MEMORANDUM

Date: August 20, 1999

To: Paul Fendt

From: Jim Dexter
Subject: Sensitivity of Reasonable Potential Determination To Ambient Water
Quality Contaminant Values
cc: Linda Logan
Ken Ludwa
Brian Pippen
Project Number: 55-2912-61-01
Project Name: Port of Seattle Storm Water Quality Plan

Background

You raised a question related to the effectiveness using mixing zones to achieve compliance with stormwater discharge standards for the new runway (and existing ones). The question is how sensitive is the reasonable potential (to exceed State water quality standards)?

Recall from our discussion that the Permit Writer's Manual uses the following equation to characterize the reasonable potential:

$$
C P=(M E C+(M E C B * D F-1)) / D F
$$

Where CP = poliutant concentration
MEC = effluent pollutant concentration
MECB $=$ background (ambient) pollutant concentration
$\mathrm{DF}=$ Dilution Factor $=(($ Qa*vol_factor $)+\mathrm{Qe}) / \mathrm{Qe}$
$\mathrm{Qa}=\mathrm{ambient}$ flow rate
Qe $=$ effluent flow rate
vol_factor = allowable volumetric fraction of receiving body for mixing this equals $0.025(2.5 \%)$ for the acute zone in rivers and streams and $0.10(10 \%)$ for reservoirs and lakes

If numerical modeling shows the expected dilution factor is smaller than that based on the volumetric limitation shown above, the smaller DF is used in the calculation (per Ecology guidance).

I obtained Ken's gap analysis data (see attachment 1) to understand the basis of the evaluation to date. It used a DF of about 1.0. During our discussion we pondered

Paul Fendt
August 20, 1999
Page 2 of 5
whether there could be an increase in the dilution ratio such that it would more than offset increases in copper concentration with increased streamflow during the "design" condition.

Findings

Using the Des Moines Creek Station DM1 data as representative of the ambient condition, I evaluated the range in the water quality criteria (WQC) which is a function of water hardness. The following figure shows how the criterion varies.

Ecology will probably select the lowest value to calculate the WQC; this results in a value of $4.8 \mathrm{ug} / \mathrm{L}$ as the acute total dissolved copper criterion.

The ambient values of total dissolved copper concentration exceed the water quality criteria (WQC) in about 37 percent of the samples, based on the associated water hardness value. The following figure (next page) shows the data. However, compared to the standard based on the minimum reported hardness value in the data set, about 65 percent of the ambient values exceed the standard.

In a separate evaluation (I provided to Linda Logan), the mean detention time for the NW ponds was determined to be well above the 15 -day criterion for lake classification. The fact that the NW Ponds can be considered as a reservoir or lake means that they potentially have a different mixing zone size under the WAC 173-201A. For example, the volumetric limitation is 10 percent of the volume of flow for lake mixing zones.

The HSPF model indicates the active volume in the NW Ponds is 233 ac-ft, if one considers, dead storage the total volume is about 250 ac-ft. If one divides this number by two (2), the result (125) is the flow in second-foot-days or cfs per day. Since the acute mixing zone analysis considers short-term, e.g. one-day duration exceedence of WQC's, presumably the dilution provided by the lake criterion could be based on a daily flow rate of about 12.5 cfs/day (10 percent of the volume).

Paul Fendt
August 20, 1999
Page 3 of 5

Comparison of Ambient Cu to Criteria

I next considered the problem in relation to the change in ambient and effluent total dissolved copper concentrations as a function of stream flow rate and the potential volume of the receiving water. For this, I developed the probability distributions for contaminant concentrations using the ambient and effluent stormwater quality monitoring data, and probability distribution for the peak annual ambient and effluent streamflows. The probability distributions were integrated with the equations for the calculation of the dilution factor and the contaminant concentration shown on the first page of the memo. I have previously summarized my review of three different methodologies for determining DF's; Brian Pippen has used one of these to estimate conceptual DFs. The method I used herein is similar to the method (I described in an earlier memo) developed by Di Toro. It was an expeditious method to use to consider the streamflow variability without having to obtain more assistance needed using the continuous simulation method; but it provided a method to evaluate the sensitivity of the results to ambient water quality variability. I also made a single event calculation of the exceedence based on the joint occurrence of the 1 -day, 3 -year peak flows for comparison.

1 computed the lognormal probability distributions for the contaminant concentrations using the 24 data values in the ambient set and the 25 data values in the SDS-3 effluent data set. The storm events are distributed throughout the year and therefore I developed an annual series. I used the HSPF output files for future conditions to generate Log Pearson Type III probability distributions (see Attachment 2) for both ambient and effluent flows. The effluent flow location is taken as the SDS-3 outfall and the ambient fiow location is the outflow from the NW Ponds. The probability distributions for ambient and effluent streamflow shown in Attachment 2 indicate the ambient streamflow is on the order of 1.5 to 1.7 times the effluent streamflow magnitude. It's unlikely that the dilution factor will be significant greater than 1 if only streamfiow is considered. However, considering the ponds volume increases the DF's to around 1.7.

The spreadsheet results are shown in Attachment 3. I used the @RISK add-in to EXCEL to calculate 100 random events using the probability distributions described above. The results of the simulation are shown in the following figure. The simulation showed that

The probability that the WQC annual exceedence for total dissolved copper was greater than 40 ug/L for an event with a probability of approximately 67 percent (once in three years). This is seen in the following figure. The results are somewhat sensitive to the lake criterion for allowable mixing volume. In comparison, the WQC exceedence for total dissolved copper was greater than $25 \mathrm{ug} / \mathrm{L}$ approximately 67 percent of the time.

The lake result varied the WQC as a function of ambient streamflow (and hardness).

Conclusions

The simulation results indicate that the WQC is exceeded regardless of the magnitude of the streamflow. This means that the near-zero joint probability distribution of the "critical" and "design" flow conditions are really a moot finding because the high ambient water quality concentration and low dilution factors are more significant in terms of determining the reasonable potential to exceed WQC. In fact, the high ambient conditions generally exceed the WQC and therefore Ecology could invoke the anti-degradation policy and not allow any further discharge that exceeded the discharge standard.

Another question that seems relevant is whether the NW Ponds are considered waters of the State and therefore under the protections of the WAC 172-201A. If these were constructed, as was the case for Lake Reba, which was determined by Ecology not to be waters of the State, why would the stormwater discharges to the NW Ponds be considered to be restricted by Ecology's mixing zone limitations? If the mixing zone criteria do not apply, can the ponds be considered as a treatment faciilty that could reduce the contaminant concentration in the discharge from the ponds?

Paul Fendt
August 20, 1999
Page 5 of 5

Another consideration is whether additional stornwater discharge downstream of the NW Ponds can be shown to increase the dilution even further than evaluated above. In other words, can the water quality pian be configured to obtain more dilution water?

ATACHMENT 1.

REASONABLE POTENTIAL EVALUATION FOR SDS-3

Sensitivity of WQC Exceedence To Ambient WQ

	Stochastic Simulation Values	Single Event Values	
Ambient Flow, Qa,cts			
Mean Qa=	33.73		
Std Dev.=	1.53		
Lognormal Distribution	35.1	1-day, 3-yr high flow	27.5
Ambient Hardness, mg/L	21.4		26.4
Hardness $=\left(-20.315^{*} \mathrm{LN}(\mathrm{Oa})\right)+93.704$			4.8
${ }^{-}$Ambient WQC for $\mathrm{Cu}, \mathrm{ug} / 2$	4.0		4.8
Ambient Dissolved Gu, ug/L			
Mean=	5.83		
Std Dev. $=$	3.69		
Lognormal Distribution, MECB	2.7	90\% Cu, ug/L	12.5
Effluent Flow, Qe, çf			
Mean $\mathrm{Qe}=$	21.88		
Std Dev=	1.48		
Lognormal Distribution	23.2	1-day, 3-yr high flow	17.5
Effluent Dissolved Cu, ugh			
Mean=	42.6		
Std Dev. $=$	20.8		
Lognormal Distribution, MEC	39.7	90\% Cu, ug/L	71.8
Dilution Factor, DF			1.04
$D F=\left(\left(\mathrm{Qa}{ }^{*} v o l _\right.\right.$factor $\left.)+\mathrm{Qe}\right) / \mathrm{Qe}$ vol_factor	$\begin{array}{r} 1.04 \\ 0.025 \end{array}$		1.04
Acute Mixing Zone			
Pollutant Concentration, ug/L	39.93396		62371
CP=(MEC+(MECB*DF-1))/DF			
Potential WQC Exceedence	36.0	,	75.8

