Baseline Soil and Groundwater Quality Assessment Seattle City Light Long-Term Lease Option Seattle, Washington

Prepared for

Boeing Environmental Affairs Seattle, Washington

May 1990

Prepared by

TABLE OF CONTENTS

Section		•		1	Page
		DUCTION			1
1	INTRO	DOUGION			
		Background			1
	1.1	Purpose and Objective			3
	1.2	Summary of Findings			3
	1.3	Summary of Findings			
2	टागाट	ASSESSMENT			4
Z	OIIE				
	2.1	General Property Description			4
	2.2	a Laufae Stratioranhy			. 6
,	2.2	A			· . 8
_ `		Sampling Along the SCL Substation Fence I	ine		8
	2.4				· _
3	ANA	LYTICAL RESULTS	• • • • •	••••••	9
		1968 Dredge Fill Area			9
	3.1	1985 Dredge Fill Area			9 9
	3.2	Groundwater			9
	3.3	SCL Substation Fence Line Area			22
	3.4	SCL Substation Fence Line Alex			
4	מות	CUSSION	, .		22
*					
	4.1	1968 Dredge Fill Area			. 22
	4.2	1985 Dredge Fill Area		• • • • •	. 22
	4.3	Compdwater			. 20
		SCL Substation Fence Line Area			. 23
	4.4				
5	REC	COMMENDATIONS			. 23

Appendices

Appendix A - Field Procedures Appendix B - Analytical Results Appendix C - Photographic Log

BASELINE SOIL AND GROUNDWATER QUALITY ASSESSMENT SEATTLE CITY LIGHT LONG-TERM LEASE OPTION SEATTLE, WASHINGTON

1.0 INTRODUCTION

This report contains Roy F. Weston Inc.'s (WESTON's) findings from the baseline soil and groundwater quality assessment for the Seattle City Light (SCL) long-term lease option. The work was accomplished in accordance with our proposal dated 10 April 1990, and as modified by The Boeing Company (Boeing) and WESTON during the course of the field work.

1.1 Background

Boeing is evaluating an option to enter into a 50-year lease agreement with SCL on property adjoining SCL's Duwamish substation at 10000 West Marginal Place South. The undeveloped property is located on the Duwamish Waterway in Seattle, Washington (Figure 1).

We understand that the property was undeveloped in the 1930s (as indicated by aerial photographs) and that Corps of Engineers' records indicate that dredged sediment from the Duwamish Waterway was placed across the property in 1968. We also understand that dredged sediment was placed in the east-central portion of the property in 1985 from dredging of the Duwamish Yacht Club marina located north of the property.

Analysis of soil samples collected from the 1968 fill on SCL property immediately north of the lease option indicates that polychlorinated biphenyls (PCBs) and pentachlorophenols (PCPs) were undetected (i.e., below 0.01 ppm), that the samples were not state dangerous waste for halogenated hydrocarbons or polycyclic aromatic hydrocarbons (PAHs), and that they were not EP toxic for metals (Raven Systems & Research, Inc., 30 December 1987). Analysis of a composite soil sample from the 1985 dredge fill on the lease option revealed concentrations of 0.05 mg/kg PCBs and less than 10 mg/kg halogenated hydrocarbons. The 1985 dredge fill sample also contained less than state-regulated concentrations of PAHs and was not EP toxic for metals (Laucks Testing Laboratory, Laboratory No. 90364, 18 July 1985).

Ē

1.2 Purpose and Objectives

The purpose of this work is to support Boeing's due diligence effort in assessing the property and to provide a baseline for comparing and assessing soil and groundwater quality conditions at the property after lease termination. The purpose of the sampling and analytical program strategy was to minimize the overall number of media samples, while maximizing the likelihood of detection of organic compounds or metals in each media.

The soil and groundwater quality assessment was designed to achieve the following objectives:

- o Assess soil quality along the fence line of the substation for PCBs and chlorinated herbicides based on their potential use at the substation and potential migration onto the lease property.
- Assess soil quality in the 1968 dredge fill for arsenic, barium, cadmium, chromium, lead, mercury, selenium, sliver, copper, tin, and PAHs. These parameters were selected based on the prevalent contaminants identified elsewhere in the Duwamish Waterway area. Copper and tin were included because of their potential adverse affects on aquatic life.
- o Assess soil quality in the 1985 dredge fill for the ten metals, semivolatile organic compounds, and PCBs. The full semivolatile scan (i.e., base/neutral/acid extractable fractions) was recommended based on typical practices/activities associated with marinas.
- Assess groundwater quality beneath the property for volatile organic compounds (VOCs) and conventional water quality parameters. Groundwater was analyzed for VOCs to assess potential releases of fuels or solvents from the substation or other off-site sources and/or from the dredge fill. Conventional parameters were sampled to assess baseline conditions and the influence, if any, of seawater from the waterway.

1.3 Summary of Findings

Seven soil borings (6 to 20 feet deep) were drilled and sampled on the property on 17 and 18 April 1990. Composite soil samples from each boring were analyzed for PAHs and metals. Samples from the 1985 dredge fill area were additionally analyzed for PCBs. Low levels of a few PAHs and several metals were detected in the soil samples at concentrations below the most stringent applicable regulations (i.e., draft Washington Model Toxics Control Act Cleanup Regulations). PCBs were not detected in the 1985 dredge fill samples.

P. 06

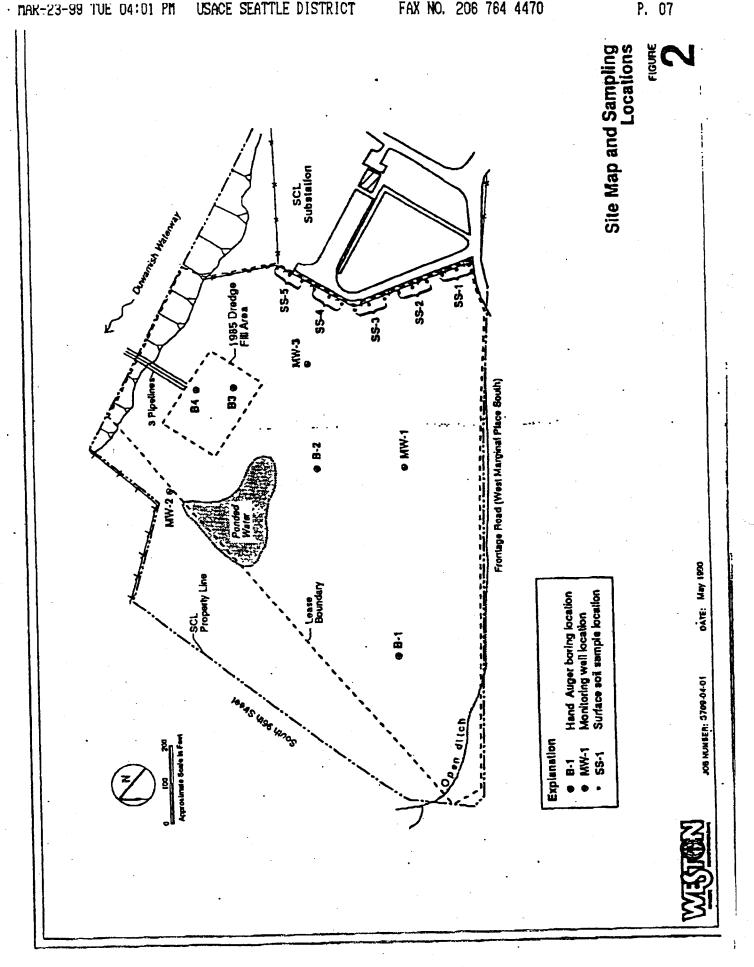
Three of the borings were completed as monitoring wells. The wells were sampled for groundwater and analyzed for VOCs and selected conventional groundwater quality parameters. Acetone, present at a very low concentration in one well, was the only VOC detected in the samples.

Five composite surface soil samples were collected along the substation fence line and analyzed for PCBs and chlorinated herbicides. Neither PCBs nor herbicides were detected in any of the samples at detection limits that were well below regulatory clean-up levels.

No regulated concentrations of organic compounds or metals were detected in samples from the property. The low levels of PAHs and metals present in some of the samples are probably representative of background concentrations in dredge fill in the Duwamish industrial area.

No further sampling at the property is recommended.

WESTON performed this work and prepared this report in accordance with generally accepted professional practices, related to the nature of the work accomplished, for the exclusive use of Boeing for the specific application to the proposed SCL property. No other warranty, expressed or implied, is made.


2.0 SITE ASSESSMENT

2.1 General Property Description

The property comprises approximately 20 acres of open grassy field. It is bounded to the south by SCL's Duwamish substation, to the north by the Delta Marine Industries facilities, to the east by the Duwamish Waterway, and to the west by West Marginal Place South, a frontage road of Highway 99 (Figure 2). The west and south portions of the property are crossed by several high-voltage power lines. An open ditch runs along the west boundary of the property. Photographs of the property are included in Appendix C.

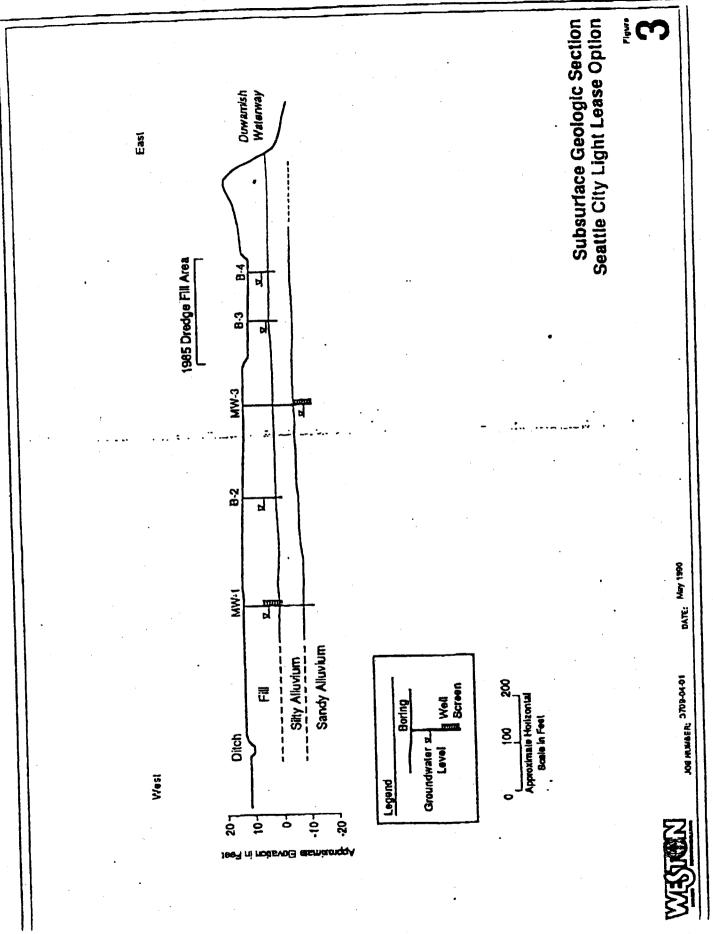
The majority of the property is nearly level. A rectangular depression, approximately 200 feet on a side, is located in the east-central portion of the lease property. The depression apparently marks the area filled with dredged sediment in 1985. The depression appears to be an infilled impoundment in which dredged sediment was placed and allowed to drain.

An area of seasonally ponded water was located in the central portion of the property and noticeably decreased in size during the course of the site investigation.

The easternmost portion of the property along the Duwamish Water contains several exposures of milled lumber debris mixed with sandy and clayey silt fill. The lumber-containing fill appears to be a separate fill unit from the 1968 or 1985 fills, although this is uncertain because the relationship between the fill units along the waterway is obscured by vegetation and recent sedimentation. Several decayed pilings are present along the waterway shoreline.

2.2 Subsurface Stratigraphy

Seven soil borings were drilled on the property (Figure 2). Three of the borings, designated MW-1 through MW-3, were drilled to a depth of approximately 20 feet using a mechanical drill rig and were completed as monitoring wells on 17 April 1990. Four of the borings, designated B-1 through B-4, were drilled to depths of 6 to 10 feet using hand-auger techniques. Borings B-3 and B-4 were located in the 1985 dredge fill area. All of the other borings were completed in the 1968 dredge fill area. A discussion of drilling, sampling, and decontamination procedures used at the site are provided in Appendix A. Exploration logs of the borings are also presented in Appendix A.


The subsurface investigation indicates that the property is underlain by approximately 5 to 10 feet of stratified, heterogeneous fill that, in turn, overlies aliuvium of the Duwamish River floodplain (Figure 3). Apart from the man-made levee along the present bank of the Duwamish Waterway, the fill appears to thicken progressively westward across the property. The fill is thinnest (5.5 to 6.2 feet) in the topographic depression in the east portion of the property that apparently coincides with the limits of the 1985 dredge fill.

Relatively little lithologic or textural difference was noted between the 1968 and 1985 fills. The fill is composed predominantly of crudely layered silty sand and clayey silt. The upper 1 to 4 feet of the fill is typically a loose to medium-dense, moist, brown, silty sand. Dense, black, carbonaceous, fine sand and stiff, black, clayey silt typically occur beneath the surface layer. The black sand and silt often contain abundant wood fragments. In some borings, a saturated, gray, well-graded sand layer 0 to 4 feet thick occurs at or near the base of the fill.

Fill overlying alluvium was also observed in an eroded exposure along the west bank of the Duwamish Waterway. Very abundant milled lumber debris occurs in a sandy to clayey matrix at low elevations along the bank and may be a separate fill unit from the 1968 and 1985 dredge fill units described here.

Alluvium underlying the fill consists of approximately 2 to 3 feet of gray, mottled, massive, clayey silt that often contains plant fragments. Below the mottled clayey silt is a 1.5- to 4-foot-thick unit composed of thinly bedded, gray and brown, clayey silt and fine sand. In the three deepest borings, (i.e., MW-1, MW-2, and MW-3), a

P9.7?

AR 023541

3.0 ANALYTICAL RESULTS

All samples were analyzed by Laucks Testing Laboratories, Seattle, Washington. Complete analytical results are presented in Appendix B and Tables 1 through 8. A summary of those analytes detected is presented in Table 9.

3.1 1968 Dredge Fill Area

Subsurface soil samples composited from the five borings in the 1968 dredge fill area (i.e., Borings MW-1, MW-2, MW-3, B-1, and B-2) were analyzed for PAHs and metals. The high molecular weight PAH compound benzo(a)pyrene was detected in three of the five boring samples (MW-1, MW-3, and B-1) at concentrations of 96 to 340 ug/kg. Pyrene was detected in only one boring sample (MW-3) at a concentration of 74 ug/kg. Bis(2-ethylhexyl)phthalate was detected in all five boring samples at concentrations of 87 to 490 ug/kg. No other base/neutral-extractable semivolatile compounds were detected in the composite samples from each boring.

Several metals were detected in each of the five boring samples. Metal concentrations in the samples are well within the ranges observed in natural soils by WESTON personnel in the Puget Sound region.

3.2 1985 Dredge Fill Area

Subsurface soil samples composited from the two borings in the 1985 dredge fill area (i.e., Borings B-3 and B-4) were analyzed for PCBs, semivolatile organic compounds, and metals. PCBs were not found in the samples at detection limits that range from 80 to 210 ug/kg. The PAH compounds fluoranthene (70 ug/kg), 0.053 phenanthrene (53 ug/kg), pyrene (86 ug/kg), and benzo(a)pyrene (250 ug/kg) were 0.086 0,250 detected in the sample from Boring B-3. Bis(2-ethylhexyl)phthalate was detected in the samples from both borings at concentrations of 440 and 380 ug/kg. No other semivolatile organic compound was detected in the sample from Boring B-4. Hq-0,51ppm Several metals were detected in the two boring samples. The concentration of mercury in the sample from Boring B-3 (0.51 ug/kg) appears to be slightly elevated with respect to the typical range found in natural soils of the Puget Sound region. All other metal concentrations in the two samples are well within the ranges observed in natural soils by WESTON personnel in the Puget Sound region.

3.3 Groundwater

The three groundwater samples collected from Wells MW-1, MW-2, and MW-3 on 26 April 1990 were analyzed for VOCs and selected conventional water quality parameters (i.e., alkalinity, chloride, sulfate, sodium, iron, manganese). The only VOC detected in any of the water samples was acetone, at a concentration of 8 ug/l in Well MW-1.

0.409

TABLE 1 SUBSURFACE SOIL SAMPLES - TOTAL METALS 1968 AND 1985 DREDGE FILL AREAS SEATTLE CITY LIGHT LEASE OPTION

MW-1						ample*					
141 44 - 1		MW-2		MM-3.		B-1		B-2		B-3	B-4
. 49		4.2		7.5		5.9		4.8		8.7	5.6
		76.0		67.0		56.0		42.0		74.0	50.0
* -		1.3		1.3		0.9		0.5	U	1.2	0.6
15.0		17.0		20.0		13.0		12.0			13.0
20.0		36.0		36.0							20.0 . 7.4
7.3		15.0						_			0.1
-							U				0.5
		-									1.0
	_										50.0
	20.0 7.3 0.1 0.5 1.0	50.0 1.0 15.0 20.0 7.3 0.1 u 0.5 u	50.0 76.0 1.0 1.3 15.0 17.0 20.0 36.0 7.3 15.0 0.1 u 0.1 0.5 u 0.5 1.0 u 1.0	50.0 76.0 1.0 1.3 15.0 17.0 20.0 36.0 7.3 15.0 0.1 u 0.1 u 0.5 u 0.5 u 1.0 u 1.0 u	50.0 76.0 67.0 1.0 1.3 1.3 15.0 17.0 20.0 20.0 36.0 36.0 7.3 15.0 16.0 0.1 u 0.1 u 0.24 0.5 u 0.5 u 0.8 1.0 u 1.0 u 1.0	50.0 76.0 67.0 1.0 1.3 1.3 15.0 17.0 20.0 20.0 36.0 36.0 7.3 15.0 16.0 0.1 u 0.1 u 0.24 0.5 u 0.5 u 0.8 1.0 u 1.0 u 1.0 u	50.0 76.0 67.0 56.0 1.0 1.3 1.3 0.9 15.0 17.0 20.0 13.0 20.0 36.0 36.0 19.0 7.3 15.0 16.0 8.7 0.1 u 0.1 u 0.24 0.1 0.5 u 0.5 u 0.8 0.5 1.0 u 1.0 u 1.0 u 1.0	50.0 76.0 67.0 56.0 1.0 1.3 1.3 0.9 15.0 17.0 20.0 13.0 20.0 36.0 36.0 19.0 7.3 15.0 16.0 8.7 0.1 u 0.1 u 0.24 0.1 u 0.5 u 0.5 u 0.8 0.5 1.0 u 1.0 u 1.0 u 1.0 u	50.0 76.0 67.0 56.0 42.0 1.0 1.3 1.3 0.9 0.5 15.0 17.0 20.0 13.0 12.0 20.0 36.0 36.0 19.0 17.0 7.3 15.0 16.0 8.7 8.2 0.1 u 0.1 u 0.24 0.1 u 0.1 0.5 u 0.5 u 0.8 0.5 0.5 1.0 u 1.0 u 1.0 u 1.0 u 50.0	50.0 76.0 67.0 56.0 42.0 1.0 1.3 1.3 0.9 0.5 u 15.0 17.0 20.0 13.0 12.0 20.0 36.0 36.0 19.0 17.0 7.3 15.0 16.0 8.7 8.2 0.1 u 0.1 u 0.24 0.1 u 0.1 u 0.5 u 0.5 u 0.8 0.5 0.5 u 1.0 u 1.0 u 1.0 u 1.0 u 50.0 u	4.9 4.2 7.3 56.0 42.0 74.0 1.0 1.3 1.3 0.9 0.5 u 1.2 15.0 17.0 20.0 13.0 12.0 18.0 20.0 36.0 36.0 19.0 17.0 33.0 7.3 15.0 16.0 8.7 8.2 17.0 0.1 u 0.1 u 0.24 0.1 u 0.1 u 0.51vs l.0 0.5 u 0.5 u 0.5 u 0.5 u 0.5 u 1.0 u 1.0 u 1.0 u 1.0 u 1.0 u 50.0 u

^{*}Parts per million (mg/kg), dry basis. u - indicates the analyte of interest was not detected. to the limit of detection shown.

P. 12

TABLE 2 SUBSURFACE SOIL SAMPLES - PAHS (Base/Neutral Fractions of Samivolatile Extractables) 1968 DREDGE FILL AREA SEATTLE CITY LIGHT LEASE OPTION .

				5	ample"					_
Analyte	MW-1		MW-2		MW-3	8	-1		B-2	_
	200	u	210	u	230 u	2	20	U	210	ı
niline		u	43	u	45 U	i.	43	u	41	
is(2-Chloroethyl)Ether	39	u	43	u	45 u		43	u	41	
.3-Dichlorobenzene	39	u	43		45 U		43	u	41	
,4-Dichlorobenzene	39	น	43	Ц	45 U		43	u	41	
,2-Dichlorobenzene	39	u	43	u	45 U		43	U	41	
is(2-Chloroisopropyl)Ether	39	u	43	_	45 u	;	43	u	41	
-Nitroso-Di-n-Propylamine	79	น	86		90 u	ľ	87	U	83	
exachioroethane		•	43		45 U		43	U	41	
litrobenzene	39	U	43	u	45 t	•	43	-	41	
sophorone	39	u	43	u	45 (-	43		41	
is(2-Chloroethoxy)Methane	39	u		u	45 (43	_	41	
,2,4-Trichlorobenzene	39	u	43 86	_	90 i	-	87		83	
laphthalene	79	u		-	45 (-	43		41	
-Chloroaniline .	39	U .			45 1	_	43		41	
lexacholrobutadiene	39	U	43			-	43		41	
-Methylnaphthalene	39	U	43		45		87		83	
lexachlorocyclopentadiene	79	U	86			u	43	_	41	
-Chloronaphthalene	39	U	43		-	_			83	
2-Nitroaniline	79	U	86		• •	u	87		41	
Dimethyl Phthalate	39	u	43		45	_	43	-	41	
Acenaphthylene	39		43	-		U		3 u	83	
2,6-Dinitrotoluene	79	U	86		• •	ט	87	_		
3-Nitroaniline	200	U	210			u	220		210	
Ancaphthene	39	u	43	_		ย	4:	-	41	
Dibenzoturan	39	u	43			U	4		41	-
2,4-Dinitrotoluene	79	U	86	U	· 90	u	8	<u>7 U</u>	83	3

^{*}Parts per million (mg/kg), dry basis.

u - indicates the analyte of interest was not detected, to the limit of detection shown.

TABLE 2 (Continued) SUBSURFACE SOIL SAMPLES - PAHS (Base/Neutral Fractions of Semivolatile Extractables) 1968 DREDGE FILL AREA SEATTLE CITY LIGHT LEASE OPTION

		9	ample*		
analyte	MW-1	MW-2	MW-3	B-1	B-2
	 39 ປ	43 U	45 U	43 U	41. (
Diethyl Phthalate	39 u	43 u	45 U	43 U	41 1
-Chlorophenyl-Phenylether	39 U	43 U	45 u	43 U	41 (
-luorene	79 u	86 U	90 u	87 u	83
-Nitroaniline		43 U	45 U	43 U.	41
-Nitrosodiphenylamine	. 39 U 79 u	86 u	90 u	87 U	83
,2-Diphenylhydrazine		86 u	90 u	87 u	83
-Bromophenyl-Phenylether	79 u	43 U	45 U	43 U	41
exachlorobenzene	39 u	_	45 U	43 U	41
henanthrene	39 U		45 U	43 U	41
nthracene	3 9 ນ	43 U		43 u	41
i-n-Butyi Phthalate	39 U	43 u	45 U	43 U	41
luoranthene	39 u	43 u	45 u	43 U	41
yrene	39 U	43 u	74		1100
enzidine	980 น	1100 บ	1100 u		41
lutylbenzylphthalate	39 u	. 43 u	45 u -	43 U	410
,3'Dichlorobenzidine	390 u	430 u	450 U	430 U	41
Benzo(a)Anthracene	39 ນ	43 u	45 U	43 u	41
Chrysene	39 u	43 U	45 u	43 u	490
Bis(2-Ethylhexyl)Phthalate	87	160	340	390	41
Di-n-Octyl Phthalate	39 u	ี 43 บ	45 u	43 U	83
Benzo(b)Fluoranthene	79 u	ຸ86 ນ	90 u	. 87 บ	
Benzo(k)Fluoranthens	79 u	. 86 U	90 u	87 u	83
Benzo(a)Pyrene	96	86 u	340	140	83
ndeno(1,2,3-cd)Pyrene	79 U	86 u	90 u	87 U	83
Dibenzo(a,h)Anthracene	79 u	86 u	90 U	87 U	83
Benzo(g,h.i)Perylene	79 u	86 U	90 U_	87 บ	. 83

^{*}Parts per billion (ug/kg), dry basis.

u - Analyte of interest was not detected, to the limit of detection shown.

TABLE 3 SUBSURFACE SOIL SAMPLES - SEMIVOLATILE ORGANIC COMPOUNDS (Base/Neutral/Acid Fractions of Semivolatile Extractables) 1985 DREDGE FILL AREA SEATTLE CITY LIGHT LEASE OPTION

	Sample	•
Analyte	B-3	B-4
Phanel	44 U	43
Phenol Anīline	220 u	220
• • • • • • • • • • • • • • • • • • • •	44 u	43
Bis(2-Chloroethyl)Ether	44 u	43
2-Chiorophenol 1,3-Dichlorobenzene	44 u	43
1,4-Dichlorobenzene	. 44 u	43
Benzyl Alchohol	44 U	. 43
1.2-Dichlorobenzene	44 บ	43
2-Methylphenol	44 U	43
2-metrypherior Bis(2-Chloroisopropyl)Ether	44 u	43
4-Methylphenol	44 U	43
N-Nitroso-Di-n-Propylamine	44 Ա	43
Hexachioroethane	89 u	87
Nitrobenzene		· 43
Isophorone	44 U	43
2-Nitrophenol	89 u	87
2,4-Dimethylphenol	44 u	43
Benzoic Acid	1100 u	1100
Bis(2-Chloroethoxy)Methane	44 u	43
2,4-Dichlorophenal	89 u .	87
1,2,4-Trichlorobenzene	44 U	43
Naphthalene	89 u	87
4-Chloroaniline	44 u	43
Hexachlorbutadiene	44 u	43
4-Chloro-3-Methylphenol	89 U	87
2-Methylnaphthalene	44 u	43
Hexachlorocyclopentadiene	89 ປ	87

^{*}Parts per billion (ug/kg), dry basis.

u - Analyte of interest was not detected, to the limit of detection shown.

TABLE 3 (Continued) SUBSURFACE SOIL SAMPLES - SEMIVOLATILE ORGANIC COMPOUNDS (Base/Neutral/Acid Fractions of Semivolatile Extractables) 1985 DREDGE FILL AREA SEATTLE CITY LIGHT LEASE OPTION

	Sample	•
Anakan	B-3	B-4
Analyte		·
2,4,6-Trichlorophenol	89 u	87 (
2,4,5-Trichlorophanol	89 u	87
2-Chloronaphthalene	44 u	43 1
2-Nitroaniline	89 u	87
Dimethyl Phthalate	44 u	43
Acenaphthylene	44 u	43
2,6-Dinitrotoluene	89 u	87
3-Nitroaniline	220 u	220
Acenaphthene	44 U	43
2,4-Dinitrophenol	440 u	430 430
L-Nitrophenol	` 440 U	430
Dipenzofuran	44 U	43
	. 89 บ	87
2,4-Dinitrotoluene	44 u	43
Diethyl Phthalate	44 U	· 43
4-Chlorophenyl-Phenylether	44 u .	43
Fluorene	89 U	87
-Nitroaniline	440 u	430
4,6-Dinitro-2-Methylphenol	44 บ	43
N-Nitrosodiphenylamine	89 u	87
1,2-Diphenylhydrazine	89 u	87
4-Bromophenyl-Phenylether	44 u	43
Hexachlorobenzene	440 u	430
Pentachlorophenol	53	. 43
Phenanthrene	44 u	43
Anthracene	· 44 U	43
Di-n-Butyl Phthalate		

^{*}Parts per billion (ug/kg), dry basis.

u - Analyte of interest was not detected, to the limit of detection shown.

TABLE 3 (Continued) SUBSURFACE SOIL SAMPLES - SEMIVOLATILE ORGANIC COMPOUNDS (Base/Neutral/Acid Fractions of Semivolatile Extractables) 1985 DREDGE FILL AREA SEATTLE CITY LIGHT LEASE OPTION

		Sample*		
Analyte	B-3		B-4	_
Fluoranthene	70		43	
Pyrene	85		743	1
Benzidine	1100	U	1100	•
	44.	ម	43	
Butylbenzylphthalate	440	υ	. 430	1
3,3'Dichlorobenzidine	44	u	43	,
Benzo(a)Anthracene	44	-	43	3 (
Chrysene	440	_	380)
Bis(2-Ethylhexyl)Phthalate	44		43	
Di-n-Octyl Phthalate		_	87	
Benzo(b)Fluoranthene	89	_		
Benzo(k)Fluoranthene	89		87	
Benzo(a)Pyrene	250	-	87	
Indeno(1,2,3-cd)Pyrene	89	u	87	
Dibenzo(a,h)Anthracene	89	п.	87	7
Benzo(g,h,l)Perylena	يحنند 89	น	*** 87	7_

^{*}Parts per billion (ug/kg), dry basis.

u - Analyte of interest was not detected, to the limit of detection shown.

TABLE 4 SURFACE SOIL SAMPLES - PESTICIDES AND PCBs 1985 DREDGE FILL AREA SEATTLE CITY LIGHT LEASE OPTION

	Sample*	
	8-3	B-4
Analyte		
	11.0 U	10.0 u
alpha-BHC	11.0 u	10.0 u
beta-BHC	11.0 U	10.0 ບ
delta-BHC	11.0 ย	10.0 ט
gamma-BHC (lindane)	11.0 U	10.0 U
Heptachlor	11.0 U	10.0 U
Aldrin	11.0 U	10.0 U
Heptachlor epoxide	11.0 u	10.0 u
Endosultan I	21.0 U	21.0 U
Dieldrin	21.0 u	.21.0 u
4,4'-DDE	21.0 u	21.0 U
Endrin	21.0 u	21.0 U
Endosultan li	21.0 U	21.0
4,4'-DDD	21.0 U	-21.0 U
Endosulfan sulfate	21.0 U	21.0 L
-4,4'-DDT	110.0 U	100.0 L
Methoxychlor	21.0 U	21.0 (
Endrin ketone	110.0 U	100.0
alpha-Chlordane	110.0 U	100.0
gamma-Chlordane	210.0 u	210.0
Toxaphene	110.0 U	100.0
Arochlor-1016	110.0 U	100.0
Arochlor-1221	110.0 U	100.0
Arochlor-1232		100.0
Arochlor-1242	110.0 U	100.0
Arochior-1248	110.0 U	210.0
Arochlor-1254	210.0 u	210.0
Arochlor-1260	עט 210.0	2:3,0

^{*}Parts per billion (ug/kg), dry basis.

u - Analyte of interest was not detected, to the limit of detection shown.

TABLE 5 GROUNDWATER SAMPLES - VOLATILE ORGANIC COMPOUNDS SEATTLE CITY LIGHT LEASE OPTION

		Sample*	
Analyte	MW-1	MW-S	MW-3
Allalyte			
Chloromethane	1 u	1 U	1 0
Bromomethane	1 · u	1 u ,	1 U
Vinyl Chloride	1 U	1 U	1 u
Chloroethane	3 U	3 u	3 u
Methylene Chloride	,1 u	1 u	1 u
Acatone	8	5 น	5 u
Carbon Disulfide	1 U	1 u	1 u
1.1-Dichloroethene	1 u	1 u	1 u
1.1-Dichlorpethane	1 U	1 U	. 1 U
Trans-1,2-Dichloroethene	1 บ	1 u	1 u
Cis-1,2-Dichloroethene	1 u	1 4	1 U
Total 1,2-Dichloroethene	1 U	1 u	1 u
	1 U	1 U .	1 u
Chloroform	3 u	3 u.	3 U
2-Butanone	1 u - "	ن المستسب	1 ม
1,2-Dichloroethane	1 11	1 u	1 u
1,1,1-Trichloroethane	1 u	1 u	1 0
Carbon Tetrachloride	1 U	1 u	1 0
Vinyl Acetate	, U	1 u	1.1
Bromodichloromethane	1 U	1 u	· 1 t
1,2-Dichloropropane	1 u	1 u	1 1
Trichloroethene	. 1 0	1 U	1 1
Benzene	. J 3 ນ	3 · u	3 (
Dibromochioromethane	1 U	1 u	1 1
1,1,2-Trichloroethane	1 u	1 u	1 1
Bromoform	, -	3 u	3 (
4-Methyl-2-Pentanone	3 u	3 U	3
2-Hexanone	3 u		3
1,1,2,2-Tetrachloroethane	3 u	3 U	1
Tetrachioroethene	1 U	1 U	1
Toluene	1 U	1 ú	3
Chlorobenzene	3 u	3 u	
Trans-1,3-Dichloropropene	3 u	3 u	•
Ethylbenzene	1 u	1 u	1
Cis-1,3-Dichloropropene	3 и	3 บ	3
Stryrene	1 u	1 u	1
Total Xylene	1 υ_	<u>1 u</u>	1

^{*} Results in ug/L

u - indicates the analyte of interest was not detected, to the limit of detection shown.

P. 19

TABLE 7 SURFACE SOIL SAMPLES - PESTICIDES AND PCBs SUBSTATION FENCE LINE AREA SEATTLE CITY LIGHT LEASE OPTION

		S	ample.		
	SS-1	SS-2	SS-3	SS-4	SS-5
Analyte				8.6 u	8.6 U
alpha-BHC	8.7 U	8.7 u	8.8 u	8.6 U	8.6 u
beta-BHC	8.7 u	8.7 U	8.8 U	-	8.6 U
delta-BHC	8.7 U	8.7 u	8.8 u	8.6 u	8.6 u
gamma-BHC (lindane)	8.7 U	8.7 u	8.8 u	8.6 u	8.6 U
	8.7 U	8.7 U	8.8 u -	- 8.6 u	8.5 u
Heptachlor	8.7 u	8.7 u	8.8 u	8.6 น	
Aldrin	8.7 u	8.7 u	8,8 u	8,8 U	8.6 u
Heptachlor epoxide	8.7 u	8.7 u	8.8 น	8.6 u	8.6 u
Endosulian I	17.0 U	17.0 u	18.0 u	17.0 u	17.0 U
Dieldrin	17.0 u	17.0 U	18.0 U	17.0 U	17.0 u
4,4'-DDE	17.0 U	17.0 U	18.0 u	17.0 บ	17.0 u
Endrin	17.0 U	17.0 U	18.0 u	17.0 u	. 17.0 บ
Endosulfan II	17.0 U	17.0 u	18.0 u	17.0 U	17.0 U
4,4'-DDD	17.0 u	17.0 U	18.0 u	17.0 U	17.0 ປຸ
Endosulfan sulfate	17.0 U · · ··17.0 ^U ~	17.0 · U ·	√18.0 u	~ 17.0 U	- 17.0 u
-`4,4'-DDT	* * * *	87.0 U	88.0 u	86.0 u	86.0 u
Methoxychlor	87.0 U	17.0 U	18.0 U	17.0 u	17.0 U
Endrin ketone	17.0 U	87.0 U	88.0 u	86.0 u	86.0 U
alpha-Chlordane	87.0 u _	87.0 U	88.0 U	86.0 u	86.0 u
gamma-Chlordane	87.0 U	170.0 U	180.0 u	170.0 U	170.0 U
Toxaphene	170.0 U		88.0 u	86.0 u	86.0 U
Arochlor-1016	87.0 u		88.0 u	86.0 u	86.0 u
Arochior-1221	87.0 U	87.0 U	88.0 U	86.0 U	86.0 U
Arochior-1232	87.0 u	87.0 U		86.0 U	86.0 U
Arochlor-1242	87.0 u	87.0 u	88.0 u	86.0 U	86,0 U
Arochlor-1248	87.0 U	87.0 U	88.0 u	170.0 u	170.0 U
Arochlor-1254	170.0 U	170.0 U	180.0 U	170.0 u	170.0 U
Arochior-1260	170.0 U	170.0 U	180.0 u	1/0.0 0	170.0

^{*}Parts per billion (ug/kg), dry basis.

u - Analyte of interest was not detected, to the limit of detection shown.

TABLE 8 SURFACE SOIL SAMPLES - CHLORINATED HERBICIDES SUBSTATION FENCE LINE AREA SEATTLE CITY LIGHT LEASE OPTION

			S	ample*					_
Analyte	SS-1	 SS-2		S\$-3		\$5-4		<u>SS-5</u>	
	11,0	 11,0	u	11.0	U	11.0	u	11.0	ι
2.4-D 2.4.5-T	5.4	5.5		5.5	u	5.5	u	5.4	
2,4,5-TP	5.4	5.5	บ	5.5	u	5.5	u	5.4	

Parts per billion (ug/kg), dry basis.

j,

u - indicates the analyte of interest was not detected, to the limit of detection shown.

I ABLE Y SUMMARY OF ANALYTES DETECTED SEATTLE CITY LIGHT LEASE OPTION

·				o, o	UMMAF	SUMMARY OF ANALYTES DETECTED SEATTLE CITY LIGHT LEASE OPTION	NALYTE IGHT LE	S DETI	ECTED						•	· Mar
							7								Water	
	MAN O MAN A MAN		0 1411	2 787	ď	B-2		4	SS-1	SS-2	SS-3	SS-4	5-55	MW-1	MW-2 N	-99 MW
Analyte	Onits M	1 - M	7-AAIA	2			-									TUE
Volatile Organic Compounds							!								-	
Acetone	1/8/1	₹	ž	Ž	∢ Z	₹	ž	Y Y	¥ Z	¥ Z	¥ Z	ž	₹	w	3	04 PM 궁
Semivolatile Compounds					•						-					
Finoranthene	ug/kg	380	43n	45u	43n	41c	2	43n	ž	¥ :	¥:	<u> </u>	₹ 2	4 7 2	₹ Z	SACE Ž
Phenanthrene	ug/kg	38n	43n	45u	43u	\$ €	23	43c	¥ \$	e e Z z	∢ ∢ Z Z	₹ ₹	₹ ₹	ξ ≼ Ζ Ζ	₹	
Bis(2-ethythexyl)phthalate	ug/kg	97	5 5	340	390	480	98	, 4 9 9 1	ž Ž	Z Z	ž	¥ Z	Ž	₹	¥ :	
Pyrene Benzo(a)pyrene	ug/kg ug/kg	96 96	43n 86u	340	140	- 83u	250	87u	ž	¥ Z	Y X	ž	∢ Z	¥	∢ Z	
	· .						bSh'									DISTI
Merkin	;	•	,	1		•	4	r. c	Ž		₹	₹ Z	≼ Z	Y Z	ž	RICT ≳
Arsenic	mg/kg mg/kg	4 3. 0.	7.5 2.8	6.7		42	7	8	ž	¥ Z	¥ X	¥	¥	¥ :	₹ S	ž 3
Barlum	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 -	· ·		6.0	0.50	1.2	9.0	ž		ž	¥ Z	≼ Z	∢ :	₹ :	ž 3
Cadmium		1.5	? _	? 8	=======================================	12	18	13	¥ Z		ž	¥ :	¥ S	ž:	¥ ₹	FA 2 3
		20	36	36	18	17	33	8	¥ Z		Ž i	∀ :	₹ :	Ž	\$ \$	X A
	mg/kg	7.3	15	16	8.7	8.2	17	7.4	Ž:		ž :	₹ \$	₹ 2	≨ ₹	∑ ₹	Ю. È ≥
Mercury	mg/kg	0.10	0.10	0.24	0.10	0.1E	0.51	0. 5. 5	YZ Z		₹ ₹	<	₹ ₹	Z Z	¥ Z	201 Ž
Selenium	mg/kg	0.5u	0.6u	0	0.5	0.50			Y		•	•				3 764
Conventional Paramenters					•											44
	Į.	· ·	2	Z	N N		Ž	Ž				¥Z	₹	150	1400	<u>7</u> 0
Chloride	5 i	ξ <u>ξ</u>	2 2		N N			¥				Y X	¥	4.	.	- ;
Sufate	A T	2 2	2 2		¥ N			¥				ž	₹	89	2	E .
Alkalinity	7g T	X :	4		2 2			₹ Z		¥	X X	¥ Z	Ž	4.8		6
. iron	NO T	2 2	2 2		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			Ž				Y X	¥	0.30		0.2
Мвлдалеѕе	JÖE	₹ ₹	2 2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Z	Ž	Z	₹ Z	Ž			¥Z	Z	440	1300	2
Sodium	mg/r	5	2			1						-				P.

NA - Sample not analyzed for this analyte u - Compound was not detection limit.

All of the conventional water quality parameters were detected at low to moderate concentrations. Chloride concentrations were highest at Well MW-2 (1400 mg/l) indicating brackish conditions in the native sand aquifer at that location and some influence from the saltwater wedge in the adjacent Duwamish Waterway. Iron, influence from the saltwater wedge in the adjacent Duwamish Waterway. Iron, manganese, sodium, and total alkalinity are also highest at Well MW-2. Field measurements indicate the groundwater has a pH of 7.0 to 7.1.

3.4 SCL Substation Fence Line Area

The five surface soil samples collected along the SCL substation fence line were analyzed for pesticides, PCBs, and three chlorinated herbicides. The five samples did not contain detectable concentrations of any of these compounds at detection limits of 8.6 to 180 ug/kg for pesticides, 86 to 170 ug/kg for PCBs, and 5.4 to 11.0 ug/kg for herbicides.

4.0 DISCUSSION

4.1 1968 Dredge Fill Area

The 1968 dredge fill contained low concentrations of PAHs and metals. Total PAHs concentrations (140 to 414 ug/kg) in composite samples from the fill were below the draft soil clean-up levels for total carcinogenic PAHs specified in the Washington State Model Toxics Control Act (MTCA) Cleanup Regulations (1.0 mg/kg) (9 March 1990). These PAH concentrations are probably representative of background PAH concentrations of dredge fill in the Duwamish industrial area.

Total metals concentrations in the 1968 fill samples are well below draft MTCA soil clean-up levels and are at concentrations so low they will not fail EP toxicity criteria.

4.2 1985 Dredge Fill Area

The 1985 dredge fill also contained low concentrations of PAHs and metals. PCBs were not detected in either composite fill sample at detection limits that are well below the most stringent PCB clean-up standards. Several PAHs were detected in the composite soil sample from Boring B-3 at a total concentration of 549 ug/kg. "451 Again, this concentration is below the draft MTCA clean-up standard for PAHs in soil.

Total metals concentrations in the 1985 fill samples were well below MTCA cleanup levels. Although the concentration of mercury (0.51 mg/kg) in the composite sample from Boring B-3 is slightly elevated above the typical range for natural

د ه ارهو