 233 233 233 23	1380 1400 7800 2000 200 200 200 200 200 11 LAST FOR STIT 200 13 130 13	440 440 780 780 220 220 231 11 LAST FOR STIP A 20 220 20 11 LAST FOR STIP A 20 20 21 1.0.51 FOR STIP A 20 1.1 LAST FOR STIP A 1.1 LAST FOR STIP A 1.1 LAST FOR STIP A 20 1.1 LAST FOR STIP A 21 1.1 LAST FOR STIP A 21 1.1 LAST FOR STIP A 21 1.1 LAST FOR MARKET P 21 1.1 LAST FOR MARKET P	440 780 780 220 220 220 231 232 232 232 232 232 232 232 232 233 234 235 236 237 238 239 313 32 32 32	440 440 780 220 28000 20 21 LAST FOR STIP AG 20 20 20 20 21 LAST FOR STIP AG 20 20 21 LAST FOR STIP AG 20 20 21 20 20 20 21 20 22 20 23 20 24 20 25 20 26 20 27 20 280 20 29 20 213 20 213 20 213 20 213 20 26 20 270 20 280 20 280 20	440 440 780 230 28000 20 21 LAST FOR STIP AG 20 20 20 20 21 LAST FOR STIP AG 20 20 21 LAST FOR STIP AG 20 20 21 20 20 20 21 20 22 20 230 20 24 13 25 20 26 20 270 20 280 20 29 20 20 20 2132 20 2132 20 250 250 250 250 250 250 250 250 250 250 250 250 250 250	440 440 780 780 220 20 231 11 LAST FOR STIP AG 20 20 20 20 21 1.45 20 20 21 20 22 20 23 20 24 13 13 14 130 13 143 14 153 15 154 14 155 15 153 15 153 15 154 15 155 15 155 15 151 15 152 15 153 15 154 15 155 15 155 15 155 14 155 14 155 14 155 14 155 14
	780 2300 2300 2300 2300 230 230 230 230 23	780 1400 2300 2300 2300 2300 231 231 231 231 231 231 231 231	780 2300 2300 2300 2300 2300 2300 2300 23	780 2800 2000 2	780 2800 2000 2	780 1400 111 111 111 1220 1230 111 111 1220 1230 111 1220 1220 1220 111 1220 1220 1220 111 1220 120	780 1400 2300 2000 2	780 1400 2300 2300 231 11 131 131 132 133 131 132 133 133 133 132 1333 14
		0.125 0.125	0.125 0.125 0.125 0.0125 0.015 0.0000000000	0.1125 0.1125 0.1125 0.015 0.0	0.1125 0.1125 0.1125 0.0125 0.015 0.	0.112 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.135 0.15	0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.138	0.1125 0.1125 0.0125 0.
	7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13	113 113 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173	1.14 1.13 7.14 1.13 7.14 7.13 7.13 7.13 7.13 7.13 1.13 7.35 1.13 7.35 1.13 7.35 1.13 7.35 1.13 7.35 1.13 7.35 1.13 7.35 1.13 7.35 1.13 7.35 1.13 7.35 1.13 7.35 1.13 7.35 1.13 7.35 1.14 7.35 1.14 7.35 1.14 7.14 1.14 7.14	1.12 1.12 <th< td=""><td>1.12 1.12 1.12 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13</td><td>0.01 0.01 7.14 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.14 0.01 7.14 0.01 7.14 0.01 7.14 0.01 7.14 0.01 7.14 0.01 7.14 0.01 7.14 0.01 7.14 0.01 7.14 0.01 7.14 0.01 7.14 0.01 7.14 0.01 7.14 0.01 7.14<td>1/16 1/16 1/16 1/13 1/13 1/13 1/14 1/14 1/15 1/14 1/14 1/14 1/14 1/14</td><td>17.13 6.17 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.14 17.13 17.13 17.15 17.13 17.13 17.15 17.13 17.13 17.15 17.13 17.13 17.15 17.13 17.13 17.15 17.13 17.13 17.15 17.13 17.14 17.15 17.13 17.15 17.15 17.13 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15</td></td></th<>	1.12 1.12 1.12 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13	0.01 0.01 7.14 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.13 0.01 7.14 0.01 7.14 0.01 7.14 0.01 7.14 0.01 7.14 0.01 7.14 0.01 7.14 0.01 7.14 0.01 7.14 0.01 7.14 0.01 7.14 0.01 7.14 0.01 7.14 0.01 7.14 0.01 7.14 <td>1/16 1/16 1/16 1/13 1/13 1/13 1/14 1/14 1/15 1/14 1/14 1/14 1/14 1/14</td> <td>17.13 6.17 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.14 17.13 17.13 17.15 17.13 17.13 17.15 17.13 17.13 17.15 17.13 17.13 17.15 17.13 17.13 17.15 17.13 17.13 17.15 17.13 17.14 17.15 17.13 17.15 17.15 17.13 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15</td>	1/16 1/16 1/16 1/13 1/13 1/13 1/14 1/14 1/15 1/14 1/14 1/14 1/14 1/14	17.13 6.17 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.14 17.13 17.13 17.15 17.13 17.13 17.15 17.13 17.13 17.15 17.13 17.13 17.15 17.13 17.13 17.15 17.13 17.13 17.15 17.13 17.14 17.15 17.13 17.15 17.15 17.13 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15 17.15
1995 ho 1995 ho 1995 ho 1995 ho 1995 ho 1995 ho	1995 70 1995 70 1996 70 1996 70 1996 70 1996 70 1996 70 70 1996 70 70 1996 70 70 70 70 70 70 70 70 70 70 70 70 70 7	1995 10 1995 10 1995 10 1996 10 1996 10 1996 10 1996 10 1996 10 1996 10 1997 10 1997 10 1997 10 1997 10 1997 10 1997 10 1997 10 1997 10	1985 10 1995 70 1995 70 1995 70 1995 70 1995 70 1995 70 1995 70 1995 70 1995 70 1997 70 1997 70 1997 70 1997 70 1997 70 1997 70 1997 70 1997 70 1997 70 1997 70 1997 70 1997 70 1997 70 1997 70 1997 70 1997 70 1998 70 1998 70 1998 70 1998 70 1998 70	1995 10 1995 10 1995 10 1995 10 1996 10 1996 10 1996 10 1996 10 1996 10 1996 10 1997 10 1999 10 1999 10 1999 10 1999 10 1999 10 1999 10 1999 10 1999 10 1999 10 1999 10 1999 10 1999 10 1999 10 1999 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998	1985 70 1995	1995 10 1995 70 1995 70 1995 70 1995 70 1995 70 1995 70 1995 70 1995 70 1995 70 1995 70 1995 70 1997 70 1997 70 1997 70 1997 70 1997 70 1997 70 1997 70 1997 70 1997 70 1997 70 1997 70 1998 70 1998 70 1998 70 1998 70 1998 70 1998 70 1998 70 1998 70 1998 70 1998 70 1998	1995 10 1995 70 1995 70 1995 70 1995 70 1995 70 1995 70 1995 70 1995 70 1995 70 1995 70 1995 70 1997 70 1997 70 1997 70 1997 70 1997 70 1997 70 1997 70 1997 70 1997 70 1997 70 1997 70 1998 70 1998 70 1998 70 1998 70 1998 70 1998 70 1998 70 1998 70 1998 70 1998 70 1998	1995 10 1995 10 1995 10 1995 10 1995 10 1995 10 1995 10 1995 10 1995 10 1995 10 1995 10 1995 10 1995 10 1995 10 1997 10 1997 10 1997 10 1997 10 1997 10 1997 10 1997 10 1997 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998
NPDES NPDES NPDES	NPDES NPDES NPDES NPDES NPDES NPDES NPDES NPDES NPDES	NPDES NPDES NPDES NPDES NPDES NPDES NPDES StipAg NPDES 64 NPDES 64 NPDES 64 NPDES	NPDES NPDES NPDES NPDES NPDES NPDES NPDES NPDES NPDES 15 NPDES 15 NPDES 15 NPDES 15 NPDES 15 NPDES 16 NPDES 26 NPDES 26 NPDES 26 NPDES 26 NPDES	NPDES NPDES NPDES NPDES NPDES NPDES NPDES StlpAg NPDES 42 NPDES 43 NPDES 44 NPDES 43 NPDES 43 NPDES 64 NPDES 107 NPDES 68 NPDES 73 StlpAg 107 NPDES 68 NPDES 73 StlpAg 73 NPDES 73 NPDES 75 NPDE	NPDES StlpAg StlpAg StlpAg NPDES 15 NPDES 64 NPDES 64 NPDES 72 StlpAg 73 NPDES 64 NPDES 73 NPDES 64 NPDES 61 NPDES 73 NPDES 60 NPDES 61 NPDES 73 NPDES 60 NPDES 61 NPDES 61 NPDES 80 NPDES 80 NPDES 80 NPDES 80 NPDES 80 NPDES	NPDES 136 NPDES 137 NPDES 138 NPDES	NPDES NPDES	NPDES 131 NPDES 132 NPDES 133 NPDES 134 NPDES 135 NPDES 138 NPDES </td
828	3 2 3 3 2 8 2 6	M 41 12 335 11 12 86 10 10 10 10 10 10 10 10 10 10 10 10 10	8 10 10 10 10 10 10 10 10 10 10 10 10 10	10 20 11 12 1 12 <th12< th=""> 12 12 12<td>1 1</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>31 11 22 33 14 13 14 15 14 15 16 15 16 15 16 15 16 15 16 15 16 15 16 16 16 16 16 16 16 16 16 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17<</td><td>1 1 2 2 3 1 2 3 1</td></th12<>	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	31 11 22 33 14 13 14 15 14 15 16 15 16 15 16 15 16 15 16 15 16 15 16 16 16 16 16 16 16 16 16 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17<	1 1 2 2 3 1 2 3 1
	0.35 12 0.35 12 0.21 20 0.49 16 0.27 31	0.35 12 0.37 20 0.49 16 0.21 21 1.01 21 1.01 21 0.08 4.1	0.35 12 0.37 20 0.37 20 0.49 16 0.49 15 0.29 12 0.29 12 0.29 12 0.29 12 0.29 12 0.29 16 0.29 16 0.20 16 0.20 17 0.20 17 0.20 16 0.20 17 0.20 16 0.20 1	0.35 12 0.37 20 0.37 20 0.49 16 0.29 12 0.29 12 0.34 123 0.36 12 0.20 234 0.12 123 0.27 123 0.28 520 0.27 14 0.27 108 0.21 14 0.27 14 0.27 14 0.27 10 0.28 27 0.21 18 0.21 8 0.21 8 0.21 8 0.21 8	0.35 12 0.37 20 0.37 20 0.37 20 0.46 12 1.01 23 1.02 12 1.02 12 1.02 12 0.26 4.1 1.27 23 0.28 54.1 0.29 16 0.20 12 0.27 12 0.28 16 0.29 18 0.21 14 0.21 14 0.21 8 0.12 8 0.12 8 0.13 10 0.21 8 0.23 64 0.23 64 0.23 64 0.33 64 0.23 64 0.23 64 0.34 10 0.35 64 0.35 64 0.35	0.35 12 0.37 20 0.37 20 0.37 20 0.49 16 0.29 1.2 0.29 1.2 0.29 1.2 0.29 1.2 0.29 2.3 0.29 2.3 0.29 2.3 0.29 2.3 0.29 2.3 0.39 20 0.31 20 0.32 20 0.31 20 0.32 21 0.33 20 0.35 14 0.35 12 0.35 14 0.35 14 0.35 15 0.35 15 0.35 15	0.35 12 0.37 20 0.29 15 0.29 12 0.29 12 0.29 12 0.29 12 0.29 12 0.29 12 0.29 12 0.29 12 0.29 12 0.29 12 0.29 12 0.29 16 0.39 20 0.39 20 0.35 16 0.15 9 0.15 9 0.35 14 0.35 12 0.35 12 0.35 12 0.35 12 0.35 12 0.35 12 0.35 12 0.35 15 0.36 15 0.37 31 0.31 31	0.35 12 0.37 20 0.37 20 0.37 20 0.37 20 0.37 20 0.37 20 0.37 20 0.37 20 0.39 23 1.01 27 0.39 23 0.39 23 0.39 23 0.39 23 0.39 23 0.39 23 0.39 23 0.39 23 0.39 23 0.39 23 0.39 24 0.31 1.0.8 0.33 1.1 0.33 1.2 0.33 1.2 0.33 1.2 0.33 1.2 0.33 1.2 0.33 1.3 0.33 1.3 0.33 1.3 0.33 1.3 <
LINE CANCIN	/12/96 storm /15/96 storm /17/96 storm	1.12/96 storm 115/96 storm 117/96 storm 221/96 storm 221/96 storm 221/98 storm 221/98 storm	8 Storm 8 S	storm store	0 9 9 9 9 9 9 880777 1 <td>2596 storm 2596 storm 2596 storm 2596 storm 2595 storm 2597 storm 2597 storm 2597 storm 2597 storm 2597 storm 2595 storm</td> <td>I/1/12/266 Biolim I/1/12/266 Biolim 8/1/266 Biolim 7/1/266 Biolim 7/1/268 Biolim</td> <td>17.13296 storm 17.13296 storm 17.13296 storm 17.13296 storm 17.13296 storm 17.13296 storm 17.13296 storm 27.2396 storm 27.3396 storm 17.1334 storm 17.334</td>	2596 storm 2596 storm 2596 storm 2596 storm 2595 storm 2597 storm 2597 storm 2597 storm 2597 storm 2597 storm 2595 storm	I/1/12/266 Biolim I/1/12/266 Biolim 8/1/266 Biolim 7/1/266 Biolim 7/1/268 Biolim	17.13296 storm 27.2396 storm 27.3396 storm 17.1334 storm 17.334
= -		The second se	115/9 115/9	222996 11/17/96 22/96 22/99 22/90 22/90 22/90 22/90 22/90 22/90 22/90 22/90 22/90 20	11/1/19/10/10/10/10/10/10/10/10/10/10/10/10/10/			<u>'</u>

AR 033473

60
ä
65
- 1
o,
- E
E
2
5
- 1
ĽĽ.
ū.
_
='
•

	_			-	-	_	-	-			_	_					1	1							-		-	-	***		-			-	_	_	_		-	-	-	_	-	_		_	_	_	
	comments				matching composite not representative, not reported	EXTRA GRAB (HAS MAKEUP COMP FOR 96QW)					composite failed		grab makes up for 12/4/96 missed grab	grab makes up for 1/27/97 missed grab			pairs with 3/6/97 composite for 97 spring quarter	composite for this storm not representative, equipment mailunction	no composite sample for this event, equipment mailunction	makeup for 96Q4 (3 unsuccessful attempts)											xtra NPDES/Stip Ag		Aue in rocavely ng Fecals exceeded 30 hour holding time, results not representative	facals make un for 7/4/06 orah that avraatlad holdlan lima	Delred up/down sample	paired up/down sample	paired up/down sample						backup monthly sample in case 3/1/98 sample didn't quality				NON-STORM	CONSIDERABLE POLLEN IN SAMPLE	
ration, mg/	- Fecals	20	2	2			1700	8	1000	30000	8	148	17	PERSONAL PROPERTY.	2	4	90	02	350	170	86	2	1600		1 80	1000	8	42	25	5	340	<u>ء</u> د	3 8	200	161	200	23	8	11	8	:	5 2	2 8 1			5 170	80	8	1 240
concent		_		+	_				_	+	_	_		_			_		 					_					_		_			_	+							80 83	6 <u>-</u>			60	0	25 0.3	10
analyte	<u> </u>	╞	+	_	+	-	-	-		_	+	_	-																	_				-									78 0.	2012 00		0) 2 (0)	22	41 100	0.011 00
Sqmas	ξδ <i>ξ</i> δ	X		1	6	R		00	8	6.6	R		R	22	25	X	0.0		47	22	25	82	8	0.4	0.6	5.1	929	5.6	4.5	7.5		3 8	1.8	+	3.6	0.5	2.1	8	4.3	R	1.5	48	6	2	5 4	120	0.0	56 0.	76 1.
9 2 0	5 7 0	0 39 03				0.5.0.	10.50		0.0	2.9		0.5	0.53 0.	9.710.	0.950		0.8473	1.2	3.9	13 00	7.1	00/001	0.5,0	3.3 24	1.0 14	2.6	0.0	21	16	C.7	80 7		2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		loet	0.5	5.0	0.5	0.0	0.00	8.8	0	<u> </u>				F	0	
	2 	244363 44						•		2		1	2 H H H	3		1.55	5 K W I		5	-	T	3 11 12	7 1489	9	3	•	9 21-12		-	•	5 9	2 0			6 ample	323616	7 (200)	78.4	9	4				9		5	4	-	5
	5 - 2 - 2	F					~	~	+	-		9	6	6.1	6.5		9.9	6.7	9	1.7	6.6	7.0	6.8	6.5	6.8	~	~	~	9	~	60 C		5 5		5.1	7.2	4.3	4.5	4.6	6.5	7.3	6.3	8.8	5.5	6 9	5.3	4 9	6.2	÷
_	groun int delce	2			2	22	2	2	2	2		2	2	7 10	7 no	2	01 70	ou /(7 70	01 10	01 10	01 70	8 70	15 no	2	2	29	2	29	6 YES	2		2 20	00 2	2 20	7 10	7 100	7 10	6 70	2	8 70	2	870	2	2	2	2	8	2
	0 2	Į.		6 2		- 16	196	56	- -		S		6	199	199	199	199	195	199	196	198	196	199	199	199	5	<u>6</u>	1 6	6	199	199	8 8	26 56	199	199	199	199	199	199	199	199	<u>5</u>	199	199	6	199	199	199	199
	asodino	PDFS				4POES	(POES	PDES	IPDES	SDCES	100		6Vdi	StipAg	VPDES	#PDES	IPDES	PDES	PDES	(PDES	IPDES	IPDES	(PDES	IPDES	IPDES	PDES	PDES	PDES	PDES	IPDES	tipAg toree	hin An	PDES	PDES	PDES	PDES	PDES	PDES	PDES	PDES	PDES	PDES	PDES	PDES	PDES	PDES	PDES	PDES	PDES
	hant.	8	200	277		1321			8		12	154	8	167 5	44	109	2	\$	154 1	109	205	42 1	135 1	118 N	120	~	2	<u><</u>	<u> </u>				2	Z	154 N	18	154 N	Z	76 N	26 N	87 N	9	132 N	87 N	62 N	264 N	360 N	125 N	268 N
	dur, hrs d	10.5	2 4	0.7	=	2	7.5	80	<u>e</u>	12	5	2	2	25	7.5	26	26	7.5	53	8	8	8	28	6	32	8	88	80	8		0 0	2	2 2	31	8	6	23	12	16	10.8	ខ	88	27	0.5	1	৯	80	8	₽
Cs	đepth, In.	02	1.1		7.0	0.86	0.12	0.2	0.3	2	2	1.21	810	0.24	0.82	0.41	1.16	0.82	1.21	0.41	0.48	0.39	0.36	0.15	0.2	0.3	0.61	0	3.89	9	0.64	0.46	0.23	0.27	1.21	0.59	1.21	0.31	0.26	0.47	-	0.98	0.86	0.03	600	0.46	0.12	0.21	0.28
Incterist	event	Ę				E	E	E.	Eo	E	ELO:	E	E	E	Eo	tom Tom	torm	storm	to To	Eo	to H	torm	torm	to the	E	E	E	E	E	E	E		E	Eo	E	E	E	E	E	Ę	mo	E	Ę	Instor	nstor	Ę	nstor	E	Ę
torm cha	storm date	176/22/0	1/10/07	10.011	106/67/1	2/8/20	2/9/95	COVILIO	6/10/95 1	8/16/95 1	000711	1/16/97 1	16/11/2	2/26/97	12/4/96 4	1/27/97	4/19/97	2/4/96	1/16/97 1	1/27/97 \$	2/11/97	3/5/97 1	6/16/97 \$	9/13/94 8	0/19/94 5	1/11/95 8	4/6/95 8	B/6/95 s	11/6/95 8	2/3/96	3/31/96 5	NO.200	7/3/96 st	7/17/96 st	1/16/97 \$	10/4/96 st	1/16/97 #	V13/97 \$	6/3/97 st	V28/97 St	2/15/97 st	3/1/96 #	3/8/98 st	4/7/96 mc	4/9/98	V23/96 st	5/9/98 In	V14/98 st	V10/98 st
ampie data oniy	a pos in	SDS4 082497 GRAB	CDC4 111707 CDAD		2024 012330 GHAB	SUSA 030998 GRAB	SDW3 051095		SDW3 061095	SDW3 061795	SUWS 112350 GRAB	SDW3 011697 GRAB	SUW3 02119/ GRAB	SDW3 022697 GRAB	B 120496 GRAB	B 012797 GRAB	B 041997 GRAB	D 120496 GRAB	D 011797 GRAB	D 012797 GRAB	D 021197 GRAB	D 030597 GRAB	D 061797 GRAB	SDN1 091494	SDN1 101994	SDN1 011295	SDN1 040795	SDN1 080795	SDN1 110795	SUN1 UZUASE GRAB	SUN1 033196 GRAB	SDN1 062396 GRAB	SDN1 070396 GRAB	SDN1 071796 grab	SDN1 011697 GRAB	5 SDN1up 100496 GRA	5 SDN1up 011697 GRA	SDN1 041397 grab	5 SDN1 060397 GRAB	5 SDN1 102897 grab 1	SDN1 121597 GRAB 1	SDN1 030198 GRAB	SDN1 030998 GRAB	SDN1 040798 GRAB	SDN1 041096 GRAB	SDN1 042398 GRAB	SDN1 050996 GRAB	SDN1 051498 GRAB	SDN1 061098 GRAB
5020	outfal	SDS4				Ż	SWOS	SWUS	EMOS	SWOS	SWO S	SWUS	SWUS	Sos		8	8	٥	٥	٥	٥	٥	٥	SDNI	SDNI	SDNI	SDN1	SDN1	SDN1	INOS	SDNI	SDN1	SDN1	SDN1	SDN1	SDN1u	SDN1uj	SDN1up	SDN1up	SDN1up	SDN1up	SDN1up	SDN100	SDN1up	SDN1up	SDN1up	SDN1up	SDN1up	SDN1up

Grab sa	Imple data only	storm ch	Inacteris	tics		┝	╞─	-	F	đ	ab san	nole analy	the conc	antrafic	n mod	
		storm		depth,	dur,	dryant,		ground			TPH	TPH	F	Hal		
			event	Ē	E	nd Sur	-bose	report delce?	٤ I	8	Ê	ă	24	ş	Fecals	comments
	SUNS USUBA		storm	0.69	33	dN C6	DES	1995 no	8.9	1.8	0.5	_			3	
SDN2	SDN2 111394	11/11/94		80.0				1995 no 4006 no		1.1	0.0		╉		2	
SDN2	SDN2 011295	1/11/95	storm	0.3	8	2	DES	1995 no	+				+		8	
SDN2	SDN2 041295	4/10/95	storm	0.29	2	Ż	DES	1995 no	Ē	8	5.2		+	Ē	LE HAN	
SONZ	SDN2 080795	80095	storm	4.0	80	Ż	DES	1996 no		7 2.6	5.0.5		\mid	- .	5	
ZNOS	SDN2 101695	10/15/95	storn	0.35	12	đ	DES	1996 no	-	3 1.9	0.5		+-		A suffer	
ZNOS	SDNZ 021796 GRAB	2/17/96	storm	1.29	12	đ	DES	1996 no	~	6	0.5				10	
SUNZ	SDN2 033196 GRAB	3/31/96	Elots	0.64	0	ŝ	Byd	1996 no	6	7-11-0.5	20 02				16	tha NPDES/Stip Ag
	SUNZ WZZ96 GHAB	4/22/96	storm	2.83	80	2	OES	1996 no	:	7.0.1.0.5	0.125				8	
	SUNZ USZ386 GRAB	96/27/9	E OI	0.46	e	<u>S</u>	٥vd	1996 no	80	1	0.46				2	dra NPDES/Sito Ag
SUNS	SUNZ 0/1/96 grab	7/17/96	slorm	0.27	5	Ž	DES	1997 no							4	dra fecals analyzed
SUNS STAIS	SUNZ USUSS GRAB	06/5/6	Hois	67.0	-	76 NP	OES	1997 no	7.2	1.6	0.29				8	iome composite aliquots in grab
SUND	SCALS INZ 100 GLAD	14607		8	-		DES	1997 no	¥ 9	5 1	0 32				2	
SNOS	SCHOLOT 1991 GRAD	16/01/1			3	du voi	S S S	1987 no	¥ .	5 4.3	0.39				11	
	SUNZ UN 1931 GRAD	1RIRLA	E		92	E4 ND	DES	1997 no	6.9	11-11-20.6	0.87				•	
	SUNZ USZASI GRAB	18/67/2	E C	0.2	105	966 ND	SES ES	1998 no	ð.7	9 1.2	0.43		-	-	2005	io composite, equipment mailfunction
	SUN3 090694	9/8/94	stor	0.69	2	IdN C6	DES	1995 no	6	4 1.1	\$*0.5		┢	┢	2200	
2100	SUNS TUZBU	10/25/94	Elots	8	\$	114 NPI	DES	1995 no		2.9	2.0.5		-		1012010	
	SUN3 010/90	98//1	Eois	0.21	8	đ	DES	1995 no	7.1	9970 (12)	0.0					
	GENOSO ENOS	6/1/92	Eog	0.7	38	đ	DES	1995 no	-	7 2.5	£0.5		$\left \right $		ę	
	9601/0 ENOS	96/6//	storm	0.81	13	ā	DES	1996 no		7 3.3	£ 0.5		\mid		80	
ENOS	Sevoil ENGS	11/6/95	E .	3.89	8	Jan	DES	1996 no	7.2	2.1	1.0.5			+	•	
	SUNS UT 496 GRAB	96/21/1	Eos	0.37	8	Idn	DES	1996 no	7.2	5.0 Line 2	5.0.5		┝─			
	SUN3 033196 GRAB	98/15/2	Eog	30.0	•	Step	₽	1996 no	9	1.4	6.0.S		 			tra NPDES/Stip Ad
	SUN3 UN1696 GRAB	4/15/96	Eog	0.49	9		SES	1996 no	7.61	1 2	0.125			Γ	S	
	50113 042290 GKAB	96/77/	HOIS	2.83			6 ¥	1996 no	2.2		0,125		-		110	tra NPDES/Stip Ag
	SUNU UBUSE GRAB	812/96	Eog	5	2	325 NPI	DES	1997 no	14		0.3		-		8	elayed hydrograph, very dry anlecedent
200	SUN3 112350 GHAB	96/27/11	E OI	30		72 NPL	ы С	1997 YES	7.32		SZEO			-	14	Nufficient sample for composite
	SUN3 120450 GRAB	12/4/30	E	0.82	2	JAN N	OES	1997 no	8		8				14	
	SONT 011607 CDAD	1148.07		8	58			198/ no	6.32		0125				7	
255		JRJQL J		5	3		DES	1997 no	8.9	*	8	-+			4	
SDN3	SDN3 030597 GRAB	2/5/97	torm	0.39	8	42 NPC	DES	1997 no	7.16	*	0.125			сця:		OG result not representative, laboratory error, see letter of May
ENOS	SDN3 063097	5/30/97	storm	1.64	8	14 NPC	JES	1997 no		Second Hold.	10134		+			15, 1997
ENGS	SDN3 062197 GRAB	6/21/97	storm	0.27	11.8	68 NPC	SES	1996 no	7.51		6,128				2	ACTION INFINITION MELAN IND GUIDE ON SUNS (2028) 0.80
ENOS	SDN3 102897 GRAB	10/28/97	Eog	0.47	9	26 NPL	DES	1996 no	6.72	500 H M	0.125	.	$\left \right $		1600	
	BAND /SCIZI CNUC	/Sector	Ē	-	8	B7 NPL)ES	1998 no	7.28	1.5	0.125				8	AD QC DUPLICATE ALSO: GOOD DUPLICATION
	SUNA USUSS GRAB	96/2/6	EOL.	6.70	1.2	76 NPC	ŝ	1997 no	6.63	1.2	0,125		-	┢	2001	Item in 2 BOTTLES: FOG/TPH, and facals
	SUM 120450 Grab	96/6/21	E	0.82	2.2	A4 NPL	ES	1997 no	6.57	STOLING N	0.126					
	SUNA UTIBY GRAB	16/9/1	Eog	1.2.1	2	154 NPC	ES I	1997 no	2.7	1.6	0,125				-	
	CONT COURT COAD	1 PLONG		200	2	AZ NPT		1997 no	8		800					
	ELAN 100001 CIVID	10.00		8	0			1998 70	6	The sector	0126				13	
STALE S	STAM 121507 CDAB	12/15/07			2 5			1996 no	3		8260				7	
SDNL	SDNA MOTON CPAR	21100	-	- 8	3 3			1996 10	7.81	STOLLAR .	122		-		8	
		2010		R.S	B		2	1996 10	20. /		1.0		a destruction	112 12 12	ates de la	
SDNA	SDN4 030996 GRAB	3/8/96	mote	0.86	27	132 NPC	JES	1998 no	7.62		17 A	110				backup monthly sample in case 3/1/98 sample didn't quality
SDNA	SDN4 042396 GRAB	4/23/96	torm	0.46	8	264 NPC)ES	1996 NO	7.86							under new permit
SON	SDNA 052598 GRAB	5/24/96	tom	0.58	Ξ	87 NPC	JES	1998 no	6.9			0.13	0.00			
SDN4	SDN4 062496 GRAB	6/24/96 4	E	0.43	4	280 NPC	VES	1990 no	8.8		Pare in	W. Trees		国際	200	

AR 033475

													İ		Ī	
	mpre gata only	storm ch	aracteri	stics					T	6	dwas de	le a al	yte con	entratio	N. mg/	
outfall	OI SOd	storn date	event	depth.	- - - - - -	dryant. hrs	esoana	ground report deice?	5	FOG	H B	t a	C Hd	Ha	Fecals	
Ž		0/17/04		1	•	4,4		1006	6			-				
 }	EV 101304	1012101					NDDEC	1005 00	20.0	2 7 C			+			
; <u>}</u>	EV DADOR	SOLAL C		2 2 4 4 4		<u>}</u>	VDDEe	1002 00		TAXA TA	T	+		1	T	
<u>.</u>	EV DENADS	BIAIDE			5		VDDEC	1005 00				╎			T	
<u>اک</u>	EY 072695	7/76/95		10	3 8		NPDES	1006 00		3		+	+-	╈	T	
	FY 101695	10/15/05		0.35	2		NPDES	1996		ALC: NO.	+	t	╋			
ΕŻ	EV 021796 GRAB	2/17/96	stor	1.29	: 2		NPDES	1996 no	17		-		╞			
EY	EY 042296 GRAB	4/22/96	storm	2.83			NPDES	1996 no	7.19							
Ę	EY 052296 GRAB	5/21/96	storm	0.31	8	Ī	StipAg	1996 no	6.0			+-				
Ę	EY 062396 GRAB	6/23/96	storm	0.46	ē		StipAg	1996 NO	6.15	U.A. SAMA	ł		+			
EY	EY 070396 GRAB	96VC/L	storm	0.23	2		NPDES	1997 no	6.20		-			T	T	
EΥ	EY 102196 GRAB	10/21/96	storm	0.68		3	NPDES	1997 no	5.8	Section Sectio	$\left \right $	-	-			
EY	EY 021197 GRAB	2/11/97	storm	0.48	8	205	NPDES	1997 no	5.83	1.9					Ī	
E۲	EY 030597 GRAB	3/5/97	storm	0.39	ଛ	42	NPDES	1997 no	5.11	5 - 5 1 E		<u> </u>				
EY	EY 060397 GRAB	6/3/97	storm	0.26	9	76	NPDES	1998 no	5.54					$\left \right $		
E۲	EY 110697 GRAB	11/6/97	storm	0.16	4	72	VPDES	1998 no	6.20					-		
۲	EY 012998 GRAB	1/29/98	storm	0.2	2	107	4PDES	1998 no	6.19	1000		-				
E۲	EY 052598 GRAB	5/24/98	storm	0.58	11	87	VPDES	1996 no			╞─	0.2	NOTE:	0.18	ſ	
λ	TY 090894	9/8/94	storm	0.69	22	1 66	VPDES	1995 no	16.7	3.9		╞		┢		
≿	TY 101994	10/19/94	storm	0.2	32	1201	VPDES	1995 no	6.52	1.3						
≿	TY 030495	3/4/95	storm	0.18	24		VPDES	1995 no	6.9	5.7						
≿	TY 060495	6/4/95	storm	0.7	5 8	-	VPDES	1995 no	5.5	7.6						
≥	TY 061795	8/16/95	storm	1.34	12		VPDES	1996 no	8.8	2.3						
≿	TY 090595	9/2/95	atom.			-	VPDES	1996 no		1.6			-			
≿	TY 101695-1	10/15/95	E ota	0.35	12	-	APDES	1996 no	6.7	19				-		
≿	TY 032296 GRAB	3/22/96	storm	0.21			StipAg	1996 no	6.9	3.9						
≿	TY 041696 GRAB	4/15/96	storm	0.49	9	-	VPDES	1996 no	6.06	3.7						
۲	TY 042296 GRAB	4/22/98	storm	2.83	8	•	VPDES	1996 no	7.31	2						
≿	TY 070396 GRAB	7/3/96	storm	0.23	2		VPDES	1997 no	6.15	1.4		_		-		
≿	TY 071796 grab	7/17/96	storm	0.27	5	•/	StipAg	1997 no	5.91	1.9						
≿	TY 060296 GRAB	8/2/96	Eot	10.1	2	325	StipAg	1997 no	6.43	1.6						
≥	TY 100496 GRAB	10/4/96	Eote	0.59		8	PDES	1997 no	7.19	1.4	1.34					
≥	TY 021197 GRAB	2/11/97	storm	64.0	2	205	(PDES	1997 no	5.72	5.1	-					
٤	TY 030597 GRAB	3/5/97	storm	0.39	2	421	PDES	1997 no	5.98	#						CG result not representative, laboratory error, see letter of May 15, 1997
≥	TY 060397 GRAB	6/3/97	storm	0.26	16	76	PDES	1996 no	6.07	1.4						
۲	TY 111697 GRAB	11/16/97	storm	0.47	12.6	222 h	IPDES	1996 no	6.67	Scout and				╞		
≿	TY 012998 GRAB	1/29/96	storm	0.2	14	107	PDES	1996 no	6.31	+		-				natching composite not representative, not reported
۲	TY 030996 GRAB	3/8/98	store	0.86	27	132 N	PDES	1996 no	6.83	SOLA BI	1.2	1.41	60.0	1.32		EXTRA GRAB (HAS MAKEUP COMP FOR 980M)
≿	TY 061096 GRAB	6/10/98	storm	0.28	9	288 N	PDES	1998 no		-	1.2	1.05 0	0.029	1.83		
													-	┢		
					-		this .	data set include	13 224	rainfail ever	Ns that n	het "ston	m criter			
				-+	-	+	€	data set include	0	rainfail ever	its that d		note the	m" criter	5	
					_											

<u>.</u>	tom ch	aracteris	t ce				┝╋	Ħ		grab s	Imple an	alyte con	centratio	ngm ,n	
	date	event			dryant, hrs		50	Pun		Ē.	Hat		.HdT	ĺ	
I _							anh ordau		P ud	9 (K)	õ	1PH-D	<u>9</u>	ecals	comments
L									- 11. M					₿e .	
L														4-	
				ļ				1							
3	Likine 9	7hme 0	8) the												
5	sampled	under ne		n											
ž	irements	K SDS2 (Ś											 	
ē	10), B (0	14), D (01	2			*** * * * *	talate hund		•		· ·			1.1.1	
ē	ate dunx	tions) the	re have	ē		Ť	┨	┨	_	_				ĺ	
5	ine SNO	Ce July 1	787					Count	ន	17 2!	2 2	2	F	25	
3	alayara	Page line		리	es momer	Creek)	£	edian	6.9	2.8 2.3	2.77	80	2.46	Sec.	
	d chano				+			9 5th	7.8	0.6 8.0	3.31	0	8		
5					-	-	,	75th	1.1	3.6 3.4	307	9	18		
ż						-		25th	85	1 8	2 63	2	3	3	
					$\left \right $		Phon-det	acted.		2 0	707	5	81.7	8	
						-	Anon And		· 3			7	₽	•	
				I .	ł	T				÷ C	8	29%	Š	80	
#	ľ		╟			1		-	_					Ì	
1	╀			<u>8</u> 9	-			ount	18	81 21		╞	╞	ļ	
4	1	┥		<u>e</u> 	es Moines	Creek)	Ě	ollan e	3.6	1.1 0.0	0.72	0.16		2	
4		┦						BSch 7		8.5 5.3	0 75	0 18	3 3		
\downarrow	+				_			75th 7	-	25	073		3		
		-						25th 8		2			R I	2	
						-	finon-dete				2	0.16	0.56	0	
L						$\left \right $			2	•	•	•	•	8	
L	╞	+-	$\left \right $		ł	t			Ì	×12 ×	Š	\$	š	11%	
L	1		+			╏	┨	+	_	-				İ	
+	+	╉	+		70		•	Ĩ	8	8	0	õ	-	F	
4	╈	+	+	ĕ	sa Molnes	Creek)	Ē	dian 6	8	8.0.3		1	<u> </u> 		
\downarrow	+						_	95th 7	е. С	0.5		╎			
\downarrow	+			-				75th 7	-	5 05			+		
		-				-		25th 6		200		╎	╀	3	
							žnon dete	Į	? : <	 		+		8	
		-				┢	Xnon-dete		20	2			-	0	
						┢					1		-	Ś	
L				<u>Ö</u> s		╎					1				
	╞	-			- Invine	11			910	2	0	8	9	8	
L	+	+		<u>}</u>		Ivaan			2	503	0.13	8	80.0	-	
L	+		╞		╀	-		5		.5	8	0.0	0.27	130	
L	┢	+	+-	+	+	╉		51	-	20.5	0 19	ğ	0.13	16	
L	╞	ŀ				+			2	5	80	8.0	<u>0.0</u>	-	
	$\left \right $	╀	┢		+	+	BAD-LOUM		0	<u>م</u>	3	4	ę	13	
	╀	╉	╀	┦	╀	┨	Phon-dere	5 Deg	8	X 76%	50%	67%	20%	50%	
	+	╀	╉	-	╞	+	+	-				╞	╞	İ	
	╉	+	+				ŏ	t Junt	6	61 6	ē	6	-	ē	
	+	+	+		a Moines	Creek)	ě	dian 7.	4	5 0.3		╞	+	2 2	
	┥	+	-	_	_			96th 7	8	1 05	+	$\frac{1}{1}$	╀	2	
	-							-					+	8	
		$\left \right $			ŀ	$\left \right $				2				395	
										0		-	_	28	· Manager · Markey · Manager · Mana
			╞	-	_		Kince data						_	-	
	╞	╞	╞	Ļ	╀	╁		5	Ŕ	468 8			_	5%	
		-		_		-				-	L				

Page 6

		comments																																																			
ation. mail		Fecals	8 0	111	20095	1175			174			3	4	27	17	9	0	S			120	1288		8	•		Ś		0 12	131	2350	380	8		8			*	126	2					36	3 5	3 4	C/9	21	6		2	
oncenti	H	Q Q	0			-		-		┦		0					-		Ļ										0							L		0.65	o C	0.8	050		Ž			0.60		50	200	0.0		5	
inalyte c	 	TPH	0			-		-				0							ļ	-						_	_	_	0			-	-					00	20 2	00	00		505		Ĺ	00			5	0.0		5	
a olqma	Hat	õ	1	5	60		0					9	-	5	E	+	9		L								ļ		2	8	10		5					0	1 2	0	0.6		8		Ľ	80) C +		5	0.0	2	5	
grab s	14 L	£	80	0	4	0	0	4	14			0	0	5	0	5	0	6			C	Ó	C		5		6	_	1	8 2.0	9		0		259		Ē	0	26	-	Ö		1		ľ		Ľ	0.0		5		5	
		5 S	8	0	2	-	0		505				0	0	o	0	0	100			2	1	e				33		-	2.1	18.	2	-		8			0	Ö	ö	Ö		1004		Ē	1.8	17.0		3			R 02	
		Ł	nt	1	E I	5	9	2	8		Ţ	Z	5		<u>۲</u>	5	9	Š		Į	9	1	2	-			5		12	8.9 L	h 7.7	4	9.5	P	3 B	L	-	n 6.2	7.3	6.5	5.0	0	80		1 26	65	1	1			2	5	
	punol	port delce?	COU	media	56	75	25	Inon-detecte	non-detecte	-		500	nedia	99 8	75(25	inon-detecte	non-detecte		NO O T	media		750	980			NOR-0618C18		1000	nedia	954	750	25t	non-detecte	non-detecte		LINOD	alben	950	756	254	non-detecter	non-detecter			media	130	1887		UCZ T	100-Velation	NOR-Detector	
		Ē		(¥			-		*		┦	-	Ŷ				*	8	┞	Ļ	9		-			• a	~ -		_	-			-	*	*							*	2	_	Ļ	drain.	Lo Lo	110	-		5	ž	
		purpos		loines Cree								-	ones Cree			-					oines Cree								_	(reek)								(yeek)								ier a storm	d to MS 19						
	dryan ,	Ē	EMOS	Des V											1						(Des M								SDN1	Willer							SDN1u	(Miller O							SDN2	(No tong	re-route						
	Į.	Ē	_				ļ		Ļ	+	+	+	_	_			_				ļ.	-				╞	\downarrow		_	_	_						L	_															
istics.	depth	<u>e</u>	_	_												_	_																																				
aracter																																						-															
storm ch	storm																																																	Ť		Ť	
imple data only		19810																																																			
Grab su																																															Γ		T	T		T	

	pre data only	storm chi	Inactery	stics								1.					
		storm		danth	ł			ſ	ŀ	$\left \right $	5				Centratio		
outfail	POS ID	a ta t	avent.	in g		, merin			Bround			H	Ť		TPH-	-	
				É		511	burbose	E Dode	Jetce ?	٤	8 8	Ê	8	DHD	Q	Fecals	comments
+-			T			SUNS			count	9	ଛ	2	0	0	6	19	
						(Miner Cr	ek)		median	7.2	8.0	0.1				=	
									95G	7.6	4.9	0.5	-			1660	
							-+		75th	7.3	2.0	0.5		f	 	8	
									25th	6.7	0.5	0.1	-	1		100	
+-								-uou#	detected	0	6	6			-		
+			1					%non-	detected	Š	45%	85%			+	21%	
										-		╞	t	t	╞	Ì	
						SDNA			count	12	F	12	5	5	-	9	
						(Niter Cre	(¥)		median	7.8	0.5	0.1	80.0	800	0.05		
+					I				95th	8.7	1.5	0.1	0.12	0.07	800	8	
									78ch	8.1	0.9	0.1	0.06	80	800	2	
					Ì				26th	7.2	0.5	0.1	90.0	80	80.0	-	
+								-uou#	letected	0	S	12	╞	-	5		
					I			Xnon-	intected	ž	71% 1	100	160	108	800	X	
					.				╞		ł	╏	t	ł			
								t	Count	ŀ	ŧ	╞	ŧ	t	╡	Ť	
						City of Se	tac)	+-	mellan	: :	20		- 8	- 2	-		
											3	+	2	3	0.18 0.18		
			T			1		╎		2		+	2	8	0.18		
			T		Ì					0	8	-	80	80	0.18		
			+		İ	+					0.5		0.20	0.03	0.18		
-					Ť					-	P		0	-	ò		
			t			T			Dence	z	X SS	-	š	¥00	*		
			Ť		ľ	╏	╋	╀		-		+	-				
			+-			107074			Count	8	6	•	2	2	2	0	
			1		Ť		(con	+	median	2	1.9	_	1.23	0.06	1.18		
			+		Ť			+	50	-	8.7		1.39	60.0	1.31		
				T	1			-	1300	6	3.9		1.32	0.07	1.25	F	
			+	1	1				25th 6	-	4.1		1.14	80	1.10		
+		╉	Ť	Ť	+	+		Puour	etected	0	2		0	-	0		
			1			ł		P-LOUY	efacted	ž	11%	-	8	50%	Š		
			1		1			-			Н	H	$\left \right $		╞	Ì	

AR 033479

																								rab falled																						:
		nments											onty											sicing only, g																						
		CO											stals results											lor aircraft de								-														
┛			8		37	63	29		2	79	61	32	11 hes m	£3	8	11	19	48	86	22	8	62	8	taken (NLD)	12	66	95	7		25	2	R		Z	55	52	8	88	60	86	12	53	19	52	82	08
		2	0		14 0.3	11 0.2	23 0.7		21 0.2	04 0.2	26 0.3	77 0.	11 0	16 0.2	52 0.1	89 0.1	56	86 0.1	32 0.0	32 0.1	64 0.1	01 0.1	52 0.1		15 0.3	76 0.2	32 0.0	06 0.2		0 8 0.1	45 0.3	2 C	02 0.1	0.1	63 0.2	77 0.0	03 0.1	27 0.1	15 0.2	13 0.0	73 0.1	08 0.2	27 0.1	07 0.1	43 0.0	0 160
ļ		đ	0		1 0.0	9.0	0.0		3 0.0	4	7 0.0	8 0.09	7 0.0	5 0.0	3 0.02	3 0.02	2 0.07	1 0.04	3 0.02	5 0.03	0.01	4 0.03	3 0.00		5 0.04	2 0.03	4 0.01	0.0		6 0.0	0.0		00	0.0	7 0.08	2 0.00	5 0.01	8 0.01	2 0.0	0.00	1 0.02	10.04	0.0	3 0.01	0.0	3000
		20	<u>6</u> 0.02	140	0.03	5 0.02	0.12	6	0.03	6 0.05	0.05	6 0.07	0.0	0.0	0.05	0.0	0.0	4 0.03	0.02	0.03	20.20	2 0.02	80		0.07	0.0	0.02	0.0	+	5 0.01	0.1		0	0.01	0.11	5 0.01	0.03	5 0.03	0.10	9 0.02	4 0.04	6 0.07	2 0.03	200	2001	2001
		ghcoli	Sec. 19			2.052		7.		5	1.2.2.2							40					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						-	27				1. 4 S				1.1.1		Ň	33.			STATES.	100.0	1200
VGm 'uc	6	alycol				142		7.9		12	12.4	0.4			97.	66	0:3	49.4		84.5		0	3.4-		44.00	B			07-1	15				CV I	L X	[x ¥ 1]		57		24	33.4	0.0				States and
centrativ		jų col				1.10		17:2:6		1		1.5			(US)	TYS .	K.									0.172			14	56 0		_	+		1537 C	1.1.2	_	120 C	-	Sid i	34	E Cal				- 2 3 ber \$
yte con		Surf	0.2		E 0,05	0.2	1.5		0.1	0.1	0.35	0.123			0.15	0.067	0.135	1.26	0.318	0.384	0.078	0.119						0.5	-	7	00		0.1	0.3	0.081	0.134		0.427	0.663	0.055	0.06	0.574	R	0.953	0.301), 391 a
Ē		CHN	0.39		2.3	0.42	0.44		0.18	2.5	0.64	0.128			0.182	0.304	0.053	0.221	0.082	0.059	0.178	0.244						0.13		0.0 80	- 8	110	0.17	0.012	0.219 (0.023		0.014	- 900 00 00	500.0	0.00 0.00	800	8	500		0.0161
		300	F	•	8	60	29		27	74	12	6.54	-	22	7.06	11.7	12.8	23/122	4.36	6.24	4.02	1000	5.4		20.8	11.1	4.96	12	4 6	3	~	<u> </u>	5	18	23.9	9.28	29	11.2	12.5	40.5	162	21.2	4.5	7.18		\$.0
	4	ā 2 5	ę	-	27	19	R	-	27	061	19	=			15	24	1.5	20 HW	14	19	41	30 200	75		27	21	25	11		40	25		3.6	4	16	6.3	_	8	27	21	1	21	15	46		5.2
	ŀ	2 2	8		16	16	4		14	210	4	53		8.8	40	42	140	49	30	79	34	66	253		5	60	33	2.5		6.7	F.	58	8.8	3.2	74	1	8.7	1	15	22	37	6	25	12	-	1.61
L	r	130																																					_							
		ground delce?	l e	2	2	2	2	2	2	YES	2	2	2	2	2	Q	2	2	2	٤	2	2	0	2	2	2	2	2	2	YES	2	2 2	2	Q	2	2	2	2	2	2	2	2	2	2	2	ç
		report	1995	1995	1995	1995	1996	1996	1996	1996	1996	1996	1996	1996	1997	1997	1997	1997	1997	1996	1998	1998	1998	1998	1998	1998	1998	1995	1995	1995	1995	1996	1996	1996	1996 1	1996	1996 /	1997	1997	1997	1997	1997 r	1998	1998 1	19981	IDARL
		æ	DES	DES	DES	DES	DES	DES	DES	DES	Ş	DES	ES	ES	DES	DES	DES	₹	DES	DES	DES	DES	DES	DES	DES	DES	DES	DES	DES	DES	DES		DES	DES	DES	₹	ខ	DES	₹	DES	ES ES	DES	DES			<u>ل</u> م
┛	<u>ک</u>	1	46 NP	52 NP	252 NP	S6 NP	Ż	Ż	đ	NP	Sti	Z	SR	SR	76 NP	103 NP	154 NP	109 Str	42 NP	76 NP	26 NP	87 NP	8 NP	132 NP	264 NP	125 NP	288 NP	120 NP	52 NP	60 NP			NP	MP	M	S	SR SR	M	325 Stip	AA NPI	IS4 NPI	d N	135 NP(26 NPI	24 NF1	IN N
tics	-	j E	=	24	62	9	R	12	80	80		16	15	30	1.2	37	23	8	8	1 6	10.8	33	86	27	20	8	4	32	2	26		2 60	12	20	16	8	ନ୍ମ	12	51	7.5	33	7	58	10.8	8	3
Inacteri		amt, in.		0.05	0	0	•	0.01	0.01	0	0	0.09	0	0.02	0	0	0	•	0.24	0	0.08	0	0.07	0	0	0.01	0	0	0.05	0	0.12	0	0	0	0.09	0	0.02	0	•	0.16	0	0	0	80.0	2.0	5
om ch	-	2	0.28	0.42	0.21	0.29	9.4	1.34	0.28	1.6	0.21	0.49	0.24	0.31	0.29	0.36	1.21	0.41	0.39	0.28	0.47	1	0.98	0.86	0.46	0.21	0.43	0.2	40	-			0.35	0.37	0.49	2.83	0.31	0.23	5	0.82	-	0.31	0.36	5	0.65	F
Ĩ		event	11/11/94	11/19/94	1/7/95	4/10/95	7/26/95	8/16/95	10/25/95	2/3/96	3/22/96	4/15/96	5/17/98	5/21/96	96/2/6	12/19/96	1/16/97	1/27/97	3/5/97	6/3/97	10/28/97	12/15/97	3/1/96	3/8/98	4/23/98	5/14/98	6/24/98	IOV19/94	1/19/94	2/15/95	5/11/95	8/6/95	0/15/95	1/13/96	4/15/96	4/22/96	5/21/96	7/3/96	8/2/96	12/4/96	1/16/97	4/13/97	6/16/97	0/28/97	1/18/9/1	INNELIZ
đata		0	394	994	795	60	695	795	695	396	296	596	296	596	36	8	597	797	287	397	197	397	198	. 86	396	198	861	3	ð	595	30	56.	95	8	96	8	8	8	8	8	97	97	6	97 1		1 16
ample		sample	111 JE	JE4 111	JE4 010	JE4 041	JE4 072)E4 081	JE4 102	JE4 020	JE4 032	JE4 041)E4 051)E4 052 .)E4 090	E4 122	DE4 011()E4 012	DE4 0300	E4 060	E4 1021	IE4 1216	E4 0301	E4 0306	E4 042	E4 0514	E4 0624	IS1 1015	S1 111	S1 0211	S1 051	S1 0607	S1 1016	S1 0114	S1 0416	S1 0422	S1 0522	S1 0704	S1 0802	S1 1204	S1 0116	S1 0413	S1 0617	S1 1028	S1 1120	51 1210
posite :		tfait	4 8	A SL	4 St	¥	4 SC	4	4 SC	4	4 SC	A SC	4 SC	SC	5	8	5	5		20	20	s SD	s SD	- <u>s</u>	1 SD	S S	t SO	1 20	2	5	DS C	, <u>0</u>	Ŝ	SD	Ŝ	С С	Ö	Ö	Ő	Ő	Ő	ő	ő	Ś	Ő	ŝ
Š		ş	В,	SDE	SOR	S	SOR	Sol	SC	B S	SDE	SOE	SOF	SDE	SOR	Š	SDE	SOR	SOE	SOM	Son	SOE	SDE	SDE4	SDE4	SOE	SDE	SDS	Sos	SOS	SDS	SDS1	SDS1	SDS1	SOS1	SDS1	SDS1	SDS1	SOS1	SDS1	Sos	SOS1	Sol Sol	SOS1	1SO	iDS1

				CONTRINEITUS						AST FOR STIP AG				ycols and BOD on labjob "J 014"																		dun monthly comole in sec. 3// me	nple didn't qualify under new permit																
	Γ	_	20	1	+-					ב		0.031	0.076	0.108	0.058	ž	0.069	0.037	70.02	0.054	0.074	0.036	0.097	0.082	0.022	0.061	0.042	0.037	0.039	0.037	0.055	0.045	0.034 SAI	0.064	0.116	8	600.0	2	010	8 0.0	100	018	0.022	0.019	-	0.031	0.017	018	000
			á	:[0.004	0.003	8	0.00	0.02	0.00	80	0.00	0.002	0.0116	0.0011	0.0091	0.0158	0.0033	0.0141	0.0018	0.0018	200.0	8200.0	0.0019	0.0055	CL00.0	.001	0032		5 G	3	0 002	3	(The second	0.002	0.001	0006		0054	9000	8000	0 2011
			ő			Ī						0.041	0.053	0.027	0.016	5	/BO'D	0.032	6ZO'D	BZD'D	0.046	0.035	0.115	80.0	0.025	398 0.398	0.029	810.0		870.0	820.0) 2010	0.081	9.076		200	8	017		008	0.02	023	018 40		0 110	033 20	B.0.	0241
		tatat	Meda								Station of			0												R	ЭЦ.			-	0.9			Ş 11	11.5.12		Ť					+			21.2				
	1, mg/l	4	vcola				-				× 2.6 ¥			1001	198 C 8 7 5		+	1 1 A					+			101	(×	╀		Y					╉	+	1.122.121.2		233 1234		-	 	233	7.2	(<u>)</u>		2.6	
	Intratio	ய்	rcola	┢	-	╞					12.6 13	┥			6 2.35 5		+				5	╉				10			+			3				┦				215 10.2		-		- 1 C -	1			1. 1 × 1	STREET OF
	te conc		ta Tui		+			+	+	-		0.9	0.1					10.00			200			010			212	220	2	3 3	Į				1262		1		90		80	0.2	8				LC unut is	20 202	Call States
	Analy.		CH3	┢			.012	-+		╉		8	1.2		17	SAC	11 12				3	0.46					015 01	012 01					+	+	+	12	80		2 2:0	2.5	0	18	N9 14 0	02 100	25	29 100	205	84 0.0	\$ 5 5
			1 2 2 2 2	Ē	4	80	5	N3-2		2	-	0	y ¢	2 4	-	0					> } }	0		The state				2.5 0	15.9 6.0	3.5 2.6	8.2	8.9				4	16 0.0	5	6	80	4	9.0.0	5 0.0	0	13 0.0	8		0.0	}; ;
		£	کظ آث	15	1.	2.0	28	29 14-14	19 1.5	- DO	0	0.5	v a		6	15			0		2	e		2 11 12 12	2		5 11/202	9	6		0	N					9						~		'		2		
		Ţ	MT (NT	15	7.8	18	25	2	2 2	3	u u	2 5		2		8	2	9		20	9	6	0		8	9	4	0	6	5	-	80 N		0	•		7 5.		5		2	8	4				;	1	
			TS5																							5	0		n	e	~	n	-			2	wi		ц.		~	•		Ñ	1	¥ ∓		5	
		ground	delce?	2	8	2	2	2 2	2 2		2 2	2 2	2	2	2	2	2	2	2	2	2	2	2	2	/ES	2	Q	2	2	2	2	•		0			0	•	•	ES	•			0	<u>ا</u>				
			report	1995	1995	1995	1996	1007	1997	1005	1995	1995	1995	1995	1995	1996	1996	1996	1996	1996	1996	1997	1997 /	1997	1997	1997	1997 r	1998 r	1996 r	1998 n	1998 n		1998 n	1996 n	1998 n	1995 n	1995 n	1995 n	1995 n	1995 1	1989	19861	1990			1996	1996 1	1997 IN	
			R 0	PDES	DES	DES DES			N N	DES	DES	DES	DES	DES	DES	DES	DES	DES	٥V م	DES	ES	DES	DES	DES	₽	DES	DES	DES	ŝ	DES	ŝ	DES	DES	DES	DES	DES	ŝ	SES I	S	S S				3 4	ES T	29	S	ES	
Γ	Ļ		Ē	102 N	Z	<u>z</u> : 8		15	202 St	93 NE	1811	480 NF	52 NF	252 NF	56 NF	L N	ž	UN N	Se	Z	SR	325 NP	76 NP	64 NP	72 Sti	54 NP	42 NP	76 NP	26 NP	O7 NP	Q N D	32 NPI	64 NPI	25 NPI	88 NPI	18 NPI		52 NP(Z4 NP						S N	10 S	SRE	DAN	
		đư,	Ę	7.5	80 4	2	7 5	2	8	8	σ	=	2	62	2	8	12	20		16	8	27	1.2	-	-	23 1	ຊ	-		=	8	57	202	8	10 2	9	-	2	8	8.	•	<u> </u>	7 8	2 «	<u>1</u>		8	12	i
		48hr	nt, In.	•	0.12	1	0 16	0	0	Ē	0	0	0.05	•	•	•	0	•	•	60.0	0.02	0	0	•	0	•	0.24	•	0.08	-	0.0	0	0	0.01	0	0	•	0.05	5		2	-	╞	• c	, 00 0	10	0.02	0	
		rain,	<u> </u>	0.12	0.7	2	0.82	1.21	0.48	0.69	0.15	0.32	0.42	0.21	0.29	5	0.35	0.37	0.21	0.49	0.31	<u>-</u>	0.29	0.68	0.63	121	0.39	0.28	14.0	60	88.0	0.86	0.46	0.21	0.28	0.15	0.32	242	2				36	18	149	63	0.31	53	
			110A	5/8/95	0/11/95	20/2/0	12/4/96	1/16/97	2/11/97	9/8/94	9/13/94	0/13/94	1/19/94	1/7/95	1/10/95	56/92/	V15/05	113/96	122/96	115/96	/21/96	8/2/96	90208	121/36	123/96	/16/97	3/5/87	18VEN9	16/07	86/62	3/1/98	3/8/98	23/98	14/98	10/98	13/94	13/84	1991	20121	11/05	20Var	202	2000	2066	15/96	2/96	1/96 (3/96	
Ļ	Ī		2	8		3 2	8		97	2	2	1	=	8	2	2	2		9	•	8			6 5	5								3 4/	20	~ \$	2	<u>ě</u>		2 6		5	ţ	;	-	1¥	412	S	2	
tamnle d			aidura	SZ 0510	0100 250 0810	S2 0905	S2 1204	S2 0117	S2 0211	S3 0908	S3 0914	S3 1013	S3 1119	S3 0107	21-10-22	97/0 29	23 10165	23 01 148	22 03228	21 04 163	23 05229	53 08029	SE060 ES	3 10219	3 11239	3 01169	3 03059	2 0003	80701 2	01309	3 03019	3 03099(3 042391	3 05149(3 06109(4 091494	4 101394	111884	1 071806	4 04 1090	1 000705	1101605	011496	020596	041696	042296	052296	070496	
nosite s		Hell				2 SD	2 SD	2 SD	2 SD	3 SD	3 SD	3	8	200	8		8	8			ŝ	ő	Š	ß	й Я	ŝ	SOS				22	SDS	SDS	SOS	SOS	SOS			300				SOS	SOS	SOS	SDS	SOS	SOS	
50	L				ŝ	Sos	SOS	SDS	SOS	SOS	S	SOS	SOS				3	202			ŝ	3	SOS	202		SUS					ISN'S	SDS3	SDS3	SDS3	SOS3						2	50	i So	DS4	DS4	1024	30	SO	

AR 033481

		commente	. Turb not typical: high turbidity from	o construction site (J4K safety MI).						tup comp for 98Qw non-rep comp,					minered .		sh samda taban			reb semple for this event, equipment	unction	DC dupe. no grab sample (no liquid that) naire with 4/40/07 arch.	sup for 96Q4 (3 unsuccessful	npts)																IPDES/Stip Ag	IPDES/Stip Ag		
Г		.5	228 15S	2 60	100	102	038	2	039	012 mak		+	+	+	1		2		Į	10 01 10 01) 17 detec	12.1 make	atten	22	10	19	-	85	-	+	+-	86	3	75	88		16		99 xtra h	69 xtra N	8:	251
		N 9	0	018	018	110	028	036	021 0.0	0	a di	_		+	+	+	+		63 0.0	015 0.				AL LA			0		16 0.2	+		-	01 0.2	0 0.4	13 0.3	21 0.2	μ	0 1	_	74 0.2	13 0.5		131 U N
		Ξ.	6 0.0	73 0.0	100	17 0.00	19 0.0	12 0.00	19 0.0	16 2 0 0	1	+	+-	+					000	8 0.0	2		000				00		2 0.0		_	-	0.0	5 0.0	3 0.0	0.0		6 0.01		0.00			
		0	о —	00	0	0	00	00	0.0	0 O		+	+	-				-	0.0	0.0	20		Ö		36	000	0	-0	8	+ 1	0		0.00	0.0	0.02	0.01	ad	0.01	6	5 0.02			
	latut	ghred		47 8.8.3.5	10 10 10 10 10 10 10 10 10 10 10 10 10 1		Monthly and	161 KK 41 Mar			1997 A. 1. 1997																	1111		6.							14.22				11 M 11	- 014 L H H	A CONTRACTOR OF THE
M. HQ	đ	glycol		1. 1. E. I			1.6		I		AMEN BULLE				Γ		Γ		Γ							T		5.2.5		E.2.5		1141	LIC4		F	12.5	0.0	12.5	S.	12.6		1.000	1 10 N 10
centrati	ц	hycol		A. S. S. 18			1.2.4					\uparrow	1	T	t				ŀ					1	+	t		12.5 2		6.1 G	1 2 5 1		<u>.</u>			2.51	52.5	2.5	111	2018		22.022	Contraction of the local division of the loc
rte conc		Surf 9	0.069	2013 22	50	2.013	0.079	0.273	0.095	0.035				┝					┝					+		<u> </u>	0.2		0.05				0.05	800	50,0	0.1	.	80		657 162	124	100 0 001	
		KH3	0.027	0.014 (0	0.12 20	017	067	033	0.056	0.039	┢	╈		-		$\left \right $			┞		╀		┢	╉		025	0.5		0.37	1.54	0.35	078	006 100	011	0.52 001		103	2	127		5 5 6	142	1
		8	6.04	<u> 2</u> 0	3.82	4.3	4.44	5.30 0	4.54 0		15	•	0		3	4.10	6.7	4	2	5.06	3.28		5.5	C.W	2	194 0	-	8	-	12		5	40 19	27 0.	8	5		000			24	0 2 0	;
		8	0	5 SUBSEC	2	-	8	5	4	7 路後	0	0 0	3	0	6 PAN	-	2	6		0		3	<u> </u>	61.22.0	0.00																		'
	Turt	UTN)	0 26	1	2	8	2	5	1	60 100	31	~ ~	2	2	2	_	6	1.	11	4	0		~	4	Ň	8	¥		Ř			7.6	6.2	Ĕ	Ŧ	150	~	5		- 6	3	10	
		T 3S	431	-	-	-	*	\$	•	e		5	ŝ	3	7:	7.	6	2.2	6	6	3	¥	Ř	96	2	21.5	₽		2		-	6	18	\$	15	130	5	5 3	= :	= \$	3 8	51	
٦	round	eice?									t						-				t							-+	_								-	+	-	╈	+-	$\frac{1}{1}$	•
	ā	ъ То	ou 266	00 100	00 1961	997 no	00 166	998 no	998 no	00 966 I	995 Ino	995 TO	995 no	996 70	997 no	997 no	997 no	997 no	ou 166	997 no	997 no	997 no	997 mo	997 no	997 no	995 no	995 no	995 no	995 no	500	995 no	995 no	995 no	00 96	98	96 YES	8	2 2	2 2	2 2	2 2	97 TO	
		Ē	с, С	5	-		5	5	5	5		-	-	-	-	ľ	Ť	Ŧ	Ť		Ē	-	-		-	Ĩ	=	# *	≓ ₹		15	15	15	\$	2	₽!! 		<u>^</u>	<u> </u>	* 9 - -	- 6	6	
		ਰੈ	NPDE	NPDE	INPDE	1 StipAg	NPDE:	NPDE!	NPDE	NPDE	NPDE	NPDE	NPDES	NPDES	NPDES	StipAg	StipAg	StipAg	NPDES	NPDES	NPDES	NPDES	NPDES	NPDES	NPDES	NPDES	NPDES	NPDES	NPDES	ShoAd	StipAg	StipAg	NPDES	NPDES	NPDES	NPDES	StipAg	NFUES	StinAn	CHINAN	SRES	NPDES	
	<u>ר</u> קל	E	1	5	3 154	8 105	8	96 S	6 222	132	5 102		8	2	5 44	3 154	8 109	8 205	5 44	3 154	3 109	42	3 109	3 205	42	118	2	22		158	88	1 270	8				Ţ	\$		Ţ	Ĩ	Ē	
ristics	ub r	Ч	8	16 7.	0	8 0	й 0	7 10	0 12.	6	- 0	2	Ē	11 12	6 7.	й 0	20	=		N 0	80	2	й 0	18	4 20	5	3	2 2	* C	200	114		1	8	-					319		12	
haracte	48hr	Ŧ	<u> </u>	2.0	_	_		0.0				0.1		0.0	0.1	_	_		õ		Ĺ	0.2			0.24				5			5	9.0 0		80.0 0		0.0	000		2		0	
torm c	ria,	=	0.5	0.82	1.21	5	1.10	0.2	6.0	0.0	0.12	0.2	0.3	1.34	0.82	1.21	5	8	0.82	1.21	0.41	0.39	0.41	0.48	0.39	0.15	0.2	0.42	11	0.18	2.16	0.17	0.61	3	3.69		84 C	38	031	. 94	0.46	0.23	
		Heve Heve	10/4/96	12/4/96	1/16/97	1/27/91	4/19/97	8/25/97	11/16/97	3/8/96	56/6/5	5/11/95	6/10/95	8/16/95	12/4/96	1/16/97	1/27/97	2/11/97	12/4/98	1/16/97	1/27/97	3/5/97	1/27/197	2/11/97	3/5/97	9/13/94	0/19/94	1/13/34	20/21/2	3/4/95	3/8/95	4/4/95	4/6/95	8/8/95	11/6/95	2/3/96	A/10/30	13/96	5/21/96	123/96	W23/96	7/3/96	
t l		9		96	197	797	766	(97	797	966	095	195	960	795	ŝ	697	797	6								2	8	5 4		38	95	95	50	82		81	8 9	8 x		2 2	8 A	8	
almpie		sample	S4 100	S4 120	S4 011:	S4 012	110 150	124 082	S4 111)	S4 0305	W3 051	W3 051	W3 061	W3 081	W3 120	W3 011	W3 012.	W3 021	20496	11797	12897	30697	12897	21297	30597	N1 0914	N1 1019	STIL IN	V1 0716	11 0305	V1 0309	V1 0405	11 0407	11 0807	41 1107	11 0204	11 0410	11 05135	11 05228	11 06239	11 06235	11 07045	
posite :		Ē	1	DS 1	20	20	20	8	5	SD	SD SD	SD SD	3 SD	8	S	8	8	8		8	80	0	00	00	0	igs S	<u>S</u> O			SQ	SDA	Ś	ŝ	S	5	SD		SDN SDN	NOS	SDN	SDN	SDN	
ŝ		ş	SDS	SOS	SDS	SOS	SOS	SOS	SDS4	SDS	SDW	SDW	SDW	SDW	Š	SDX.	SOX	SOW	8	8	8	۵	٥		۵	SDN1	SONI		INCS	SDN1	SDN1	SONI	SDN1	SONI	SONT	INOS	INC.	inds.	SONI	SONI	SDN1	SDN1	

.

Sd
50
ŝ
NPO

õ

	_	_	_	****				-			_			-	_		_																															
			comments					paired up/down sample	peired up/down sample	peired up/down sample	downstream location at SDN1-27																							tra NPDES/Stio Ag													and the second second second second second second second second second second second second second second second	
			5	_				0.343	0.219	0.391	0.433	0.211	0.222	0.191	0.064	0.401	0.54	0.36	0.022	0.067	0.03		0.076			0.098	0.048	0.024	0.027		55	0.078	0.138	0.076 >	0.042	0.02	0.0	1000	0.063	1	0.052	VCD	T		╞	0.126	0.18	0.068
		á	2					0.0387	0.0156	0.0396	0.0128	0.0274	0.0168	0.013	0.0068	0.0049	0.0103	0.008	0.00	0.005	0.0		0.022			0.003	0.0	0.002	0.005		0700-0	0.0016	0.0216	0.0117	0.0062	0.0024	110.0	LAINO	ZND'D		1000	3			ſ	0.001	0.0 0	0.0
		ĉ	3				0000	0.039	0.025	0.03	0.042	0.038	0.019	0.017	0.01	0.062	0.053	0.056	0.028	0.059	0.013		0.035			0.025	0.028	0.016	800	0.013	2	0.014	0.076	0.055	0.033	0.0			750.0		0.001			-		0.011	0.036	500
	1-4-4	alveola	grycon.	2.11.2			C RREAS							2 H 122										8	9	19			17.3			0		0.5	-	9.34	00.9	C. William Prov	+	9 - Hall		BANKS	0	0 (M (M))	8.Fich			N STATE
hgm .nd		aheel		T. 2.5	07		0751		Ť	1		-						┨	+	1		2.5		677	07	6			11 80 2 A BA	52 S 27	2.5	1973		12.6	_	2.0	30. B		╁	12.5 M		2.0 5	2.0	約日本	2.6 24	-	+	2.5
centrativ	Ľ	threat		82			10718	T			┥	1				┥	╉		+	╉	2010 CT 212 AF	2.07		36	22.0 22	97	+	6	10.3 19.5 3.3	N HG		ELL.		1.2.6					+	10135		2.8 %	1.5		2.6 7	-	╉	2.5 212
hte con		Surf					0 050			200	20	1000	000	200.0	╉	╉	+	-			9		8			B		, it	n an an an an an an an an an an an an an	UTS AN		266		028	100			NON SAL			120					8	5	80
ana ana		CHN	97.0		0.200	0.250	0.387	0 125	0 227		0.10	0.218		8	+	╈	╈	1.000			,		1.5.1		S	00100	100	and line	3 3	02 500	045	S. S.	0.12	166			478 0	061 141	038 950		0115%	1.2	500	016	.25		Bž	11
		SOOS	•••		00.0 T		23.6	6.44	86	;	170	R. 1			y -		20	1		3	- -		•			3 9			× 2 0	6.64 -0	4.86 0	5.08 0	2	2 2 2	2.2	120-0	0 2.3%	0	4	4	2	(C);	3 0	0		2		20 55 55
	Ę		Ŗ	3 ¥	2 8		8	6.71.25	59	0	2 6	2	3 6	200	3 5	2 2	1				5		1		2 0	-	1.8	~	11 1242	2.5	5.3	2	-	0.5	2 0	2 5	1.5 2.7				89.		0		P, y	8 7	5 5	<u></u>
	-	N Si	35	40.3	9	36	8	21	62	2	4	10	: 2	12		4	2	32	59	~	+	75	2 4		28	8.8	52	-	15	5.3	5.6	99	- 	3 5	20		17	1	9.2		62	_	-	0 4	- 4	2 5		8
-1	ğ	3	┞	+-		-	-		-	-	-	-	' -		-						-		-	-																	0							
	grour	t deice	2	2	2	20	2	2	2	2	8	2	2	2	2	2	2	2	2	5	2	2	2	2	2	2	5	2	8	8	2	2	2 2	2 2	2	2	2	8	2	2	2	YES	2	2 2	2 5	2 2	2 2	2
		report	199	199	199	199	1997	199	1997	1997	1996	1996	1998	1996	1996	1998	1998	1995	1995	1995	1995	1995	1995	1995	1995	1996	1996	1996	1996	1996	1996	1996	1006	1997	1997	1997	1997	1995	1995	1995	1995	1995	2001	1005	1995	1996	1996	1996
		(qo	StipAg	StipAg	StipAg	StipAg	VPDES	APDES	IPDES	VPDES	IPDES	PDES	IPDES	PDES	IPDES	PDES	IPDES	IPDES	PDES	PDES	PDES	PDES	tipAg	tipAg	PDES	PDES	PDES	PDES	ip Ag	PDES	V		Ne of	PDES	PDES	PDES	PDES	DES	DES	DES			2	28	DES	DES	OES	DES
į	art d	Ę	/ 325	2 76	141	28	154	18	154		76	26	67	9	284	1251	288 1	1 66	480	481	52 1	24 1	158 5	808	8	Z	Z	Z	S)	Z	12 5	<u>n u</u>		76 N	2 79	154 N	Z Z	N 66	14 2	52 N	N 707			270 St	304 N	Ž	Ž	Ž
	r dur	n. hrs	0 2	-	4	02 2C	3	8	23	12	0 16	08 10.8	93 93	02 06	8 0	1 8	0 10	0 22	0 14	14	5 24	8	24	4 28	0 18	0 8	0 12	12	16			3 5	20	1.2	4.1	23	8	ន	\$	2 2	8	8 7	-	•	58	13	8	ଷ୍ପ
	1, 48 h	ť	11	8	72	0	=	0	Ŧ	20	8	7 0.0	1	6.0	8	1 0.0		6	2	•	0.0	0.0		1 0.0		-			00											00						0	8 0	°
	Ē	Ē	96 1.	96 0.	.0 88	8	97 1.	0 8	97 1.2	97 0.3	97 0.2	97 0.4	14	98 0.9	98 0.4	8 0.2	80.2	9 0 X	0 1	0 7	7 0 7	5 0.	5 0.1	5 0.6	5 0.2	0 9	0.0	2				040	80.46	5 0.26	S 0.68	1.21		0.69	8.0				2.16	0.17	0.7	0.81	3.89	0.37
Ť		- No	229	VE/6	9/13/	9/16/	1/16/	10/4/	1/16/	¥134	ŝ	10/28/	12/15/	3/1/2	423%	514/5	6108	8006	10/13/9	11/11/18	11/19/9	1/11/9	3/4/9	490 4	4/10/9	899	10/15/9	8/17	4/15/9	6/77/6	50100	6/23/9	6/23/96	9/2/96	10/21/96	1/16/97	RIGLAN	51215	RICZINI	17/2/24	2/15/05	3/4/95	3/8/95	4/4/95	6/4/95	7/9/95	11/6/95	1/13/96
			SDN1 080296	SDN1 090396	SDN1 091496	SDN1 091996	SUN1 011697	Shoulduinos	SUN100 011697	18CLAD LNDS	SUN1 060397	SDN1 102897	SDN1 121597	SDN1 030198	SDN1 042398	SDN1 051496	SDN1 061098	SUN2 090894	SDN2 101394	SDNZ 111394	SDNZ 111994	SDN2 011295	SDN2 030595	SDN2 040795	SDN2 041295	SUNZ 080795	SUNZ 101695	SUNZ UZU / 20	SDN2 041696	SUNS DE1200	SDN2 05296	SDN2 062396 A	SDN2 062396	SDN2 090396	SDN2 102196	SDN2 011697	ARLEN ZNOS	PUN3 09084	PUN3 112034	50N3 010795	CON3 021695	SON3 030595	CN3 030995	DN3 040595	DN3 060495	DN3 071095	DN3 110795	DN3 011496
		lienno	SDN1	SDN1	NOS	INOS						SONTUP	SUNUD	SONTUP	SONTUP	SUNUD	dining	ZNOS	SUNZ	ZNUS	SUNZ	SUNZ	SDN2	SUNZ	SUNZ	ZNUS			SUNS	SUNS	SDN2	SDN2	SDN2 S	SDN2	SON2	SUNZ		SUUS SUUS	SUN3	SDN3	SDN3 S	SDN3 S	S ENDS	S ENDS	SDN3 S	SDN3 S	SDN3 S	SUN3 SUN

AR 033483

Compos	ite samnle data		arm che	rectaria	1	Г								144					Γ	
		і Т			}	ł			_						1. Indian				1	
			rain,	48hr	dur, z	Ĩ		ground		fut				ய்	4	total				
outfall	sample ID	event	E	ant, in.	ard	Ę	Obj repo	rt delce?	TSS	(NTV)	BODS	CHN	Surf	glycol	plycol _	phycols	٦°	2	ភ្	comments
SDN3	SDN3 020496	2/3/96	1.6	ò	8	<i>"</i>	tipAg 199	6 YES		9.7		0.14		A 2.6 Y	12.5	12:45:4:5	-	┝	1	orm after runway deice
SDN3	SDN3 040196	3/31/96	0.64	0.01	0	0	tipAg 199	8	:	16	5	0.013	0.2	4,2.5 3	12.5 4	1.24	0.015	0.002 0	101 ×t	tra NPDES/Stip Ag
SDN3	SDN3 041696	4/15/96	0.49	0.09	16	4	IPDES 19	8	27	22	P 41 4 2	0.04	0.013	31 2 10 IV	942.6 2	1941.5	0.018 0	0034 0	121	
SDN3	SDN3 042296	4/22/96	2.83	0	80	07	tipAg 199	92 96	15	9.5	6.56	0.034	0.013	STATE:	SI 612 13	23.45	0.016 0	0013 0	.063 xt	ra NPDES/Stip Ag
ENOS	SON3 051396	5/13/96	66.0	0.07	20	12	tipAg 19	2	9	9	2412-6	0.075		21 2 G	10.000	51 J.S.				
SUNS	SON3 052296	5/21/96	0.31	0.02	8		tipAg 19	8 10	2	5.2		800.0	556	× 2.8 3	MX2.5 D	97 · · · · ·		-		
SDN3	SDN3 062396 A	6/23/96	0.46	0	9	50	RES 19	20	7.3		S	0.014					0.004 20	0003 0	.051	
ENDS	SDN3 080396	8/2/96	1.01	0	27	325 N	PDES 19	97 no	8	26			0.041				0.037 0	0043 0	. 156 de	slayed hydrograph, very dry anteceden
ENDS	SDN3 120496	12/4/96	0.82	0.16	7.5	4	PDES 19	01 RO	16	14	C 12 19 19	0.01	0.013	O SECUL	ALC: NO DE LA	No. A MAR	0.018 0	0021	550	
SDN3	SDN3 122196	12/19/96	0.36	0	37	103 N	PDES 19	97 70	2.6	4.5	1126.3	0.021	0.013	(DIS)	50	191724	0.011 0.0	0005	045	
SDN3	SDN3 011797	1/16/97	1.21	0	23	154 N	PDES 19	97 no	13	13	4.92	0.132	0.013				0.01210	0000	043	
SDN3	SDN3 030597	3/5/97	0.39	0.24	20	42 N	PDES 19	97 RO	9	101	647 PW22	10.005	0.036	6.2	0.010	6.2	0.011 0	0000	032	
SDN3	SDN3 062197	6/21/97	0.27	0.12	11.6	88	PDES 199	8 70	2.2	10	2.000	0,006	0.037		-		0.0141.0	0 9000	048	
SDN3	SDN3 111797	11/16/97	0.47	0	12.6	222 N	PDES 199	8 no	12	42	CAN SEE	0.05	0.061		$\left \right $		0.018 0	0019 0	049	
ENOS	SDN3 121697	12/15/97	=	0	33	87 N	PDES 195	18 no	11	26	1.22.2	0.016	0.032	1			0.011	0.002	0.04 BC	ood QC duplicate
SDNA	SDN4 090396	96/2/6	0.29	0	1.2	76 N	PDES 196	7 no	9	9	14.1	0.0	0.036	ŀ		ŀ	0.139 60	0 19000		
SDN4	SDN4 120496	12/4/96	0.82	0.18	7.5	N N	PDES 199	7 70	~	4.5	8.46	SCOVE S	(IOI)		1 - 1 - 1	1000	0.034 0	0015 0	023	
SDN4	SDN4 011697	1/16/97	1.21	0	23	154 N	PDES 199	7 10	•	17	12.1	0.192	0.015				0.00		20	
SDNA	SDN4 030597	3/5/97	0.39	0.24	8	42 N	PDES 199	7 70	3.8	2.5		0.014	0.056	1.1.4 .			0.011			
SDNA	SDN4 102897	10/28/97	0.47	0.08	10.8	N 92	PDES 196			ď	7.20	11211512	0 MK							
SDNA	SDN4 121697	12/15/97	-	ō	33	N 78	PDES 196	8	28	3.0	4.68	0.025	(Think)						5	
SDNA	SDN4 030198	3/1/98	0.98	0.07	8	8	PDES 199		17		12. 11. 1 11		24.24 M	1.						
SDNA	SDN4 030996	3/8/96	0.86	•	27	132 N	PDES	2 2	3.2	8	4.06	-		-	-	3253) (1) (1)				ickup monhtty sample in case 3/1/98
COMA	COM NO 400	AMPAN	31.0	C	- K	N 73C	DAFC 195		ſ	Ľ				Sec. 10	1	5				Imple didn't qualify under new permit
ANA S	SUNA DESEGR	SPAKOA	840		2	N LA	PDES 100	2 2	1		1 C 3	Ť	-	1.5.5.2	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	No. of Concession, Name			620	
SDN4	SDN4 062498	6/24/98	0.43		-	288 N	PDES 199	2 02	•	3	154				1. Standard 1.		0.03 20			
<u>الر</u>	EY 091494	9/13/94	0.15	P	6	19 N	PDES 199	5 70	24.9	T		T	6	┢	Ì					
EΥ	EY 101394	10/13/94	0.32	0	1	180 N	PDES 199	5 70	25				0					-	+-	
EY	EY 030995	3/8/95	2.16	0	114	N 88	PDES 199	5 70	3.2				10.06			1			+	
EΥ	EY 060495	6/4/95	0.7	o	28	384 N	PDES 199	5 no	25				0.2						$\left \right $	
EΥ	EY 072695	7/26/95	0.41	0	36	Z	PDES 199	6 70	g			t	0.2		$\left \right $		-	$\left \right $		
E۲	EY 101695	10/15/95	0.35	0	12	Z	PDES 199	6 no	12			200	10.05							
E۲	EY 021796	2/17/96	1.29	0	12	Z	PDES 199	6 no	24			20.	30.05				-		┢	
E۲	EY 042296	4/22/96	2.83	0	80	Z	PDES 199	6 m	39				0.054							
E۲	EY 052296	5/21/96	0.31	0.02	30	ŝ	tip Ag 199	6 no	28				0.511		-					
EΥ	EY 062396	6/23/96	0.46	0	9	Ő	tipAg 199	6 no	262				0.058							
EΥ	EY 070496	2/3/96	0.23	0	12	Z	PDES 199	7 110	16				0.079						+	
ΕY	EY 102196	10/21/96	0.68	0	4.1	64 N	PDES 199	7 100	12	4.3			0.015	-					┢	
E۲	EY 021297	2/11/97	0.48	0	18	205 N	PDES 199	7 no	8.6											
E۲	EY 030597	3/5/97	0.39	0.24	20	42 V	PDES 199	2	17										$\left \right $	
٤Y	EY 061797	6/16/97	0.36	0	28	135 N	PDES 199	2	72											
Y	EY 110697	11/6/97	0.16	0.01	4.4	22 N	PDES 199	2	₽										 	
2	EY 013098	1/29/98	0.2	0	-	N 20	PDES 199	2	2	1										
ž	EY 052598	5/24/98	0.58	-	Ŧ	87 N	PDES 199	8 70	28						 				-	

Compos	site samnle date					[I												
		Ĩ		aracteria									the come						[
_						ل چ		Γ						onenuar	n, mgu					
Confight			ліг.	48h	đư.	ant.		ground		Turb				ش	à	tert.				
			۶	ant, in	۶	Ę	Obj repo	rt deice?	TSS	(UTV)	BODS	CHN	Surfa	treat a	keol o	incole	å	ť	1	
= 2	11 090694	9/8/94	0.69	0	22	AN E6	DES 19	15 Ino	Ī			┠					ł	Į	5	comments
=	11 101894	10/19/94	0.2	•	32	120 NP	DES 19	15 mo	9			+-	3	+	╉	+			-	
= ≥	17 000405	3/4/95	0.18	0	2	158 NP	DES 19	35 R0	18				ONAL DE	20 C 20 C 20 C	SALE LOS		+			
2	CREADON 11	6/4/95	0.7	•	28	384 NP	DES 196	15 no	22		T		20	000		Carland	+	+		
- 2	11 101/85	8416/95	5	0.0	12	d N	DES 195	6 70	20				5		-		-	-		
	11 101695-1	10/15/95	0.35	•	12	đ	DES 199	6 I O	480						+		+	_	-	
	17 032296	3/22/96	0.21	0	-	N	DES 199	29		÷			3	┥			_			
≥l≩	TY 041696	4/15/96	0.49	0.09	16	đ	DES 199	2	30	Y			0.3	+						
≥ i	TY 042296	4/22/96	2.83	0	80	đ	DES 199	8	33	+		+	0.022	+						
≥li	TY 070496	36/2/2	0.23	•	12	Ň	JES 199	7 10	AC AC	+-										
2	TY 071896	7/17/96	0.27	0	31	Ste	Ag 199	7 00	\$			+	.163							
≿∣	TY 080296	8/2/96	1.01	•	27	325 Stin	An 199	2 2	2 6				0.475					-		
≿	TY 100496	10/4/96	0.59	0.06	- 8	18 NPI	JFS 100	2 2	35			-	20		_					
≿	TY 021297	2/11/97	0.48	C	-	20K ND		2		•							-			
≥	TV 030007				2		52C	2	82								-		-	
:	Isonen 11	IBACK	6.0	0.24	ଷ୍ପ	42 NPI	DES 199	2	188								┝		50 S	sible insert (BMP) faiture indicated hu
2	TY 060397	6/3/97	0.26	0	16	76 NPL	YES 199	2				╉	+	-					<u> </u>	rated FOG and TSS
' ≿	TY 111797	11/16/97	0.47	0	12.6	222 NPT	YES 1991		2 8			+			-					
≿	TY 030998	3/8/96	0.86	8	27	132 NPC	YES 199	2	3 4	+		+	-	-	-			╞		
≿	TY 061096	6/10/96	0.28	6	ē	288 NPC	FS 190	2 2	<u></u>	╉		-	-				-		A	(euo como for 96.0m hes extra much
			1	1				2	3	1		-	_							
T. C. T.	TRAP DESTINATION					1	8.4 1	1 14 11 14 1 .		2. 2. 2.		111	1							
	an started distant																			
Please no	te:	And the second se			ſ														2	
1. As of #	he current reportin	g period (Jun	Ne 97- J	lune 98) (2	- 4		ي ور -												
following c	wittells have not ye	st been samp	and und	der new p	emit			1 6 91												
Annual sa	mpling and reporti	ng requireme	ints: SC)S2 (004)	~															
2 Receip	6). SUS4 (009), SI	DW3 (010), E	3 (014).	D (015).								-						·	i, ~ , }	
been no se	moleshis dischar	dund cavi) -		13) mere 1 144 4007		30E	4	count	2	8	8	ŧ	Ę	ę	ļ	ļ	1		F	
3. The new	w NPDES permit d	And and and		ing tast				median	44.0	24.5	8.0	0.23	11	25		2	, 5 6		N	
the followin	To composite same	ole paramete		factants (96th	210.0	80.8	28.9	2.35	134	-	ŧ		5 ¢			
) amonia (NH3), and 10 met	its.						75th	64.0	30.0	16.8	0.43	1.30	2.5	2.5	3			200	
	:							26th	33.0	19.0	5.6	0.17 (0.10	-	-	2 0.6		20 015 015		
							Hour .	detected	•	•	7	0	-	₽	16	9			5	
					-	J	Non K	detected	Š	8	36	Ś	3 %9	35%	1	24%	, ¥	, ş	2	

AR 033485

20 0.122 0.291 0.217 0.102

200

4

0.047 0.021 0.006

0.036 0.117 0.085 0.085

2 e × 18

17 0.40 0.91 0.13 0.13

16 0.02 0.24 0.13 0.01

20 12.8 79.7 25.2 7.0

13.5 40.9 6.5 6.5

15.0 51.5 26.5 7.3 0%

95th 75th 25th #non-detected

SD31

Š

š

S

Ś

*

8

Š

0

event

eample ID

outfall

Composite sample data

Į	The second second second second second second second second second second second second second second second se	racteria	i i	Γ	_							141							_
				λþ			T					iyte co	ncondrau	on, mgr					
-	, E	48hr	dur,	aut,	į		punou	1	Turb				ய்	ف	total				
	E			E	5	report	delce7	123	Î	BODS	¥	En l	ghcol	glycol	glycola	3	£	ភ	
								ľ											
					2002		Count	~ :		~ :		0	•	0	0	•	0	ò	
								18.0	19.0	4	0.012								
							3 6th	47.5	36.0	10.1	0.01								
							75th	34.5	28.5	6.5	0.01								
							26th	15.5	11.6	2.5	0.01								
						Tuou#	detected	•	0	2	0								
						Xnon-	detected	%0	8	29%	8								
					SDS3		count	25	24	22	6	9	15	15	15	ž	20	26	_
							median	4.6	5.4	8.2	0	0.050				200		0.054	
							95th	20.8	15.9	31.8	1.25	0.210	, č	. 0	, č				
							75th	14.0	101	135	010	D DAA	3 "	• •	р Ш Ч				
							26th	3.2	3.5	1			С	, r ,					
						#non-c	letected	; -	, c	; `	5	0 0 0 0	ŋ ş	, ;		870'D	200.0	0.037	
						-uoux	fetected	4	8	' ¥	21%	174		21		2 a	2	2	
													222	2	5	5	5	5	
				<u> </u>	SD84		count	10	₽	22	Ģ	#	ę	ţ	Ę	ę	ę		_
							median	12.0	7.5	52	0.05	200	2 **	2 6	2 4			61 0000	
							96th	524.6	478.2	17.9		9.0	ġ	N	, 1				
							75th	23.0	118						<u>t</u> •			C00.0	
							261	5.5					• •	• •	0 4	0.035	0.003	0.035	
						Pront.	at a charter		5	, c	3		• •	, ,	0 (0.010	50.0	0.018	
								2 2	2	ž	2		B 100		6	•	•	0	
								5	5	5	5	600	ŝ	5	%06	8	21%	Š	
				Ľ			ľ												_
					EMOS		E noo	80	80	80								Γ	
							median	7.2	2.9	4.6									
							95th	76.8	210.3	12.1									
							75th	29.0	21.3	6.2									
							25th	5.1	2.2	3.5									
						p-uou#	letected	•	•	2									
						h-non%	etected	%0	%0	25%									
]	_
				<u></u>	~		count	4	4	4	•	P	P	0	P	ŀ	ľ	ſ	
				-			median	30.0	37.5	2.6						0.016	0.002	0.031	
							96th	82.9	99.5	5.3						0.026	0.00	0.040	
							76th	50.5	57.5	3.9						0.020	0.003	0.036	
				-			25th	20.5	32.0	2.0						0.013	0.001	0.025	
						#non#	etected	•	•	7						0	-	0	
						%non-d	etected	*0	%	50%						36	25%	80	
				L															
				0	_		count	£	e	•	0	0	•	•	°	6	•		
						_	median	38.0	35.0	3.0						0.016	0.004	0.022	
							9 5th	38.0	47.6	10.5						0.021	0.008	0.023	
							75th	38.0	42.0	7.2						0.018	0.005	0.023	
							25th	36.0	30.0	2.5						0.012	0.002	0.012	
						P-uour	etected	0	•	-						0	-	+	
				لـ		P-uoux	etected	%	%0	33%						80	33%	33%	

comments

	ž		t 1
	đ		13
	3		13
	total ghycola		81 r.
	P. ghycol		2 5 2 5
Centrali	E. Blycol		18
hte con	Surf		0.13 0.13
	CHN		24 0.32
	BODS		25 10.2
	đưn (UTV)		12.0
	TSS	ł	22.0
	ground delce?		median
	report		
	र्श्व	2DN1	
Γ	<u> </u>	1	
tice	칠		
aracterie	88 Å 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
이프 CP	툴드		
Ĭ	event		
tample data	sample ID		
Composite a	outfall		

comments

	0111					2	2.1	C.7	n	0.034	0.011	0.355
	1005	65.0	30.0	38.2	0.83	0.91	3.0	2.5	ι.	0.080	0.028	0 753
	750	48.2	17.8	20.0	0.52	0.20	2.5	2.5	10	0.046	0.016	D AR
	250	14.0	7.2	6.0	0.10	0.05	2.5	2.5		0.000		
	#non-detected	-	•	2	2	4	1	-	, t		8	
	%non-detected	1 4%	8	% 8	8%	31%	2.20	100%	246	, ş	2	
									Š	5	5	5
SDN1up	COUM	9	2	ę	ø	۵	ſ	ŀ		ţ		
	median	34.0	24.5	6 .9	0.22	0.08		• •			2000	2
	- 96th	91.9	56.6	17.5	0 23	0 55		2	4 6		615'D	0.291
	75th	57.3	29.8	12.1	5				N	660.0	0.034	0.492
	264	310	101				2	0.1	2	0.050	0.017	0.399
		22.0	0, 0 2	4	0.15	0.07	•	-	2	0.020	0.009	0.213
		•	0	-	•	-	-		-	C		
	Xnon-detected	8	Ś	10%	%0	17%	100%	100%	100%	, 5	۶ ۲	28
							l				5	5
SDN2	count	20	19	21	ຊ	\$	5	Ę	÷	1		
	median	6.9	4.9	7.0	0.04	0.05		2 4	2 4		8	16
	98C+	33.8	11.3	86.0	149	0 23			0	120.0	900°D	0.049
	76th	10.0	7.8	15.0	0 13		N N 2 7	5.0	¥ :	0.063	0.022	0.108
	26th	4.0	2.3	20	100	2 2) 4 4 C	N U	2 '	0.037	0.011	0.076
	#non-detected	•	-	; .		5		n (N	0	0.014	0.003	0.026
	Y non-detected		2	N I		2	F	10	Ø	•	0	0
		R n	5	ě	30%	¥0¥	85%	77%	% 69	Ś	¥0	%0
UNI												
2			5	8	8	17	9	9	1 8	₽	≌	1
		11.0	11.0	3.0	0.02	200	2.5	2.5	5	0.013	0.000	0.050
	360	25.3	26.0	7.8	0.22	0.12	3.4	2.5	- 40	0 036		0.460
	75th	15.3	19.0	5.0	0.05	0.05	2.5	2.5	- 10	0.018		
	25th	3.5	5.2	2.0	0.01	0.01	2.5	25	• •			
	#non-detected	~	0	₽	•0	9	÷	; ¥	, ń	5	3	
	Xnon-detected	8%	% 0	38%	31%	59%	5 % %	100%	2	칠	• 200	0
										5	Ş	5
DNA	count	11	F	F	6	•	ŀ	ŀ	ľ	ŀ	ŀ	ſ
	median	3.8	4.0	5.2	0.02	00	-	. c	- 6		= ;	
	96th	14.0	12.1	13.1	0.50	1.0	5	- c	N M	0.0.0	50.0	0.024
	76th	7.5	5.8	7.9	0 15	00					20.0	0.038
	25th	3.0	3.3	4.3	0.01		; ;		• •		100.0	0.028
	#non-detected	c	c	ſ	•	; •	2 1	-		0.031	0.001	0.021
	Xnon-detected	, ş	, ş	7 44	× 1	2	-	4	~	0	9	0
		5	5	6	×2	20%	100%	100%	100%	8	55%	%0
	-Anima	•	.	ŀ								
		2	- :	9	•	12	•	0	0	0	0	ſ
	Lindoui	24.5	م .			0.1						,
	1986	100.5	4.3			4.0						
	76th	27.5	4.3			0 0						
	25th	12.0	4.3									
	#non-detected	0										
	Xnon-detected	5	, Ş			• 2						
			! .			200						-

AR 033487

	comme							
F			c					
	ភ		ľ	,				
	£			>				
	3		ſ	>				
	total giycola		ſ	,				
5	glycol		P	•				
Lantra	E. Dycol		ľ					
	Surf		2	0.2	4.0	0.3	•	i
lene	SHN		ŀ					
	BODS		0					
	đur turk		7	8.0	11.6	10.0	6.0	
	TSS		18	22.5	232	2	17	,
L.,	ground delce?		count	median	95th	76th	26th	
i	report							
	ङ		≻					
Γ	<u> </u>	L						-
tice	à F							
racteria	부 분 년							
m cha	토 드							
• 6	event							
sample data	sample ID							
omposite	outfall							

륕

%non-detected 0					•						
	%0	ž			17%						
											1
All Airfield count	ę	4	1	Ŗ	ę	ķ					
	2		5	2	20	P	ę	4	52	73	73
ouos, ouos, median	~	9	ŝ	0.03	0.05	•	•	~	0.030	0000	0.00
SDN2 SDN4) acts			ł			•	,	,		200.0	0000
	5	90	2	2	0.20	=	8	17	0 101	0100	0 123
764	9		•				,	:			2.1.2
	2	2	D	80	90.0	3	C,	-	0 039	2002	0 0 0
25th	4	4	e.	0.01	100	•		•			3
and the second	•	•	,			r	n	n	0.018	0.00	0.024
Delbelan-unua	5	0	16	7	3	5 4	4	43	c		č
Knon-detected 4	ž	ž	19%	20%	52%	2	300	2	, ş		

98 NPDES comps

1998.0	Commettee only					ſ			L											
		ñ T		lanserer	socs	į			Т				analyte	concent	ration, n	μ				
		-	rain,	48hr	dur,			ğro	pun	Turb	-			ພ່	۵.	total				
outfal	I sample (D	event	<u>ء</u>	ant, in.	Ę	۲Ļ	obj	sport del	ce? TSt	(UTN) S) BOD!	5 NH3	Surf	ghycol	ghcol	gtycols	ŋ	Pp	Zn	comments
SDE4	SDE4 060397	6/3/97	0.26	0	16	76	NPDES	1998 no		÷	9 82	4 0.055	0.384	R. Kali	191210	14 32 ED. 0	0.035	0.032	12	
SDE4	SDE4 102897	10/28/97	0.47	0 ^{.0}	10.8	8	NPDES	1998 no	°	4	1.4	2 0.176	0.078			C TANK	0.208	0.0164	104	
SDEA	SDE4 121697	12/15/97	-	0	33	87	NPDES	1998 no	6	6	0 77 1	2 0.244	0.1190		7.16	C 111 - 24	0 0 24	0.007	0 182	
SDEA	SDE4 030198	3/1/98	0.98	0.07	88	9	NPDES	1998 no	25	3 7	5	4		0		A STREET	0.003	0.0052	0.198	
SDE4	SDE4 030998	3/8/98	0.86	0	27	132	NPDES	1998 ^{no}												taken for aircraft deicing only, grab failed
SDE4	SDE4 042398	4/23/98	0.46	°	20	264	NPDES	1998 no	8	4	7 20	80		1.015-1			0.075	0 0415		(MLU)
SDE4	SDE4 051498	5/14/98	0.21	0.01	80	125	NPDES	1998 no	SO I	0	1	-					5000	0.0278	200	
SDEA	SDE4 062498	6/24/98	0.43	0	4	286	VPDES	1998 no		3 2	5 4.9	9					0.024	0.020	20000	
SDS1	SDS1 061797	6/16/97	0.36	°	28	135	VPDES	1998 no		1	4	5 0.00		AND ALL A	2. 22. 3. 1	States 19	120.0	20102	0.083	
SDS1	SDS1 102897	10/28/97	0.47	0.08	10.8	26	VPDES	1998 no		4	8 7.1	8 5 0.00F	0 953		1.1.1	Constant of	0000	10107		
SDS1	SDS1 112097	11/19/97	0.65	0.12	39	24 1	VPDES	1998 no			1.12	6	0.301				300			
SDS1	SDS1 121697	12/15/97	-	0	33	87	VPDES	1998 no	F	8	2 6.4	4 0.018	0.391	12.02		10 10 10 10 10 10 10 10 10 10 10 10 10 1	0.013			
sost	SDS1 030998	3/8/98	0.86	0	27	1321	VPDES	1998 no		8 12	2				61	7.1	0.02	0.0053	0.075	ELLER & ANNIAL CAMPLE DOLLE
SDS3	SDS3 060397	6/3/97	0.26	0	16	781	VPDES	1998 no	Ĺ		2	5 0.012	0 0 73				0 064			ALL ILLO ANNUAL OMMPLE NUM
SDS3	SDS3 102897	10/28/97	0.47	0.08	10.8	26	VPDES	1998 no	e	5.3	3 151	900.046	0 035	T						
SDS3	SDS3 013098	1/29/98	0.2	0	=	107	VPDES	1996 no	3	5.4	13	5 10 10	100	2		90				
SOS3	SDS3 030198	3/1/98	0.98	0.07	86	8	IPDES	1998 00					5	CONTRACT OF	2.4 5 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0.9	870.0	BLOD O	0.055	
						· '		2 · 2	•		5	-			11000		10.0	0.0065	0.045	
2023	SUS3 030998	3/8/98	0.88	•	27	132	PDES	1998 ^{no}	ei 	2	38	0		23	8.7	31.7	0.037	0.0015	0.034	backup monhity sample in case 3/1/98
SOS	SDS3 042398	4/23/98	0.46	•	20	284	4PDES	1998 no	7.	3	1 8			2:25	18 2.18	(1	0.081	0 0011	0.044	
SUS3	SUS3 051498	5/14/98	0.21	0.01	80	125 A	PDES	1998 no	Ť	1 9.5	6.3	2			263.3	Contraction of	0.078	0 0032	0 1 1 8	
ESUS	SDS3 061098	6/10/98	0.28	0	9	288 1	IPDES	1998 no		4	80	3					0.068	0 0018		
SDS	SDS4 082497	8/25/97	0.2	0.07	10.5	86	IPDES	1998 no	ļ	1 85	5 3	8 0.033	0 273	T		Ī	500			
SDSA	SDS4 111797	11/16/97	0.47	0	12.6	222 N	IPDES	1996 no	ñ	5	454	0.058	0.095	Ť	T		0.02			
SDS4	SDS4 030998	3/8/98	0.86	0	27	132 N	IPDES	1998 no	Ë	5.7	· 2020	0.039	0.035				0.016	0000	0.012	hakeup comp for 98Qw non-rep comp.
INDS	SDN1 060397	6/3/97	0.28	0	1º	7 <u>8 N</u>	PDES	1998 no	ſ	le le		0 210	0 247		242 C 102 1	A SHORE				Mas extra grab
SDN1	SDN1 102897	10/28/97	0.47	80.0	10.8	26 N	IPDES	1998 no	1	28		0 215	0.086	Ť	T			0.02/4		
SDN1	SDN1 121597	12/15/97	-	0	33	87 N	PDES	1998 no	22	21	4.64	0.226	0.063	12 8141	10.89	Cherry L.	200	0010	777	
SDN1	SDN1 030198	3/1/98	0.98	0.07	86	8 8	PDES	1998 no	ţ	39	4.62					Succession of the	100	2000		
INDS	SDN1 042398	4/23/98	949	•	ຊ	287 287	PDES	1998 no	*	12	12.6						0.062	0.0049	0.401	
	SUN1 051498	86/1/2	12.0	0.01	80	125 N	PDES	1998 no	4	3	3.8	9					0.053	0.0103	20	
SDNT	SUNI USIU90	0/10/30	87.0		₽	N 897	PDES	1998 no	ĕ	7	9.8						0.056	0.0086	0.36	
CUNA	CON3 444707	44/46/07	17.0	2	0.0	800		00 9661	7	2		0.005	0.037				0.014	0.005	0.048	
SUNS	SUN3 121807	10/31/01			12.0	2 277	PUES	1996 10		42		0.05	0.061				0.018	0.0019	0.049	
	1901 21 CNUC	1900121			3		PUES	01 8661		8		0.016	0.032		1.312	2.11.2	0.011	0.002	0.04 9	ood QC duplicate
	160701 FUICS	10120131		5	2	2	rues	1998 no	2.8	8	7.38	500.00g	0.045 2	的關係		241.12	0.039	0.0018	0.024	
	180171 1000	JACI 71			3	N N	PUES	1998 no	2.6	3.9	4.68	0.025	- 0.0H3 K		12	13 M 18 18	0.026	0.0011	0.022	
	SUNA USUTAS	34/190	96.D) 0.0	8	2	PDES	1998 no	=	18	0.234.23		2.4	L Gast			0.031	0.0014	0.029	
SDNA	SDN4 030998	3/8/98	0.86	0	27	132 N	PDES	00 866	3.2	6.1	4.06				1 S & A		0.049	0.000	0.018	ackup monhtty sample in case 3/1/98
SDN4	SDN4 042498	4/23/98	0.48	0	8	204 NI	PDES 1	998 no	2	3.5	5.44		â	19 10 10 10 10 10 10 10 10 10 10 10 10 10	A AVAILABLE		1000		0000	ample didn't qualify under new permit
SDN4	SDN4 052598	5/24/98	0.58	0	Ŧ	87 NI	PDES	008 NO	37	5.5	53		2	24. President	12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	IN COLUMN	5 CO C		R70.0	
SDNA	SDN4 062498	6/24/98	0.43	٦	┥	IN 882	PDES 1	00 866		4	4.54		8		111111		0.047	0000	0.018	
																				-

AR 033489

98 NPDES comps

0 0007						ſ			l						i					
1998 CO	mposites only	.	orm chi	aracteris	tics								ana	hte con	Centratio					
						ل چ			Γ											
			, ujez	48hr	dur,	ant,		aro	pun	Ter.	f			u	9		. 3			
outfall	sample ID	event	2	ant, in.	Sul	Ę	en ja	port del	ce? T	IN) St	U BOI	DS NI	ta Su	יי קריי גרי						
EY	EY 061797	6/16/97	0.36	õ	28	135 NF	DES	1998 00	╂			ŀ							5	comments
E	EY 110697	11/6/97	0.16	0.01	4	72 NF	DES	1998 00	+	1		+	+	+	+	_	+			
<u>ک</u>	EY 013098	1/29/98	0.2	0	-	107 NF	DES	1998 no		10	+	+	+	+		+	+	+	_	
ΕY	EY 052598	5/24/98	0.58	0	F	87 NF	DES	1998 no	+-	192		+	-	+-	+	_	+			
≿	TY 060397	6/3/87	0.26	ō	<u>ء</u>	7 <u>8 N</u> F	DES	1998 mo	╞	1	╀	╀	╀	┦	╀	┦	┨	+		
≿	TY 111797	11/16/97	0.47	0	12.6	222 NF	DES	1998 TO		2 82	+	+	+	+-	+	+		-	_	
≿	17 030998	3/8/98	0.86	0	27	132 NF	DES	1998 no		15		+-	+			+		+	4	
≿	17 061098	6/10/98	0.28	0	9	288 NF	DES	1998 no		20		+-	+	+	+	+	+	+		makeup comp for 980w, has extra grab
													$\left \right $				-			
	WZ SALANA SALA	· (15)				-	Labora de La	10 · · · · ·	1 that			2		11 × 11						

lease note

 As of the current reporting period (June 97- June 99) the following outfalls have not yet been sampled under new permit Annual sampling and reporting requirements: SDS2 (004), SDN3 (006), SDS4 (009), SDW3 (010), B (014), D 015).

Because of several BMPs (IWS pump stations) there have been no sampleable discharges at SDN2 since July 1997.
The new NPDES permit dropped analysis requirements for the following composite sample parameters at all outfalks: surfactants (surf), ammonia (NH3), 10 metals, and turbidity at EY and TY only.

9064	count	× .	~	~	m	n	~	2	4	~	ľ	ſ
	median	6 .0	27.0	5.4	0.18	0.1	10	10		0.026	0.001	
	4126	200.8	R.A.R.	17 0	10.0	2		? •			5.0	Z01.0
					5		-	-	2	0.168	0.0	0.308
	Enc.	6.27	30.5	8.7	0.21	0.3	<u>-</u>	1.0	2	0.069	0.035	0.248
	25th	47.0	23.0	4.5	0.12	5	-	•	2	0.024	0.015	0 114
	#non-detected	•	0	-	0	0	~	2	•			
	%non-detected	Š	8	14%	š	Š	100%	100%	100%	, Ş	Š	Ş
										\$		5
SDS1	count	•	•	ł	6	6	6	4	ľ	ľ	ľ	ſ
	median	0.6	13.5	2 S	00	2	• •	• •				0
) ,) ,	5		-	-	N	0.022	0.00	0.082
	500	5	4		0.01	6 .0	-	ŝ	60	0.036	0.024	0.145
	15th	15.3	22.8	6.6	0.0	0.7	-	-	2	0.030	0.011	0110
	25th	5.3	11.0	4	0.01	4.0	-	-		0.014		
	#non-detected	0	0	-	~	c	- 44	•	• •		5	5
	Manual and M	2	Ż		ł		0	r	•	0	D	0
	Dencenan-Mouley	5	5	¥62	87%	8	100%	80%	80%	Ś	Ś	Š
		ĺ										
SDS3	count	æ	∞	00	6	~	5	6	ſ			ſ
	median	1.7	5.7	8.9	0.01	<u>.</u>	-	-		0.045	, curo	0.050
•	95th	18.6	31.9	30.5	0.01	<u>.</u>	19	60	22	0.079		
	75th	11.0	10.4	14.1	0.01	0.1	-		÷	0.070		
	25th	12.5	11.7	15.0	0.01	1	a	- N	2 3			
	finn detected	•	¢			5	•		5	500	500	0.063
		•	2	0	N	Þ	n	n	~	0	0	0
	X-non-detected	6	Š	Ś	67%	5	808 X	80%	80%	ž	ž	20
									2	2	2	

AR 033490

° %

Page 2

~

)

98 NPDES comps

1998 Composit	tes only	ŝ	torm ch	haracter	Istics	Γ	_						Ĩ	valyte cc	ncentrati	on. mo				Γ	
						ď,				r				•						1	
			rain,	48hr	dur,	ant,			ground		turb				۔ سٰ	-	otal				
outfall sar	nple ID	event	Ē	ant, in	i. hrs	hrs	4 0	report	deice?	TSS	(UTU)	BODS	SHN S	Sur g	tycol gh	rcol gl	ycols	ß	f	Zn Z	comments
					}																
							SDS4		coun	4 3	e	9	•	8	-	-	-	6	-	٣	÷
									media	31.0	34.0	4.5	0.04	0.1	-	-	~	0.019	0.002 0	039	

media	n 31.0	34.0	4	0.04	0	-	-	2	0.019	0.002	0.039
956	th 96.7	88.9	5.3	0.05	0.3	-	-	2	0.031	0.003	0.044
75t	th 67.5	64.5	5.0	0.05	0.2	-	-	2	0.026	0.003	0.042
254	9.4	11.5	2.5	0.03	0.0	-	-	2	0.017	0.001	0.018
#non-detecte	0	•	*-	•	•	+	-	-	0	-	C
%non-detecte	% P	%0	33%	%	8	100%	100%	100%	%0	33%	%0
SDN1 COUN	4	~	1	6	6	-	-		ŕ		
media	n 34.0	28.0	8.8	0.22	0.1	1.0	0	2	0.038	0.010	0.222
950	fr 95.9	61.4	16.4	0.23	0.3	1.0	1.0	2	0.060	0.024	0 498
750	h 60.0	34.5	11.3	0.22	0.2	1.0	1.0	7	0.054	0.015	0.381
250	h 21.7	20.2	4.6	0.22	0.1	10	1.0	2	0.017	0.006	0.182
#non-detecter	0	•	0	•	•	-	-	-	o	0	Ċ
%non-detecter	d 0%	%0	%0	%	%0	100%	100%	100%	%	° °	%0
DN3 COUN	1(3	е	9	e	e	-	-	-	6	٣	٣
media	n 11.0	26.0	2.0	0.02	0.04	1.0	1.0	2	0.014	0.002	0.048

								ofter Freeze	2.3	37.5 11.4 0	75th 25th #non-detected	
0	5		5	5	2	5	•	2	5	19.0 65.1	median	i
%0	43%	%0	100%	100%	100%	50%	50%	14%	80	%0	%non-detected	
0	e	0	ŝ	5	ŝ	-	-	-	•	0	#non-detected	
0.019	0.001	0.030	8	10	1.0	0.02	0.01	4.2	3.9	2.7	25th	
0.028	0.001	0.048	2	1.0	-	0.04	0.02	5.3	6.1	3.9	75th	
0.029	0.002	0.078	2	1.0	-	<u>0</u> .0	0.02	6.8	14.4	13.1	95th	-
0.024	0.001	0.039	2	1.0	1.0	0.03	0.02	4.7	5.5	3.2	median	
ſ	ſ	~	5	S	ŝ	7	~	2	1	4	count	SDN4
%0	33%	%0	100%	100%	100%	%0	33%	100%	%0	%0	%non-detected	
0	-	0	-	-	-	•	-	e	•	•	#non-detected	
0.043	0.001	0.012	7	0	1.0	0.03	0.01	2.0	16.4	5.7	25th	
0.049	0.002	0.016	7	1.0	÷.	0.05	0.03	2.0	34.0	11.5	75th	
0.049	0.002	0.018	2	1.0	1.0	0.08	0.05	2.0	40,4	11.9	95th	
0.048	0.002	0.014	2	1.0	1.0	0.04	0.02	2.0	26.0	11.0	median	
[6	6	-	ŀ	-	e E	e	3	6	e e	count	SDN3
98 metals

	Wher 1995 met	ls data	-	storm ct	harcteris	tics							ſ								
	ler outfall	sample ID	event		an Trin Trin	<u>5</u> 5	yant,	hiective	troner	ground deice2											
	18 SDE4	SDE4 030198	3/1/98	0.98	0.07	88		VPDES	1000		Í		2		3	ช้	ΒĦ	Ĩ	Se	٩đ	ㅋ
Siles Siles <th< td=""><td>19 SDE4</td><td>SDE4 042398</td><td>4/23/98</td><td>0.46</td><td>0</td><td>20</td><td>264 1</td><td>VPDES</td><td>1998</td><td>2 2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	19 SDE4	SDE4 042398	4/23/98	0.46	0	20	264 1	VPDES	1998	2 2											
	20 SDE4	SDE4 051498	5/14/98	0.21	0.01	80	125	VPDES	1998	2 2											
	21 SDE4	SDE4 062498	6/24/98	0.43	0	4	288 F	VPDES	1998	2											
	37 SDS1	SDS1 061797	6/16/97	0.36	0	28	135	VPDES	1998	2	ľ	0.0015 ≪1	00 0015 to	100 UNI		115 C C C C	0 2000				
	30 5051	SUS1 102897	10/28/97	0.47	0.08	10.8	26 h	VPDES	1998	2		0.0015	0.0015		0.0000			100		9900 0000	0000
1 1	19 5051	79021112097	11/19/97	0.65	0.12	39	24 1	VPDES	1998	2	Γ				0.00034			10.0	0.0032	3 2000'0 31	17 0.000
	Lene ne	5051 121697	12/15/97	-	•	33	87 1	APDES	1998	ę	F	C 0.0018	0.0051	CLAR ALSO		ANX N THE		ALL LUCKER			
	41 5051	SUS1 030998	3/8/98	0.86	0	27	132 N	IPDES	1998	2	Ì_						C00000 0	TAC 0.0025	70.0015	0.0005	0.000
	59 SDS3	SDS3 060397	6/3/97	0.26	0	16	76 N	IPDES	1998	2	ľ	40.0016 M	A MAR	5000	10000						
	60 SUS3	SDS3 102897	10/28/97	0.47	0.08	0.8	26 N	IPDES	1998	2	Ţ			CUR ARAN	Action of		0.00017	0.015	a.0.0015	0.0005	0000 0
	61 SUS3	SDS3 013098	1/29/98	0.2	0	4	107 N	IPDES	1998	2		10 OH K		312			00000-04	0.007	13,0.0015	0.0006	000.04
Normalize State Control Control <thcontrol< th=""> <th< td=""><td>62 SUS3</td><td>SUS3 030198</td><td>3/1/98</td><td>0.98</td><td>0.07</td><td>86</td><td>9</td><td>IPDES</td><td>1998</td><td>2</td><td>T</td><td></td><td></td><td></td><td>1 azono</td><td></td><td>soom'n</td><td>0.011</td><td>Tro.0015</td><td>0.006</td><td>10,000</td></th<></thcontrol<>	62 SUS3	SUS3 030198	3/1/98	0.98	0.07	86	9	IPDES	1998	2	T				1 azono		soom'n	0.011	Tro.0015	0.006	10,000
Normalize State Constrained C	50000	SUS3 030998	3/8/98	0.86	•	27	132 N	PDES	1998	2	+										
Biology Biology <t< td=""><td>2002</td><td>SUS3 042398</td><td>4/23/98</td><td>0.46</td><td>•</td><td>8</td><td>264 N</td><td>PDES</td><td>1998</td><td>2</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	2002	SUS3 042398	4/23/98	0.46	•	8	264 N	PDES	1998	2	+										
Normalized State (1) Contrast Contrast <thcontrast< th=""> Contrast Contrast</thcontrast<>	55 5053	SDS3 051498	5/14/98	0.21	0.0	8	125 N	PDES	1998	2	-										
No. State S	56 SUS3	SDS3 061098	6/10/98	0.28	0	10	288 N	PDES	1998	2	+		+								
15054 5054 (1000) 0.11 0.12 0.12 0.011 0.001	13 SDS4	SDS4 082497	8/25/97	0.2	0.07	0.5	N 96	PDES	1998	2	18	50 M1880	0.0016+0								
BUNUNG SUNDAGE SUNDAGE <th< td=""><td>A SOSA</td><td>SDS4 111797</td><td>11/16/97</td><td>0.47</td><td>•</td><td>2.6</td><td>222 N</td><td>PDES</td><td>1998</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td>600</td><td>10000010</td><td>0.012</td><td>140.00151</td><td>0.0006</td><td>₹0000 T</td></th<>	A SOSA	SDS4 111797	11/16/97	0.47	•	2.6	222 N	PDES	1998	2						600	10000010	0.012	140.00151	0.0006	₹0000 T
OSINIUS Disklinity Disklinity <thdisklinity< th=""> Disklinity Disklinity<</thdisklinity<>	S SDS4	SDS4 030998	3/8/98	0.86	0	27	132 N	PDES	1998	2	8	in mit i					10.0000	1 0.0026	100 00 10 H	10.000S	0.000
OBNIUR Disk Disk <thdisk< th=""> Disk Disk <t< td=""><td>9 SDN1up</td><td>SDN1 060397</td><td>6/3/97</td><td>0.26</td><td>•</td><td>16</td><td>76 N</td><td>PDES</td><td>1998</td><td>2</td><td></td><td></td><td>A DOLE SUG</td><td></td><td>Keznonin:</td><td>ionn'ritti</td><td>0.0000</td><td>P. 0.0025</td><td>70.0015.</td><td>10.0005</td><td>0.0005</td></t<></thdisk<>	9 SDN1up	SDN1 060397	6/3/97	0.26	•	16	76 N	PDES	1998	2			A DOLE SUG		Keznonin:	ionn'ritti	0.0000	P. 0.0025	70.0015.	10.0005	0.0005
ISBNIUS SUNIS TINEN <	0 SON1up	SDN1 102697	10/28/97	0.47	0.08	0.8	26 N	PDES	1998	2		で対抗			Action of	10.0	0.00023	0.014	9100'0w	CLO.0005/1	00000 0
Classing Sinking <	1 SUN1up	SDN1 121597	12/15/97	-	¢	33	87 NI	PDES	1998	2					dant of			0.01	0.0034	20,000	0.0005
Column Solution <	2 SUN1up	SDN1 030198	3/1/98	0.98	0.07	86	2 9	PDES	1998	P	ľ.		5		jeznov.		- 900000 n	0.005	TO.0015	60.000	0.0005
Simular Simular <t< td=""><td>dninus s</td><td>SUN1 042398</td><td>4/23/98</td><td>0.46</td><td>•</td><td>20</td><td>264 NI</td><td>PDES</td><td>1998</td><td>2</td><td>┢</td><td></td><td>+</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td></t<>	dninus s	SUN1 042398	4/23/98	0.46	•	20	264 NI	PDES	1998	2	┢		+				1				
Floring String String Diraction Diracion Diractio	SUN1UP	Beard Inus	5/14/98	0.21	0.01	80	125 NI	PDES	1998	ę		-	-					-+-			
SIGNAI SIGNAI<			86/01/9	87.0	-	₽	288 NI	PDES	1998	ę		-			+						
6 JONH 5 ONH 1 THERY 1 THERY <th1 th="" thery<=""> <th1 th="" thery<=""> <th1 td="" th<=""><td></td><td>SUN3 111707</td><td>6/21/97</td><td>0.27</td><td>0.12 1</td><td>80</td><td>68 NI</td><td>PDES</td><td>1998 1</td><td>2</td><td></td><td>0.0015:00</td><td>0.0015.74</td><td>20.00194</td><td>0:000253</td><td>200 0.05</td><td>0 00033</td><td>4 900 0</td><td>1127 CM</td><td></td><td></td></th1></th1></th1>		SUN3 111707	6/21/97	0.27	0.12 1	80	68 NI	PDES	1998 1	2		0.0015:00	0.0015.74	20.00194	0:000253	200 0.05	0 00033	4 900 0	1127 CM		
Silvi Silvi Visco i Vi		CONS 191607	18/01/11	1.1		2.6	222 NI	PDES	1998	2		0.0015 1	0.001512	100.01	d book		NAMA R			1.000.uj	0.0005
SIDIM SIDIM <th< td=""><td></td><td>2011 1 10202</td><td>16/01/21</td><td>-</td><td>-</td><td>ខ្ល</td><td>87 NF</td><td>PDES</td><td>1998</td><td>2</td><td></td><td>0.0016</td><td>0.0052</td><td>00.00</td><td>0.00025</td><td></td><td></td><td></td><td></td><td>0.000</td><td>F0.005</td></th<>		2011 1 10202	16/01/21	-	-	ខ្ល	87 NF	PDES	1998	2		0.0016	0.0052	00.00	0.00025					0.000	F0.005
SDN4 SDN4 <th< td=""><td>ANNA A</td><td>CINA 121607</td><td>18/97/01</td><td>1</td><td>0.08 1</td><td>8</td><td>ž 92</td><td>POES</td><td>1998 /</td><td>2</td><td>ŝ</td><td>0.0015/7</td><td>0.0015 [34</td><td>100 00 I I</td><td>0.000253</td><td>000010</td><td>O. On Disk</td><td></td><td>20100 0V</td><td>- 2000 C</td><td>0.0014</td></th<>	ANNA A	CINA 121607	18/97/01	1	0.08 1	8	ž 92	POES	1998 /	2	ŝ	0.0015/7	0.0015 [34	100 00 I I	0.000253	000010	O. On Disk		20100 0V	- 2000 C	0.0014
SDN4 SDN4 030998 3/8/9/9 0.6 0 1 10/ULSS 1998 0 1 <th1< th=""> 1 <th1< th=""> <th1< td=""><td>S SDN4</td><td>SDN4 030198</td><td>3/1/08</td><td>- 0</td><td>0 10</td><td>33</td><td>ž 28</td><td>DES</td><td>1998 1</td><td>2</td><td>T</td><td>0,0015</td><td>0.0054</td><td>0.0013</td><td>0.00026</td><td>500 O H</td><td>0.0000</td><td>00056</td><td>TAKIN OF</td><td></td><td></td></th1<></th1<></th1<>	S SDN4	SDN4 030198	3/1/08	- 0	0 10	33	ž 28	DES	1998 1	2	T	0,0015	0.0054	0.0013	0.00026	500 O H	0.0000	00056	TAKIN OF		
ISDNA SDNA 042499 4/23/49 0.46 0 20 244 NPDES 1999 No 1	SDN4 S	SDN4 030998	3/8/98	386	5	8 6			19961	2	+						,			-	
SDN4 052598 5/24/98 0.58 0 11 87 NPDES 1998 0 1998 0 1 17 </td <td>SDN4 S</td> <td>DN4 042498</td> <td>4/23/98</td> <td>0.46</td> <td>0</td> <td>202</td> <td>DRA NP</td> <td></td> <td>19961</td> <td></td>	SDN4 S	DN4 042498	4/23/98	0.46	0	202	DRA NP		19961												
SDN4 SDN4 062496 6/24/96 0.4 200 1930 (no 1930 (no 1930 (no 1930 (no 17	SDN4 S	DN4 052598	5/24/98	58	0	1	A7 ND		10001	2	+				_						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SDN4 S	DN4 062498	6/24/98	7.43	0	-	288 NP	NES	4 8001	2 <	╉								 		
Sb AS Bs Cd Fig Ni Ss Ag T 1111 11 17				┞		Ļ					╉	┨	┨								1
11 12 13 14 17 10003 0.001 0.001 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0013 0.0012					+	-			+		1		-	ľ							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						-			ACCES TO A STORE	hart have you				5	2	-	E B	S		F	
0.002 0.002 0.002 0.003 0.005 0.001				+		-						=	1	4	18	17	17	17	1		1
0.002 0.002 0.003 0.0003 0.001 0.0003 0.001 0.003 0.017 0.004 0.0005 0.005 0.001 0.002 0.001 0.003 0.003 0.001 0.003 0.003 0.001 0.003 0.005 0.003 0.005 0.005 0.005 0.001 0.002 0.002 0.002 0.003 0					+	+						0.002	0.002	0.001	0.0003	0.005	0.0001	0.007	0.002	0.0005	0000
0.002 0.002 0.002 0.003 0.005 0.001 0.012 0.003 0.003 0.001 0.012 0.003 0.003 0.001 0.001 0.003		_		-	-	-	-			5		0.002	0.005	0.00	0.0009	0.006	0.0003	0.017	0.004	0.0005	0000
0.002 0.002 0.003 0.005 0.003 0.002 0.003 <th< td=""><td></td><td></td><td>-</td><td>-</td><td></td><td>+</td><td></td><td></td><td></td><td>4.4 A</td><td>5</td><td>0.002</td><td>0.002</td><td>0.001</td><td>0.0003</td><td>0.005</td><td>0.0001</td><td>0.012</td><td>0.002</td><td>0 0005</td><td></td></th<>			-	-		+				4.4 A	5	0.002	0.002	0.001	0.0003	0.005	0.0001	0.012	0.002	0 0005	
17 13 16 14 16 14 6 14 17 17 13 16 14 6 14 17 17 13 16 14 6 14 17 17 13 16 14 6 14 17 17 13 16 14 6 14 17 17 13 16 14 6 14 17 10				-		+				1. B	55	0.002	0.002	0.001	0.0003	0.005	0.0001	0.003	0.002	0.0005	
100% 76% 94% 78% 94% 78% 94% 78% 82% 100% 70% 94% 78% 94% 78% 94% 78% 94% 78% 94% 92% 100% 9.					-	+	+				- 	4	9	16	=	16	2	9	2	4	9
									and the lot			%00F	76%	3	78%	94%	82%	35%	82%	100%	8
				╞	╞	\downarrow	+			- In the second	╡	<u>_</u>	0.36	5.0	0.000	0.612	0.002	0.483	0.02	0.0005	4.4

							ſ					ľ				I
Deicing event	data: 199	8 samples		event c	character	ristics						Anal	/tes, mg/l			
			24 hr	48 hr	:						I	I				
		event	alc	a/c	depth	48hrant	dryant,		ground		ц	ď	total			
DOS ID	outfall	date	deiced	deiced	Ë	Ë	ŝ	sample type	deice?	BODS	glycof	glycol	glycols	÷.	Ca2+ 1	Mg2+
SDE4 060397	SDE4	6/3/97	-	2	0.26	0	9/	flow-wt comp	ou	6.24	ł	ł	2		-	
SDS1 061797	SDS1	6/16/97	-	2	0.36	0	135	flow-wt comp	2	4.5	-	-	2			
SDE4 102897	SDE4	10/28/97	6	12	0.47	0.08	26	flow-wt comp	2	4.02	-	-	2			
SDN4 102897	SDN4	10/28/97	6	12	0.47	0.08	26	flow-wt comp	5	7.38	•	+	2	-		
SDS1 102897	SDS1	10/28/97	6	12	0.47	0.08	26	flow-wt comp	2	7.18	-	-	2			
SDS1 112097	SDS1	11/19/97	6	27	0.65	0.12	24	flow-wt comp	5	2	-	-	2			
SDE4 121697	SDE4	12/15/97	24	39	1.0	0	87	flow-wt comp	2	2	-	-	2	-		
SDN1 121597	SDN1	12/15/97	24	39	1.0	0	87	flow-wt comp	2	4.68	-	-	2			
SDN3 121697	ENDS .	12/15/97	24	39	1.0	0	87	flow-wt comp	2	2	-	-	2			
SDN4 121697	SDN4	12/15/97	24	39	1.0	0	87	flow-wt comp	2	4.68	-	-	2			
SDS1 121697	SDS1	12/15/97	24	39	1.0	0	87	flow-wt comp	2	6.44	-	ł	2			
SDE4 011398	SDE4	1/12/98	181	266	1.13	0	123	avg of time co	yes	213	9	5.1	11.1	7.44 4	2.1 3	2.9
SDN4 011298	SDN4	1/12/98	181	266	1.13	0	123	time comp	yes	120	-	+	2	93.8 6	12 3	1.1
SDS1 011198	SDS1	1/12/98	181	266	1.13	0	123	time comp	yes	9	-	-	2	2.24 1	2.4 3	3.9
SDS3 011298	SDS3	1/12/98	181	266	1.13	0	123	time comp	yes	17.3	-	5	5	15.5 1	0.1 3	0.2
SDS4 011298	SDS4	1/12/98	181	266	1.13	0	123	time comp	yes	9	-	-	2	5.34 1	6.8 3	4.7
SDS3 013098	SDS3	1/29/98	5	6	0.20	0	107	flow-wt comp	ę	13.5	5.4	4.2	9.6			
SDE4 030198	SDE4	3/1/98	=	21	0.98	0.07	9	flow-wt comp	ę	5.4	-	-	2			
SDN4 030198	SDN4	3/1/98	11	21	0.98	0.07	9	flow-wt comp	0Ľ	2	-	-	2			
SDS3 030198	SDS3	3/1/98	=	21	0.98	0.07	9	flow-wt comp	ę	8.2	-	-	2			
SDE4 030998	SDE4	3/8/98	15	42	0.86	0	132	flow-wt comp	2		1	+	2	1		
SDN4 030998	SDN4	3/8/98	15	42	0.86	0	132	flow-wt comp	2	4.06	-	-	2			
SDS1 030998	SDS1	3/8/98	15	42	0.86	0	132	flow-wt comp	ę		-	6.1	7.1			
SDS3 030998	SDS3	3/8/98	15	42	0.86	0	132	flow-wt comp	0	38.3	23	8.7	31.7			
SDS4 030998	SDS4	3/8/98	15	42	0.86	0	132	flow-wt comp	2	2	-	-	2			
SDE4 042398	SDE4	4/23/98	Q	80	0.46	0	264	flow-wt comp	01	20.8	-	1	2			
SDS3 042398	SDS3	4/23/98	9	80	0.46	0	264	flow-wt comp	02	9.4	-	-	2			
SDE4 051498	SDE4	5/14/98	4	7	0.21	0.01	125	flow-wt comp	ē	11.1	-	•	2			
SDS3 051498	SDS3	5/14/98	4	7	0.21	0.01	125	flow-wt comp	2	6.32	-	+	2			
SDN4 052598	SDN4	5/24/98	3	5	0.58	0	87	flow-wt comp	no	5.2	-	-	2			
I, HAD QC DUPI	LICATE: GO	DUPLIC	ATION													
. Sample was 24	(-hour time (composite							count	28	ŝ	8	30			
Laken for aircr	aft deicing o	inly, GRAB F	AILED (NLC	6					# ⊲MDL	7	27	25	25			
I. BACKUP MON	ITHLY SAM	PLE IN CASE	E 3/1/98 SAI	MPLE DIDN	'T QUALIF'	Y UNDER N	EW PERMI	Ŧ	% <mdl< td=""><td>25%</td><td>%06</td><td>83%</td><td>83%</td><td></td><td></td><td></td></mdl<>	25%	%06	83%	83%			
EULFILLS AND	VUAL SAMF	PLE ROMT							maximu	213	23	8.7	31.7			

~ ~ ~ ~ ~

-

....

note

AR 033493

MAKEUP COMPOSITE FOR 980W NON-REPRESENTATIVE COMP, HAS EXTRA GRAB

 Data for 1997-98 reporting period: all glycol samples.
 The number of aircraft deiced in the 1 and 2 day period prior
to sampling are listed in "24 hr a/c deiced" and "48 hr a/c
deiced", respectively.

98 data 98_deicing

11/14/98

12: 12:20 U	Cata										Analyt	e, mg/l								
	type		L SS	E en	oos N	(H3	total giycols	Sb	۸S	å	ទ	ა	3	đ	Ŧ	Ī	, 8	٩	F	5
-		epresntative 1		47 <	0.4								0.0161	0.0053			1	<u>,</u>		0 0 18
		epresntative	•	3.4 <	4.0	0.020		<0.003	<0.003	<0.002	<0.0005	<0.010	0.0222	<0.001	<0.0001	0.028	<0.0003	<0.001	<0.001	0.028

non-rep comps

Appendix() non-rep comps

AR 033494

11/17/98

Appendix C

Field Quality Control Data

APPENDIX C FIELD QUALITY CONTROL DATA

Table C1 presents data for field quality control samples. These data demonstrate the adequacy and level of confidence of the Port's sampling protocols and results. Because the majority of field blank data were near or below analyte detection limits, the results confirm that little or no contamination occurred in the automatic sampling process. Furthermore, duplicate samples collected by the automatic samplers usually displayed little relative percent difference (RPD) between a particular sample and its duplicate sample. The majority of duplicate analytes had an RPD of less than 20 percent. Only a limited number of cases exhibited more than the 20 percent RPD criterion commonly used to discern significant differences. Such differences would account for the variability of the composition of the discharge and the precision of the sampling technique.

November 1998

976079.23

Appendix C

Table

TABLE C1 FIELD QC SAMPLE DATA (MG/I)

				TPH						total				Γ
sample ID	event	type	FOG	(IR)	Fecals	TSS	Turb	BOD5	NH3	glycols	Surf	Cu	Pp	Zn
Field (equipment) blanks														
SDS1 102897 BLANK	10/28/9	Agpt blank		0.25	13	0.5	0.21	4	0.010	4	0.025	0.006	0.001	0.010
SDN3 121697	12/15/9	Bopt blank	3.7	0.25	2	с. Г	0.46	4	0.010	4	0.025	0.005	0.001	0.013
SDN1 042398	4/23/9	Boot blank		0.25	2	0.25	0.1	4		4		0.005	0.001	0.00
Duplicate composite sample	2													
SDN3 121597 GRAB DUPE	12/15/9	brab	-	0.25	130									
SDN3 121597 GRAB		ğrab.	1.5	0.25	50									
Ú AR I I			50%	80	2.92 M									
SDN1 102897 DUPE	10/28/9	comp				19	27	4.74	0.218		0.090	0.014	0.013	0.255
SDN1 102897		comp				19	28	4	0.215		0.086	0.019	0.017	0.22
Della						0.0	8 T 2	1896				40%	31%	.13%
SDN3 121697 DUPE	12/15/9	Comp				13	26	4	0.010	4	0.025	0.010	0.002	0.044
SDN3 121697		comp				11	26	4	0.016	4	0.032	0.011	0.002	0.040
CAN I I KPD						×91-	80	20	803		28%	12%	5%	¥6-
SDN1 042398 DUPE	4/23/9	Bromp				25	12	11.7				0.026	0.001	0.162
SDN1 042398		comp				26	12	12.8				0.026	0.005	0,40
						9. Y	80	881				1%	400%	1489
SDN1 061098 DUPE	6/10/9	Bromp				33	99	9.1				0.083	0.0153	0.067
Yee I		comp				34	11/	9,8 3,8				0.056	0.009	0.36
AFD.		*				1.4		574.				-3415155-	% 1 8 -	4379

November 1998

976079.23

Appendix D

BMP Tables and Figures

Appendix D

Tables

APPENDIX D

TABLE D1

OPERATIONAL AND SOURCE CONTROL BMP SUMMARY^(a)

З
ę
-
Page

ACTIVITY				RESPONSIBLE
Aircraft canvining		TYPE	STATUS	ORGANIZATION
	Storp almost in IMAS areas of grains blocked	Operational	Ongoing	AFLOB
		Operational	Ongoing	HSES/AFLOB
	Contine parking of lavatory waste trucks to IWS	Operational	Ongoing	HSES/AFLOR
	Identity and connect problem SDS areas to IWS	Operational	Onaoina	AV/PMG
	Restrictions for fueling on taxiway Alpha	Operational	Onaoina	AFLOR
	Monitor certain SDS outfails during deicing per NPDES	Operational	Ondoing	H SH
	permit			
	Minimize chemical use	Operational	Onaoina	AFIOR
Icing/deicing	Use CMA/sand mixture for roadways.	Operational	Onaoina	GALOB/Maintenance
Snow storage	Operate pump stations to divert snowmelt to IWS.	Operational	Oncoinc	CALOD/Maintenance
Spill control	Implement Spill Plan	Onerational	RunoBuo	
Construction sites	Rentire erosion and sediment control DUD-	Operational		AV/PMG
education/training	Restrict additionant servicion	Source control	Ongoing	PMG
		Source control	Ongoing	AFLOB
	circulage contractors to use secondary	Source control	Ongoing	PMG
	containment)
	Concrete cutting and washout			
	Provide contractor/inspector training	Operational	Ondoing	D M L
Erosion of bare	Implement soil erosion and control BMPs in contractor	Course control	BuoBuo	1353
ground surfaces in	staging areas		Bulgung	PMG/Maintenance
non-construction	Emphasize and enforce contractor responsibility for BMPs	Source control	In affart	
areas	i			DEL
	contractor staging areas	Source control	In affact	
	Control erosion from temporary soil stockpiles			
Vehicle washing	Prohibit vehicle washing in SDS areas	Source control	Onnoina	DMC/LICES
and maintenance	Place signs in key locations	Onerational		
	Clean sumps in Taxi Yard annually	Source control		Maintenance
	Sweep Taxi Yard and control litter	Source control		Maintenance
	Maintain ratch basin inserts		Ongoing	Maintenance
		Source control	Ongoing	Maintenance

Page 2 of 3

OPERATIONAL AND SOURCE CONTROL BMP SUMMARY^(a)

APPENDIX D

TABLE D1

RESPONSIBLE	ORGANIZATION	Maintenance	Maintenance	Maintenance	Maintenance	Maintenance	Maintenance	Maintenance	Maintenance	Maintenance	Maintenance	Maintenance	Maintenance	Maintenance	Maintenance	Maintenance	Maintenance	Maintenance	Maintenance	Maintenance		Maintenance	Maintenance	Maintenance	Maintenance
	STATUS	In effect	In effect	In effect	In effect	In effect	In effect	Ongoing	Ongoing	Ongoing	Ongoing	Ongoing	Ongoing	Ongoing	Ongoing	Ongoing	Ongoing	Ongoing	Ongoing	Ongoing		In effect	Ongoing	In effect	Ongoing
	TYPE	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Operational		Source control	Source control	Operational	Operational
	BMP	Strive to use environmentally benign chemicals	Follow proper cleaning/disposal procedures	Apply during dry periods	Restrict use near waterways	Incorporate BMPs in contractor specifications	Implement IPM Plan	Give priority to biological methods of pest management	Apply fertilizer	Conduct regular weeding and pruning	Follow Ecology guidelines for herbicide application	Apply herbicides/pesticides according to instructions	Dethatch	Trim ivy-covered areas	Fertilize shrubs and trees by hand	Do not use beauty bark in drainages	Maintain stream corridors	Prohibit Roundup use within 50 feet of a water body	Do not apply pesticides or fertilizer on rainy days	Avoid catch basin grates when applying fertilizer or	pesticides	Sweep pavement frequently	Inspect catch basin sumps annually and clean as needed	Store and dispose of sediments properly	Construct secondary containment for used engine fluids
	ACTIVITY	Landscape	management																			AOA maintenance			

,

Page 3 of 3

APPENDIX D

TABLE D1

OPERATIONAL AND SOURCE CONTROL BMP SUMMARY^(a)

ACTIVITY	BMP	ТҮРЕ	STATUS	RESPONSIBLE
Inappropriate Ir connections and discharges	spect outfalls for evidence of illicit connections	Operational	Ongoing	HSES
Temporary storage D	o not store liquids in westside yard ngineering Yard:	Operational	In effect	Maintenance
materials	Place signs on surplus storage Control entry of surplus materials	Operational Operational	Ongoing Ongoing	Maintenance
Tenant activities in M	Ionitor and educate tenants	Operational	Ongoing	Tenant
SDS areas	eice aircraft according to procedures	Operational	Ongoing	Tenant
ш [.]	ncourage drip pans beneath fueling trucks if leakage is	Operational	Ongoing	Tenant
10	bserved	Operational	Ongoing	Tenant
0	weep around dumpsters	Operational	Ongoing	Tenant
	tore liquids in secondary containment	Operational	Ongoing	Tenant
	o not store used fluids or hazardous waste in SDS areas	Operational	Ongoing	Tenant
	o not maintain vehicles or equipment in SDS areas	Operational	Ongoing	Tenant
	ispect catch basin grates	Operations	Ongoing	HSES
	equire tenant water pollution control plans	Operations	Ongoing	HSES
	ncourage tenant compliance with Port SWPPP	Source control	In effect	Tenant
œ	equire tenant spill control plans			
Other Operational D	esignate a SWPPP implementation monitor	Operational	Ongoing	HSES
BMPs	onduct regular inspections	Operational	Ongoing	HSES
- ¥	ssemble Pollution Prevention Team	Operational	Ongoing	AV/PMG
Ũ	onduct SDS outfall monitoring	Operational	Ongoing	HSES
0	ign catch basins (dump no waste)	Operational	Ongoing	Maintenance
<u>ш</u>	stablish packing material source control	Operational	Ongoing	AV/PMG

(a) Excluding capital source control BMPs that have been completed.(b) It is anticipated that using an alternative chemical may require capital investment.

November 1998

APPENDIX D

TABLE D2

SUMMARY OF COMPLETED BMPs

		STORM		
ł		DRAIN	DATE	COST
TYPE	BMP	SYSTEM	COMPLETED	(if readily available)
Source	Terminate glycol use for	All	12/95	
Control (SC)	ground deicing			
SC	Store Chemicals in IWS		12/95	
	Area			
Treatment	Connect snow storage areas	SDE4	By 11/1/97	
	to IWS	(008),		
		SDN2		
		(007)		
Treatment	Connect Port Maintenance	SDE4	8/96	
	Shop Yard to IWS	(002)		
Treatment	Connect Loading Dock	SDE4	10/95	\$25K
	Dumpster slot drain to	(002)		
	sanitary	· · · · · · · · · · · · · · · · · · ·		
Treatment	Connect North Cargo Area	SDN2	6/97	\$188K
	(Area 114) to IWS via lift	(007)		
L	station		0.000	
Ireatment	Connect Cargo Area 4 (Area	SDE4	8/96	\$13K
	100) to IVVS	(002)		
Ireatment	Connect North Satellite	SDE4	10/95	\$300K
	(Area 106/107) to IVVS	(002)	10.05	
SC	Seal SDS inlet near Gate C8	SDS3	12/95	\$10K
		(005)	10/05	
SC	Seal SDS inlet near Gate B5	SDS3	12/95	\$10K
		(005)	5.07	
Ireatment	Connect SDS area between	SDS1	5/97	\$149K
	the South Satellite and the	(003)		
Tractoriant	B Concourse to the IVVS	0004	0/00	* 001/
reatment		SUST	8/90	\$88K
	the South Satellite and the	(003)		
Transforment	NVV Hangar to the IVVS	0054	44/05	
			11/95	
Treatment	Connect Area 214		11/05	
reament		005	11/92	
	Releaste Hazardevia	(005)	7/05	CAL
50			(195	 Ф4К
	Materials sneds			t

November 1998

976079.23

APPENDIX D

Page 2 of 2

TABLE D2

SUMMARY OF COMPLETED BMPs

		STORM DRAIN	DATE	COST
TYPE	BMP	SYSTEM	COMPLETED	(if readily available)
Treatment	Connect Taxi Yard Wash	TY	7/95	\$30K
	Pad to sanitary sewer	(013)		
SC	Evaluate alternative chemicals for anti-icing and deicing	All	12/95	
SC	Store anti-icing chemicals in IWS areas	All	12/95	
Treatment	Connect airfield maintenance sediment storage yard to IWS	SDW3 (010)	7/95	
Treatment	Connect Federal Express	SDN1	7/97	Tenant
	loading dock area to IWS	(006)		Project

AR 033505

November 1998

976079.23

Appendix D

Figures

FIGURE D1 GLYCOLS IN SDS1 DISCHARGES PRIOR TO BMPS

AR 033507

976079.23

November 1998

FIGURE D2 GLYCOLS IN SDS1 DISCHARGES AFTER BMPS

AR 033508

976079.23

November 1998

FIGURE D3 CHANGES IN METALS AT SDS1

AR 033509

November 1998

976079.23