VOL. 1/2

SEDIMENT CHARACTERIZATION FOR THE HAMM CREEK RESTORATION PROJECT

DUWAMISH TURNING BASIN SEATTLE, WASHINGTON

September 12, 1997

Prepared for:

U.S. Army Corps of Engineers Seattle District 4735 East Marginal Way South Seattle, Washington 98124-2255

Prepared by

Science Applications International Corporation Environmental Sciences Division 18706 North Creek Parkway, Suite 110 Bothell, Washington 98011

TABLE OF CONTENTS

1.0	INTRO	DUCTION	
2.0	METH	IODS	2
2.0	2.1	Sampling Overview	· · · · · · · · · · · · · · · · · · ·
	2.2	Desitioning	•••••••
	2.3	C Collection and Processing	
	2.4	Chemical Testing	
	2.5	Dielogical Testing	••••••
	2.3	Reference Sediment Collection	ð
			9
3.0 -	RESU	LTS	Q
	3.1	Sediment Core Descriptions	•••••••
	3.2	Sediment Conventionals	
	3.3	Contaminant Chemistry	12
	3.4	Bioassays	·····
		MARY	
4.0	SUM	MARY	
		ERENCES	
5.0	REFE	CRENCES	
APPI	ENDICE	S	
Appe	endix A	Sampling and Analysis Plan	

i

Appendix B	Station Locations and Compositing Scheme
· · · · · · · · · · · ·	The second second second

Appendix C Field and Borehole Logs

Appendix D Chain-of-Custody Forms

Appendix E Chemistry Laboratory Results and QA/QC Memorandum

Appendix F Bioassay Laboratory Results and QA/QC Checklists

Appendix G Health and Safety Plan

Hamm Creek Restoration Project Sediment Characterization September 12, 1997

LIST OF TABLES

Table 3-1.	Conventional and contaminant chemistry results for the Hamm Restoration Project	10
Table 3-2.	Hamm Creek project data compared to sediment management standards	
Table 3-3.	Results for the amphipod acute toxicity test, echinoderm larval test, and 20-day Neanthes growth test.	16

LIST OF FIGURES

Figure 2-1	Locations of stations sampled for the Hamm Creek Restoration	
	Project.	3

Hamm Creek Restoration Project Sediment Characterization September 12, 1997

1.0 INTRODUCTION

As part of the U.S. Army Corps of Engineers (USACE) Restoration Program. the USACE plans to realign Hamm Creek and convert 7 acres of a 22-acre parcel of land adjacent to the Seattle City Light substation into a combined saltwater/freshwater wetland. The Hamm Creek restoration project, which will be accomplished under Section 1135 of the Water Resources Development Act of 1986, will include dredging approximately 80,000 cubic yards to provide a new outlet for the creek to the Duwamish River, to create a saltwater marsh in the riverside area, and to excavate upland for a freshwater wetland. These 80,000 cubic yards of dredged material are proposed for either open-water disposal at the Puget Sound Dredged Disposal Analysis (PSDDA) Elliott Bay disposal site or for beneficial use. An additional 10,000 cubic yards will be excavated in creating meanders in Hamm Creek along West Marginal Way. These 10,000 cubic yards of material will not be characterized for PSDDA disposal.

This report describes a study conducted by the USACE and Science Applications International Corporation (SAIC) to characterize the 80,000 cubic yards of material proposed for PSDDA disposal or for beneficial use. Based on a 1990 site assessment conducted by Boeing, and the fact that the site had never been developed for industrial use. a low-moderate rank was used to determine the sampling and analysis requirements for the project. The material was characterized under PSDDA (1989; 1990 a,b; 1991 a,b) and Sediment Management Standard (SMS) guidelines, which consisted of conventional, contaminant, and tiered biological testing. The results of the study will be used in making suitability determinations for disposal at the Elliott Bay disposal site or for beneficial use.

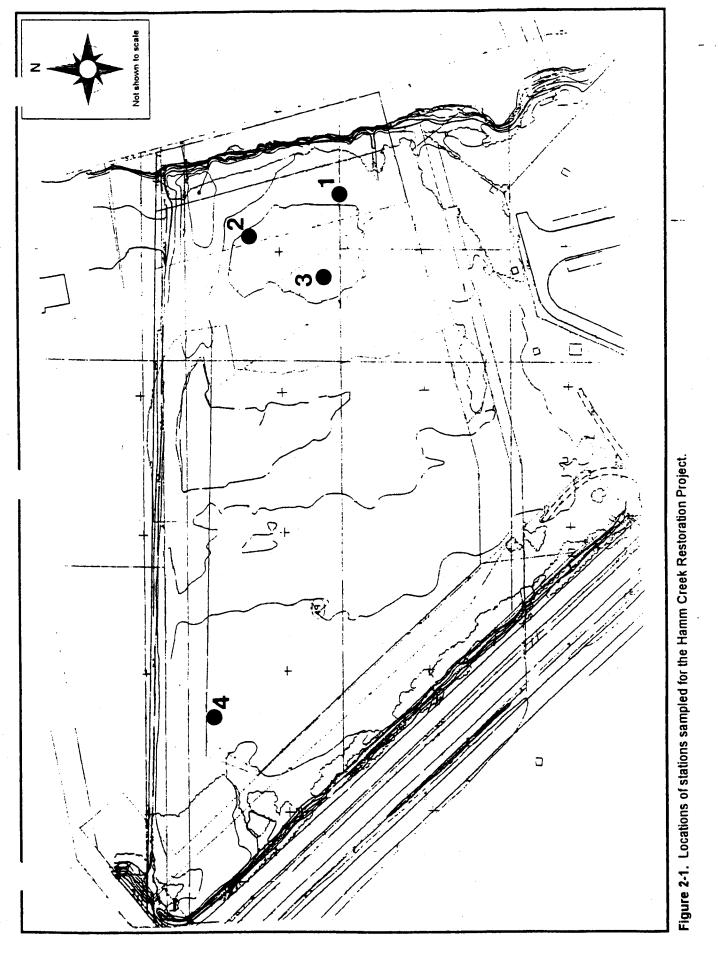
Hamm Creek Restoration Project Sediment Characterization September 12, 1997

AR 023211

ļ

2.0 METHODS

Detailed sampling and analysis procedures are provided in the Sampling and Analysis Plan for the Hamm Creek Restoration Project. Duwamish Turning Basin, Seattle, Washington prepared by the USACE (Appendix A). This section provides and overview of the sampling scheme and the methods used in the collection, processing, and analysis of sediments, including any deviations from the Sampling and Analysis Plan (SAP).


2.1 Sampling Overview

Sampling for the Hamm Creek restoration project occurred on June 16 and 17, 1997. Sampling was conducted by Tacoma Pump and Drill using a hollow-stem auger and stainless steel, 2-ft. split-spoon samplers. According to the sampling scheme designed by the USACE, 4 stations were sampled to characterize the 80,000 cubic yards of material proposed for dredging.

The sampling and analysis scheme devised by the USACE was in accordance with PSDDA dredged material evaluation guidelines. Puget Sound Estuary Program (PSEP) recommended guidelines (PSEP 1986, 1995, 1997 a,b,c,d), and modifications made through the PSDDA annual review process. A full description of the sampling and compositing scheme can be found in the SAP. Based on the low-moderate ranking, the full characterization requirements included collecting both surface (0 to 4 feet) and subsurface (>4 feet) sediments from each of the four stations, and compositing surface and subsurface sediments into two samples: C1 (surface) and C2 (subsurface). The surface sample represents approximately 32.000 cubic yards of material, and the subsurface represents approximately 48,000 cubic yards. At two of the stations (C2 and C4), an additional foot was added to the total core length sampled in order to document the exposed subsurface sediment beyond the dredging overdepth. The sampling locations and compositing scheme are presented in Figure 2-1 and in Table B-1, Appendix B.

Once it was determined that bioassay analyses would be required, a reference sediment was collected from Carr Inlet, Washington, on July 17, 1997.

Hamm Creek Restoration Project Sediment Characterization September 12, 1997

AR 023213

3

2.2 **Positioning**

Sampling locations were flagged by the USACE surveyors prior to the actual sampling effort. The flagged stations were used to position the drill auger for sampling. Sampling positions were marked on a survey map and Washington State Plane coordinates referenced to North American Datum 1927 (NAD 27) and elevations were determined from the map. The state plane coordinates were converted to latitude and longitude coordinates referenced to NAD 83 using the USACE's Corpscon coordinate conversion program. The elevations determined from the survey map were comparable to those provided in the Sampling and Analysis plan for all stations except Station 2. The elevation for this station was 22 feet instead of the 25 feet initially determined. Station positions and elevations referenced to Mean Lower Low Water (MLLW) are provided in Appendix B.

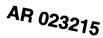
2.3 Sample Collection and Processing

Prior to sampling, all compositing equipment was decontaminated in accordance with PSEP and PSDDA protocols as described in the SAP. With the exception of the first three split-spoon samples collected, each split-spoon was also scrubbed with Alconox, and rinsed with distilled water, dilute nitric acid, methanol, and a final distilled water rinse. For the first three samples collected (Station 4: A1, A2, and B1), the split-spoons had been pre-cleaned but lacked the nitric and methanol rinses (refer to page 2 of the Field Log, Appendix C). Care was taken to avoid sampling material touching the sides of the core on these samples. Sample material touching the core catchers, which were plastic, was also avoided.

Samples were collected using a truck-mounted, hollow-stem auger drilling rig equipped with a split-spoon sampler. The first sample at a station was collected from 0 to 2 feet. Once a two-foot sample was collected, the split-spoon was opened, the recovery measured, and the core described in the field log. A portion of the sediment was removed and retained in a stainless steel pan for subsequent mixing and compositing. The pan was covered with aluminum foil in order to prevent contamination while subsequent samples for the composite were collected. The auger was

Hamm Creek Restoration Project Sediment Characterization September 12, 1997

then advanced to the bottom of the sample depth and the next two-foot sample collected. After the two samples for the surface composite at a station were collected (e.g., Station 1: A1 and A2), the pan was placed on ice in a cooler while collecting the subsurface samples at the station. This method of sampling, retrieval, and auger advancement at two-foot intervals was utilized until the design sample depth was reached. The subsurface samples were processed and stored in the same manner as the surface samples.


Due to the drillers' schedule, a second day of sampling was necessary. Therefore, the sediment collected for each composite (C1 and C2) on day one was homogenized, placed into the appropriate pre-cleaned, labeled sample jars, and stored on ice for subsequent mixing with material collected at the remaining stations on the second day. Once all material was collected from the four stations for each composite, the sediment was homogenized, placed in the pre-cleaned sample jars, and stored on ice until delivery to the laboratory or SAIC's storage facility in Woodinville, WA. 'Mercury and chemistry archive subsamples were stored at -18°C.

Subsamples for volatile organics analyses were collected from randomly chosen core sections. The subsample for C1 was collected from Station 2, core section A2 and the subsample for C2 was collected from Station 3, core section B2. According to the SAP, the subsample for C2 was planned for Station 3, core section B1. However, the split-spoon was opened before processing of the previous section was completed. In order to avoid potential loss of volatiles while the sample sat exposed, the decision was made to collect the volatiles from the next sample depth. The subsamples for both C1 and C2 volatile analyses were collected immediately after the samplers for each were opened.

In addition to the composite samples collected, samples were collected from a one-foot section beyond the design depth at Stations 2 and 4. These were collected to represent the exposed subsurface sediments once dredging is completed. The material for each one-foot or "Z" sample was placed in a separate stainless steel mixing pan, homogenized, and placed in a one-liter precleaned glass jar. The two "Z" samples (Z2 and Z4) were archived at -18°C for potential future analysis.

Hamm Creek Restoration Project Sediment Characterization September 12, 1997

5

While reviewing sample bore hole logs, it was discovered that an extra 1.3 feet were sampled at Station 3. The existing elevation at this station was +21.7 feet and the design elevation was +11 feet, so that a total core length of 10.7 feet was required. However, due to a calculation error, 12 feet were inadvertently sampled. Therefore, 1.3 extra feet of sediment were sampled for the subsurface composite, C2. Because this represented a maximum of 4% of the material collected for the C2 composite, and because there was no visible contamination based on color, texture, or odor, this is not expected to have had a significant contribution to contaminant levels measured in the sample. In addition, after the station locations were plotted, the actual elevation at Station 2 was determined to be 22 feet, instead of the expected 25 feet. A total of 13 feet were sampled from this station (Appendix B).

In order to measure the ammonia and sulfides levels in the test sediments when bioassays were begun, subsamples for ammonia and sulfides analyses were collected by the bioassay laboratory, Northwestern Aquatic Sciences, as the sediment for the bioassay testing was prepared and placed into bioassay test chambers. The subsamples for total sulfides analysis were preserved with zinc acetate. These subsamples for C1, C2, and Carr 4 were stored at 4°C and sent to the laboratory for ammonia and total sulfides analyses.

When transferring samples to the laboratories, samples were stored on ice or blue ice in coolers, transported to the various laboratories, and maintained at 4°C or -18°C (archived chemistry and mercury jars). All sample handling, subsampling, compositing, labeling, storage, and chain-of-custody procedures were conducted according to procedures outlined in PSEP, PSDDA, and the SAP. Copies of all chain-of-custody forms are provided in Appendix D.

2.4 Chemical Testing

The two composite samples collected from the Hamm Creek project site were tested for total solids, total volatile solids (TVS), total organic carbon (TOC), grain size, chromium, and PSDDA chemicals of concern. Upon evaluation of the chemistry results, the Carr 4 reference sediment was analyzed for total solids, TVS, TOC, and grain size. Subsamples collected by the bioassay

Hamm Creek Restoration Project Sediment Characterization September 12, 1997

laboratory for C1. C2, and Carr 4 were analyzed for total solids, ammonia, and total sulfides by AmTest, Inc. of Redmond, WA.

Target analytes and analytical methods used are presented in the SAP and in Table (Appendix A). The preparation procedures. method detection limits to be achieved by the laboratory, PSDDA screening levels. July 1996 draft SMS detection limits. SMS sediment quality standards (SQS), and 1988 LAET values are also included in the SAP. Methods followed those as specified in the PSDDA Management Plan Report (MPR) Unconfined. Open-water Disposal of Dredged Material. Phase II (North and South Puget Sound)", September 1989, and were analyzed in accordance with the latest PSDDA (1989) and PSEP (1986, 1997a,b) guidelines and review meetings (PSDDA 1991 a,b). A review of the quality control data is provided in Appendix E.

Analyses for most conventionals followed PSEP (1986). Ammonia was analyzed according to Plumb (1981) and TOC was analyzed according to EPA Standard Method SM5310B. The grain size distribution for each sample was determined in accordance with PSEP 1986 using a combination of standard sieves and hydrometer. Sieve sizes U.S. No. 4, 5, 10, 18, 35, 60, 120, and 230 were used for the grain size analyses. The strong acid digestion (SAD) method was used for the metals analyses. Specific analytical methods for contaminant chemistry are provided in the laboratory data report (Appendix E).

2.5 Biological Testing

Following evaluation of the chemistry results, the two composite sediment samples were selected for bioassay testing. Both C1 and C2 exceeded the PSDDA screening level for total DDT, and C1 also exceeded the screening level for total PCBs. Bioaccumulation trigger and PSDDA maximum levels (ML) were not exceeded, so that bioaccumulation testing was not required.

The bioassays included the 10-day amphipod (*Eohaustorius estuarius*) and echinoderm larval (*Dendraster excentricus*) acute toxicity tests, and the 20-day chronic sublethal biomass/growth test using *Neanthes arenaceodentata*. The amphipod and echinoderm larval tests were conducted by

Hamm Creek Restoration Project Sediment Characterization September 12, 1997

7

AR 023217

Northwestern Aquatic Sciences, Newport, OR; Parametrix Inc., Kirkland, WA, performed the *Neanthes* bioassay. The PSDDA bioassays were conducted using the most recent PSEP guidelines (1995) with modifications specified by PSDDA (1989b), bioassay public workshops (PSDDA 1990b), the annual review minutes (ARM), and Sediment Management ARM (SMARM).

Because the test sediments were from an upland freshwater environment, and were proposed to be disposed at a saltwater environment, the salinity of the samples needed to be adjusted to emulate the saltwater environment. For the amphipod test, *Eohaustorius estuarius* was used as the test organism due to the sensitivity of *Rhepoxynius abronius* to lower salinity conditions (<25 ppt). According to PSEP, the interstitial and overlying salinities of the sediments should be adjusted to the ambient salinity conditions from which the amphipods were collected. The amphipods were collected at low tide from a location near Yaquina Bay, OR (Beaver Creek), which is exposed to a range of salinities from approximately 0-28 ppt. Therefore, it was decided, in consultation with the USACE, to run the test at approximately mid-range at 15 ppt. The salinity at the time of amphipod collection was about zero ppt, and the amphipods were slowly acclimated to 14 ppt prior to the start of the test. For the amphipod test, the salinity for the reference and control sediments also required adjusting.

2.6 Reference Sediment Collection

Once the results of the chemistry analyses were received and the necessity for bioassay testing determined, reference sediments were collected in Carr Inlet (Carr 4) on July 17, 1997. The reference sediment sample was collected using a 0.025 m² stainless steel van Veen grab sampler aboard the University of Washington's Boston whaler. Sediments were wet-sieved in the field in order to verify grain size compatibility to the Hamm Creek samples. Target fine fractions for the reference sediments were approximately 31-41% fines. Samples were collected from the top 10 cm of the grab. Material that appeared to be sulfidic was avoided. Several grabs were needed to obtain sufficient volume for a sample. Once a sufficient quantity of sediment was obtained, the material was mixed until homogenous and placed in pre-cleaned labeled sample jars. All decontamination, subsampling and processing was conducted according to PSEP/PSDDA as indicated above for sample processing and handling.

Hamm Creek Restoration Project Sediment Characterization September 12, 1997

The sediment chemistry analyses and biological testing results for the Hamm Creek restoration project sediment characterization are summarized below. All sediment chemistry and bioassay laboratory reports and associated quality control documentation are provided in Appendices E and F. The QA1 level review reports and checklists are provided at the beginning of each of the appendices.

3.1 Sediment Core Descriptions

A detailed description of each core collected is provided in the borehole logs in Appendix C. The surface sediments (0 to 4 feet) generally consisted of a brown, silty fine sand with roots and organic fibers. Some small gravels were present in surface sediments collected from Station 4, and wood organics were present in surface sediments collected at Station 3. Occasional 1 to 2 mm lenses of a gray sandy clay to clayey sand were also present in the surface sediments.

Although the subsurface sediments varied with depth, these sediments were primarily a silty to clayey fine sand, and were more of a sandy clay in some sections. Wood debris was present at approximately 6 feet in core depth at Stations 3 and 4, and between 8 and 10 feet at Stations 1 and 2. Elevations corresponding to these depths at which woody debris occurred were between 13 and 17 feet MLLW at all stations. At Station 2, the core section between 8.4 and 10 feet core depth was a black silty clay to clayey silt and had a sulfidic odor. At stations I and 3, pinkish-gray clayey fine sand lenses were present between 9 and 11 feet MLLW elevations.

3.2 Sediment Conventionals

The sediment conventional chemistry results are provided in Table 3-1. The subsurface sediment (C2) contained about 10% more fine material than the surface sediment (C1). Both sediments were primarily sand, with 68.7% sand for C1 and 58.8% sand for C2 (30.7% and 41.1% fines, respectively). The reference sediment, Carr 4, fine fraction was comparable to the Hamm Creek

Hamm Creek Restoration Project Sediment Characterization September 12, 1997

9

Station Number			Jul-96		C1		C2		Carr 4	
Lab Number	PSDDA	PSDDA	Draft SMS	1988	97-A008101		97-A008102		97-A009723	
Collection Date	SL	ML	Det. Limits	LAET	16-Jun-97	Q	16-Jup-97	Q	17-Jul-97	<u>_Q</u>
Conventionals										
Total Organic Carbon (% DW)	-	-	-	_	1.9		0.63		0.39	
Total Sulfides (mg/kg DW)	_	_	-	_	16	υ	96		35	
Ammonia (mg-N/kg DW)	-	-	-		1.8	U	30		25	
	_	_	_	_	4.60		2.37		1.61	
TVS (% DW) Total Solids (% DW)	_	_	-	-	4.00 82.2		77.2		71.3	
Grain Size										
Percent Gravel (>2.0 mm)	-	-	-	-	0.5%		0.1 %		0.0%	
Percent Sand (<2.0 mm - 0.06 mm)	-	-	-	-	68.7%		58.8 %		70.6%	
Percent Silt (0.06 mm - 0.004 mm)	-		-	-	24.3%		33.3 %		26.3%	
Percent Clay (<0.004 mm)	-	-	-		6.4%		7.8 %		3.1%	
Percent Fines (<0.06 mm)	-	-	-	-	30.7%		41.1 %		29.4%	
Metals in mg/kg DW										
Antimony	20	200	-	150	1.1	U	1.3	U	NA	
Arsenic	57	700	19	57	8.8	-	6.3		NA	
Cadmium	0.96	9.6	1.70	5.1	0.04		0.03	υ	NA	
Chromium	-	-	87	260	23		19		NA	
Copper	81	810	130	390	22		18		NA	
Lead	66	660	150	450	32		24		NA	
Mercury	0.21	2.1	0.14	0.59	0.074		0.047		NA	
Nickel	140	-	_	-140	20		11		NA	
Silver	1.2	6.1	2.0	0.56	0.23		0.13	u	NA	
Zinc	160	1600	137	410	66		42		NA	
LPAH in ug/kg DW										
Naphthalene	210	2100	700	2100	17	U	19	U	NA	
Acenaphthylene	64	640	433	-560	17	Ŭ	19	Ŭ	NA	
Acenaphthene	63	630	167	500	17	Ū	19	Ū	NA	
Fluorene	64	640	180	540	17	Ū	19	U	NA	
Phenanthrene	320	3200	500	1500	17	Ū	19	Ū	NA	
Anthracene	130	1300	320	960	17	U	19	U	NA	
2-Methyinaphthaiene	67	670	223	670	17	Ū	19	U	NA	
Total LPAH	610	6100	-	5200	17	U	19	υ	NA	
HPAH in ug/kg DW Fluoranthene	630	6300	567	1700	17	U	19	U	NA	
Pyrene	430	7300	867	2600	17	υ	19	υ	NA	
Benzo(a)anthracene	450	4500	433	1300	17	Ŭ	19	Ŭ	NA	
Chrysene	670	6700	467	1400	17	υ	19	Ŭ	NA	
Benzofluoranthenes	800	8000	1067	3200	17	ΰ	19	Ū	NA	
Benzo(a)pyrene	680	6800	533	1600	17	Ŭ	19	Ũ	NA	
Indeno(1,2,3-cd)pyrene	69	5200	200	600	17	Ŭ	19	Ŭ	NA	
Dibenz(a,h)anthracene	120	1200	77	230	17	Ŭ	19	Ŭ	NA	
Benzo(g,h,i)perylene	540	5400	223	670	17	Ŭ	19	Ŭ	NA	
Total HPAH	1800	51000	-	12000	17	U	19	U	NA	
Chlorinated Aromatics in ug/kg DW 1.3-Dichlorobenzene	170	-	_	-170	3	U	3	U	NA	
,	26	260	- 37 -	110	3	U	3	U	NA	
1.4-Dichlorobenzene	20 19	350	37	35	3	U	3	บ	NA NA	
1.2-Dichlorobenzene	19	350 64	35	35	3 5	U	6	U	NA NA	
1.2.4-Trichlorobenzene Hexachlorobenzene	23	230	22	22	10	U	11	υ	NA	

 Table 3-1.
 Conventional and contaminant chemistry results for the Hamm Creek Restoration Project.

Hamm Creek Restoration Project Sediment Characterization September 12, 1997

Table 3-1. Conventional and contaminant chemistry results for the Hamm Creek Restoration Project. (Continued)

Station Number			Jul-96 Draft SMS	1988	C1 97-A008101		C2 97-A008102		Carr 4 97-A009723	
Lab Number	PSDDA	PSDDA		LAET	16-jup-97	0	16-Jun-97	0	17-Jul-97	0
Collection Date	<u>SL</u>	ML	Det. Limits	LACT	10-,100-97		10-,700-77			
hthalate Esters in ug/kg DW										
Dimethyl phthalate	160	- "	24	71	17	υ	19	U	NA	
Diethyl phthalate	97		67	-48	17	U	19	U	NA	
Di-n-butyl phthalate	1400	-	467	1400	17	U	19	U	NA	
Butyl benzyl phthalate	470	-	21	63	17	U	19	U	NA	
Bis(2-ethylhexyl)phthalate	3100	-	433	1300	17	U	19	υ	'NA	
Di-n-octyl phthalate	6200	-	2067	420	17	U	19	U	NA	
henols in ug/kg DW					17	U	19	U	NA	
Phenol	120	1200	140	420	17 9	U	9	Ŭ	NA	
-Methyiphenol	20	72	63 223	63 670	17	υ	19	Ŭ	NA	
-Methylphenol	120 29	1200 50	223	29	9	Ŭ	9	Ŭ	NA	
2,4-Dimethylphenol	100	690	120	-140	43	Ŭ	47	Ū	NA	
Pentachlorophenol	100	070	. 20	1-10		-				
Miscellaneous Extractables in ug/kg l	DW								N7 4	
Benzyl Alcohol	25	73	57	57	10	U	11	U	NA	
Benzoic Acid	400	690	217	650	87	U	93	U	NA	
Dibenzofuran	54	540	180	540	17	U	19	U	NA	
Hexachloroethane	1400	14000	-	-	17	<u> </u>	19	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	NA NA	
Hexachlorobutadiene	29	290	11	11	14	<u>U</u> U	15	$-\frac{v}{v}$	J NA NA	
N-Nitrosodiphenylamine	28	220	28	28	10	U	11	C.		
Volatile Organics in ug/kg DW			•							
Trichloroethene	160	1600	-	_	3	U	3	U	NA	
Tetrachioroethene	14	210	· _	57	3	U	3	U	NA	
Ethylbenzene	10	50	-	10	3	U	. 3	U	NA	
Total Xylene	12	160	-	40	3	U	3	U	NA	
I GUEL A YIGHG										
Pesticides and PCBs in ug/kg DW						-	112	7	NA	
Total DDT	6.9	69	_		14	<u></u>	11.3	-	NA	
4,4'-DDE	-	-	-	9	3.7		2.9		NA	
4,4'-DDD	-	-	-	16	6.7		5.3		NA	
4,4'-DDT	-	-	-	•6	3.6		3.1		NA	
Lindane	10		-	-	0.52	U 	0.55	U		
Heptachior	10	-	-	-	0.52	υ	0.55	U	NA	
Aldrin	10	-	-	-	2.4		1.3		NA	
Dieldrin	10	` -	-	-	6.1		6.0		NA	
Chiordane	10	-	-	-	4.4	_	1.5	••	NA	
Arocior-1016	-		-	-	8.6	U	9.2	U		
Aroclor-1221	-	-	-	-	34	U	37	U	NA	
Aroclor-1232	-	- 1	-	-	8.6	U	9.2	U	NA	
Arocior-1242	-	-	-	-	8.6	υ	9.2	U	NA	
Arocior-1248		-	-	-	8.6	U	9.2	U	NA	
Aroclor-1254	-	-	-	-	160		. 76		NA	
Aroclor-1260	-	-	-	-	8.6	_ U	9.2	U	NA	
Total PCBs	130	2500	6	130	160		76		NA	

U = Uindetected

NA = Not Analyzed

Q = Qualifier

Note: Items in **bold and highlighted exceeded the PSDDA screening level (SL)**. Hexachlorobutadiene detection limits exceeded the SMS detection limit and 1988 LAET.

> Hamm Creek Restoration Project Sediment Characterization

September 12, 1997

AR 023221

11

samples. The wet-sieve test conducted in the field indicated 34% fines; the analytical results fine fraction was 29.4% fines.

The total solids fractions for all three sediments were high, ranging from 71.3% for Carr 4 to 82.2% for C1. The total volatile solids fractions in all three samples were comparable, ranging from 1.61% for Carr 4 and 4.6% for C1. Similar to TVS, total organic carbon concentrations were comparable among the three samples, and these concentrations were quite low, the highest being in sample C1 at 1.9%. Total sulfides were highest in C2 at 96 mg/kg and undetected in sample C1. Similar to total sulfides, ammonia levels in C2 were highest at 30 mg/kg and lowest in C1 at 1.8 mg/kg.

3.3 Contaminant Chemistry

The results of the analytical chemistry analyses are summarized in Table 3-1. Concentrations that exceeded the PSDDA screening levels (SL) are highlighted in bold. With the exception of antimony, all metals analyzed were detected in C1. Antimony was undetected in both C1 and C2. Silver and cadmium were also undetected in C2, while all other metals were detected.

Volatile and semivolatile organics were undetected in both samples. However, the pesticides aldrin, chlordane, and dieldrin were detected at levels below the PSDDA SL in both samples. The screening level for total DDT was exceeded in both samples, with C1 having levels of 14 μ g/kg and C2 showing levels of 11.3 μ g/kg. However, these levels were well below the bioaccumulation trigger and PSDDA maximum levels. In addition, the concentration of PCB Arochlor-1254 measured for C1 (160 μ g/kg) exceeded the PSDDA screening level for total PCBs (130 μ g/kg). This analyte was detected below screening levels in C2 (76 μ g/kg).

In addition to the PSDDA screening levels. Table 3-1 includes the July 1996 SMS detection limits and 1988 Lower Apparent Effects Threshold (LAET) values. The July 1996 SMS detection limits were met for all analytes except hexachlorobutadiene and total PCBs. The hexachlorobutadiene detection limit for C1 (14 μ g/kg) and C2 (15 μ g/kg) exceeded the SMS draft detection limit of 11

Hamm Creek Restoration Project Sediment Characterization

1

September 12, 1997

 μ g/kg. The detection limits for these two analytes also exceeded the SMS draft detection limit of 11 μ g/kg. With the exception of Arochlor-1221, the detection limit for PCB arochlors for C1 and C2 was 8.6 and 9.2 μ g/kg, respectively. Arochlor-1221 detection limits were 34 μ g/kg (C1) and 37 μ g/kg (C2). The draft SMS target detection limit for total PCBs was 6 μ g/kg.

Table 3-2 compares the analytical results to marine sediment quality standards. Organic analyte results were TOC normalized for the comparison, with the exception of phenols. benzyl alcohol, benzoic acid. volatile organics, and pesticides. All metals results were well below SQS levels. With the exception of hexachlorobenzene in C1 and C2, and 1,2,4-trichlorobenzene for C2, all organics analysis results were below SQS levels. Hexachlorobenzene detection levels normalized to TOC were 0.53 mg/kg (C1) and 1.7 mg/kg (C2). The SQS chemical criterion for this analyte is 0.38 mg/kg. However, these detection limits were below the maximum chemical criteria/minimum clean-up levels. The detection level for 1.2,4-trichlorobenzene for C2 was 0.95 mg/kg, and the SQS chemical criterion for this analyte is 0.81 mg/kg. The maximum chemical criterion for this analyte is 1.8 mg/kg. The total PCB concentration of 12 mg/kg for C2 was equivalent to the SQS criterion of 12 mg/kg.

Based on the bioassay results, the USACE requested the laboratory to determine if any tentatively identified compounds (TICs) were measured during the analyses. The laboratory reviewed the data and found no semivolatile organic TICs detected.

3.4 Bioassays

Based on the results of the chemistry analyses, both C1 and C2 were identified for biological testing: C1 due to total DDT and total PCB exceedances, and C2 due to total DDT exceedances. One reference sediment collected from Carr Inlet (Carr 4) was tested with the Hamm Creek sediments. The results of the bioassays are summarized in Table 3-3 and provided in Appendix F. All bioassays were conducted within the 8-week holding time specified by PSDDA. Control mortalities for each test were within PSDDA/SMS recommended ranges for negative controls. The mean control growth rate for the *Neanthes* test met the PSDDA/SMS target growth rate of 0.72

Hamm Creek Restoration Project Sediment Characterization September 12, 1997

13

Table 3-2. Hamm Creek project data compared to sediment management standards.

Station Number	WA SMS	WA SMS	C1		C2	
Lab Number	SQS	SQS	97-A008101		97-A008102	
Collection Date	Chem Criteria	Max Chem Criteria	16-Jun-97	<u>Q</u>	16-Jun-97	<u>Q</u>
Conventionals			1.9		0.63	
Total Organic Carbon (% DW)	-	-		11	96	
Total Sulfides (mg/kg DW)	-	-	16	11		
Ammonia (mg-N/kg DW)	-	-	1.8		30	
TVS (% DW)	-	-	4.60		2.37	
Fotal Solids (% DW)	-	-	82.2		77.2`	
Grain Size						
Percent Gravel (~2.0 mm)	-	-	0.5%		0.1 %	
Percent Sand (2.0 mm - 0.06 mm)	-	-	68. 7%		58.8 %	
Percent Silt (0.06 mm - 0.004 mm)		-	24.3%		33.3 %	
Percent Clay (* 0.004 mm)	-	-	6.4%		7.8 %	
Percent Fines (~ 0.06 mm)	-	-	30.7%		41.1 %	
Metals in mg/kg DW						
Antimony	-	-	1.1	U	1.3	U
Arsenic	57	93	8.8		6.3	
Cadmium	5.1	6.7	0.04		0.03	U
Chromium	260	270	23		19	
Copper ,	390	390	22		18	
Lead	450	530	32		24	
Mercury	0.41	0.59	0.074		0.047	
Nickel		-	20		11	
Silver	6.1	6.1	0.23		0.13	U
Zinc	410	960	66		42	
LPAH in mg/kg TOC	_					• •
Naphthalene	99	170	0.89	U	- 3	U
Acenaphthylene	66	66	0.89	Ľ	3	U
Acenaphthene	16	57	0.89	U	3	U
Fluorene	23	79	0.89	U	3	U
Phenanthrene	100	480	0.89	บ 11	3	U
Anthracene	220	1200	0.89		3 3	ี บ บ
2-Methylnaphthalene	38	64 780	0.89	U 1	3	- U
Total LPAH	370	780	0.89	ч.,	د	C.
HPAH in mg/kg TOC	140	1200	0.80	U	3	U
Fluoranthene	160	1200	0.89 0.89	U	3	- U
Pyrene	1000	1400	0.89	U	3	U U
Benzo(a)anthracene	110	270	0.89	U	3	U
Chrysene	110	460	0.89	บ บ	3	U
Benzofluoranthenes	230 99	450	0.89	U U	3	- U U
Benzo(a)pyrene	34	210 88	0.89	U	3	U U
Indeno(1.2.3-cd)pyrene	12		0.89	U	3	U U
Dibenz(a,h)anthracene	31	.33 78	0.89	0	3	U U
Benzo(g.h.i)pervlene	31 960	78 5300	0.89	U	3	- U
Total HPAH	700	2300	0.67	C,	5	, i
Chlorinated Aromatics in mg/kg TOC						
1.3-Dichlorobenzene	-	-	-		-	_
1.4-Dichlorobenzene	3.1	9	0.16	U	0.48	U
1.2-Dichlorobenzene	2.3	2.3	0.16	U	0.48	<u> </u>
1.2.4-Trichlorobenzene	0.81	1.8	0.26	1!	-	U
Hexachlorobenzene	0.38	2.3	0.53	11	1.7	<u></u> !

Hamm Creek Restoration Project Sediment Characterization September 12, 1997

AR 023224

14

Table 3-2. Hamm Creek project data compared to sediment management standards. (Continued)

Station Number	WA SMS	WA SMS	C1 97-A008101		C2 97-A008102	
Lab Number	SQS	SQS		~		
Collection Date	Chem Criteria	Max Chem Criteria	16-Jun-97	Q	16-Jun-97	Q
Phthalate Esters in mg/kg TOC						
Dimethyl phthalate	53	53	0.89	U	3	U
Diethyl phthalate	61	110	0.89	υ	3	U
Di-n-butyl phthalate	220	1700	0.89	υ	3	U
Butyl benzyl phthalate	4.9	64	0.89	U	3	U
Bis(2-cthvlhexyl)phthalate	47	78	0.89	U	3	U
Di-n-octvl phthalate	58	4500	0.89	U	3	U
Phenois in ug/kg DW						
Phenol	420	1200	17	U	19	U
2-Methylphenol	63	63	9	U	9	U
4-Methylphenol	670	670	17	U	19	U
2.4-Dimethylphenol	29	29	9	υ	9	U
Pentachlorophenol	360	690	43	U	47	U
Miscellaneous Extractables in ug/kg D	W					
Benzyi Alcohol	57	73	10	U	11	U
Benzoic Acid	650	650	87	U	93	U
Miscellaneous Extractables in mg/kg T	oc					
Dibenzofuran	15	58	0.89	υ	3	υ
Hexachioroethane	-	-	0.07		_	
	3.9	6.2	0.74	U	2.4	υ
Hexachlorobutadiene N-Nitrosodiphenylamine	11	11	0.53	U	1.7	U
Volatile Organics in ug/kg DW						
Trichloroethene	-		3	U	3	υ
Tetrachloroethene	-	-	3	Ū	3	Ū
Ethylbenzene	_	_	3	Ū	3	Ū
Total Xylene	-	- <u>-</u>	3	U	3	U
Pesticides in ug/kg DW						
	_	-	14		11.3	
Total DDT		-			2.9	
4.4'-DDE	-	-	3.7			
4.4'-DDD	-	=	6.7		5.3	
4.4'-DDT	-	-	3.6		3.1	
Lindane	-	-	0.52	U	0.55	U
Heptachior	-	-	0.52	U	0.55	U
Aldrin	-		2.4		1.3	
Dieldrin	-	-	6.1		6.0	
Chlordane	-	-	4.4		1.5	
PCBs in mg/kg TOC						
Aroclor-1016	_	· -	0.45	U	1.5	U
Aroclor-1221	-	-	1.8	U	5.9	U
Aroclor-1232	-	-	0.45	Ŭ	1.5	Ū
	_	_	0.45	U	1.5	U
Aroclor-1242	-	-				
Aroclor-1248	-	-	0.45	U	1.5	U
Aroclor-1254	-	-	8.7		12	
Aroclor-1260	-	-	0.45	U	1.5	U
Total PCBs	12	65	8.7		12	

U = Undetected

Note: Items highlighted in bold represent detection limits that exceeded the SQS chemical criteria

15

Q = Qualifier

Hamm Creek Restoration Project Sediment Characterization September 12, 1997

AR 023225

Station .	Eohaustorius Mortality (%)	Echinoderm Larval Mortality/Abnormality (NCMA) (%)	20-Day Neanthes Mean Growth Rate (mg/individual/day)
Control	1	NA	0.92
Cl	4	43.5*	0.91
C2	4	33.8*	0.59*
Carr 4	4	-10.2	0.84

Table 3-3.	Results for the amphipod acute toxicity test, echinoderm larval test, and 20-day
	Neanthes growth test.

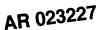
* Denotes statistically significant difference from the reference (p = <0.05)

NA Normalized combined mortality/abnormality (NCMA) not applicable. Mortality in the seawater control was 23.3% (normal/initial).

Note Values highlighted in bold represent test sediment results which failed to meet reference sediment comparison criteria.

Hamm Creek Restoration Project Sediment Characterization September 12, 1997

mg/individual/day. In addition, the *Neanthes* initial weights met the target of 0.5 mg/individual. Positive controls were within acceptable limits (laboratory performance standards and ranges reported in PSEP 1995). Results for positive controls are discussed in the QA1 review checklists in Appendix F. Reference sediment results were acceptable for all tests according to both PSDDA and SMS criteria.


There was no toxic response observed in either test sediment for the amphipod (*Eohaustorius*) test, which exhibited 96% survival in both C1, C2, and the reference sediment. All mortalities were less than the PSDDA guideline of <20% over the control mortality and the SQS of $\leq 25\%$ mortality.

For the *Neanthes* test, the mean individual growth rate for C1 was 99% of the control and 108% of the reference, which indicated there was no toxic response for this sample. The mean individual growth rate for C2 was <80% of the control growth (64% of the control), and was significantly different from the reference sediment (Student's t-test: p < 0.05). However, it met the criteria of \geq 70% of the reference. The mean individual growth rate for C2 equaled 70% of the reference.

All test sediment normalized combined mortality/abnormality (NCMA) results for the echinoderm larval test were greater than the control guidelines of <20% over the control NCMA. The NCMA results for both test sediments were significantly different from the reference sediment and exceeded the PSDDA suitability criteria of <30% over the reference sediment and the sediment impact zone cleanup level criteria of $\leq30\%$ over he reference. This represents a toxic response for both sediments for this bioassay test, and falls under the one-hit criteria for the echinoderm test for nondispersive disposal sites.

Hamm Creek Restoration Project Sediment Characterization September 12, 1997

17

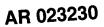
4.0 Summary

The sediments collected at the Hamm Creek restoration project site consisted primarily of a silty fine to medium sand. Organic fibers such as root material were abundant in the surface sediments. Pockets of wood chips were observed in both surface and subsurface sediments. Total solids levels were high in both samples, and TVS and TOC were low. Ammonia and sulfides were low in the surface sample, but somewhat elevated in the subsurface sample.

Metals were detected at concentrations below PSDDA screening levels and SQS chemical criteria. Semivolatile and volatile organics were undetected in both samples. Aldrin, chlordane, and dieldrin were detected below PSDDA screening levels in both samples. For both surface and subsurface samples total DDT levels measured exceeded the PSDDA SL, and screening levels for total PCBs were exceeded for sample C1. The detection limit for hexachlorobenzene for both samples exceeded the SQS chemical criterion, and the detection limit for 1,2,4-trichlorobenzene for C2 exceeded the SQS chemical criterion.

Based on the results of the chemistry analyses, bioassay testing was conducted for both surface and subsurface samples. Testing results indicated no significant effects for the acute amphipod test. In the 20-day *Neanthes* test, no toxic effect was observed for C1, and C2 just met the criterion of \geq 70% of the reference sediment mean individual growth rate. For the echinoderm larval test, both surface and subsurface sediments had normalized combined mortalities/abnormalities that were greater than the control limit of <30% over the reference sediment. According to PSDDA interpretive criteria guidelines for nondispersive aquatic disposal sites, samples C1 and C2 fall under the one-hit criteria for the echinoderm larva test.

Hamm Creek Restoration Project Sediment Characterization September 12, 1997


5.0 **REFERENCES**

- Ecology. 1995. Sediment Management Standards. Chapter 173-204 WAC. Washington State Department of Ecology. December 1995.
- Plumb. R.H. 1981. Procedures for handling and chemical analysis of sediment and watersamples. Technical Report EPA/CE-81-1. U.S. Army Corps of Engineers. Vicksburg, MS.
- PSDDA. 1989. Management Plan Report Unconfined Open-Water Disposal of Dredged Material, Phase II (North and South Puget Sound). Puget Sound Dredged Disposal Analysis Reports Series. Cooperatively published by (in alphabetical order) U.S. Army Corps of Engineers, Seattle District: U.S. Environmental Protection Agency, Region X; Washington State Department of Ecology; and Washington State Department of Natural Resources. September 1989.
- PSDDA. 1990a. Changes to the: Management Plan Report. Unconfined Open-Water Disposal of Dredged Material, Phase II. Puget Sound Dredged Disposal Analysis Reports Series. February 1990.
- PSDDA. 1990b. Summary and conclusions of the Puget Sound Dredged Disposal Analysis (PSDDA) Bioassay Workshop, memorandum of record. U.S. Army Corps of Engineers. Seattle District. July 1990.
- PSDDA. 1991a. Summary and Conclusions of the Puget Sound Dredged Disposal Analysis (PSDDA) Chemistry Quality Assurance/Quality Control (QA/QC) and PSDDA Streamlining Workshop held on January 24, 1991 at Seattle District U.S. Army Corps of Engineers.
- PSDDA. 1991b. Changes to PSDDA Screening and Maximum Level Values for Dredged Material Management Year 1990. Puget Sound Dredged Disposal Analysis Reports Series. May 1991.
- PSDDA. 1995. Sediment Management Annual Review Meeting. Puget Sound Dredged Disposal Analysis Program. Cooperatively published by (in alphabetical order) U.S. Army Corps of Engineers, Seattle District; U.S. Environmental Protection Agency, Region 10; Washington State Department of Ecology; and Washington State Department of Natural Resources. August, 1995.
- PSDDA. 1996. Sediment Management Annual Review Meeting. Puget Sound Dredged Disposal Analysis Program. Cooperatively published by (in alphabetical order) U.S. Army Corps of Engineers. Seattle District; U.S. Environmental Protection Agency. Region 10; Washington State Department of Ecology; and Washington State Department of Natural Resources. May, 1996.

Hamm Creek Restoration Project Sediment Characterization September 12, 1997

- PSEP. 1986. Puget Sound Estuary Program. Recommended protocols for measuring selected environmental variables in Puget Sound. Final Report. Prepared for the U.S. Environmental Protection Agency Region X. Office of Puget Sound, and the U.S. Army Corps of Engineers. Tetra Tech Inc., Bellevue, Washington.
- PSEP. 1991. Puget Sound Estuary Program: Recommended protocols for conducting laboratory bioassays on Puget Sound sediments. Final Report. Prepared for U.S. Environmental Protection Agency Region X, Office of Puget Sound and U.S. Army Corps of Engineers, Seattle, District. PTI Environmental Services, Inc., Bellevue, Washington.
- PSEP. 1995. Puget Sound Estuary Program: Recommended guidelines for conducting laboratory bioassays on Puget Sound sediments. Prepared for U.S. Environmental Protection Agency Region X. Office of Puget Sound and Puget Sound Water Quality Authority, Olympia, WA. PTI Environmental Services, Inc., Bellevue, Washington.
- PSEP 1997a. Puget Sound Estuary Program. Recommended guidelines for measuring organic compounds in Puget Sound water. sediment, and tissue samples. Prepared for the U.S. Environmental Protection Agency Region X. Office of Puget Sound, and the Puget Sound Water Quality Authority. King County Water Pollution Control Division Environmental Laboratory.
- PSEP 1997b. Puget Sound Estuary Program. Recommended guidelines for measuring metals in Puget Sound water, sediment, and tissue samples. Prepared for the U.S. Environmental Protection Agency Region X, Office of Puget Sound, and the Puget Sound Water Quality Authority. King County Water Pollution Control Division Environmental Laboratory.
- PSEP 1997c. Puget Sound Estuary Program. Recommended guidelines for sampling marine sediment, water column, and tissues in Puget Sound. Prepared for the U.S. Environmental Protection Agency Region X, Office of Puget Sound, and the Puget Sound Water Quality Authority. King County Water Pollution Control Division Environmental Laboratory.
- PSEP 1997d. Puget Sound Estuary Program. Recommended quality assurance and quality control guidelines for the collection of environmental data in Puget Sound. Prepared for the U.S. Environmental Protection Agency Region X, Office of Puget Sound, and the Puget Sound Water Quality Authority. King County Water Pollution Control Division Environmental Laboratory.

Hamm Creek Restoration Project Sediment Characterization September 12, 1997

APPENDIX A

SAMPLING AND ANALYSIS PLAN

An Employee-Owned Company

SAMPLING & ANALYSIS PLAN FOR THE HAMM CREEK RESTORATION PROJECT

DUWAMISH TURNING BASIN SEATTLE, WASHINGTON

April 28, 1997

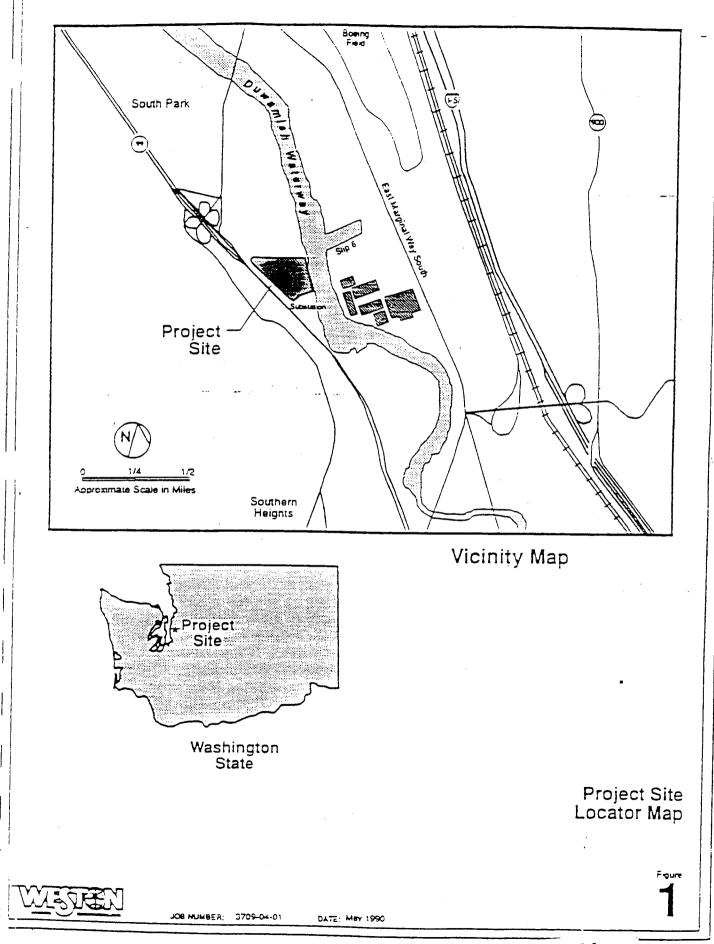
Prepared by:

David Fox Dredged Material Management Office Seattle District Corps of Engineers

AR 023232

÷.

1.0 PROJECT DESCRIPTION, SITE HISTORY AND ASSESSMENT


1.1 Project Description. Hamm Creek will be realigned and 7 acres of a 22-acre piece of land adjacent to the Seattle City Light substation (see Figure 1) will be converted into a combined saltwater/freshwater wetland. This project is part of the Corps of Engineers Restoration Program and will be accomplished under Section 1135 of the Water Resources Development Act of 1986. Approximately 10,000 cubic yards will be excavated in creating meanders in Hamm Creek along West Marginal Way. This material will not be characterized for PSDDA disposal. An additional 80,000 cubic yards will be dredged in providing a new outlet for the creek to the Duwamish River, creating a saltwater marsh in the riverside area and excavating upland for a freshwater wetland. This material is proposed for open-water disposal at the Elliott Bay site or beneficial use and will therefore be characterized under PSDDA and SMS guidelines.

The PSDDA Evaluation Procedures Technical Appendix - Phase I (PSDDA, 1988 - page I-12) allows excavated material, that would otherwise not be allowed for open-water disposal, to be considered dredged material if an ecological benefit can be shown at the dredging site. This project has clear ecological benefit at the dredging site and therefore meets this criterion.

1.2 Site History. The Duwamish estuary was originally mudflat. Most of the area was subsequently filled and developed. A portion of the Seattle City Light property was filled and developed for use as a substation location. The remaining portion, upon which the proposed habitat restoration project will be located, was never developed for industrial or commercial purposes. It was however used as a dredged material stockpiling area. Following is a chronological listing of maps and dredged material placement events involving the site:

- Condition Survey October 22, 1928 U.S. Army Corps of Engineers. See Figure A1 in Appendix A. This map shows the Seattle City Light area platted but undeveloped. It is unknown whether the shoreline had been altered prior to this time, but the shoreline in this map was used as a baseline to show alterations at later times.
- Condition Survey April 23, 1953 U.S. Army Corps of Engineers. See Figure A2 in Appendix A. Development north of the site has begun (City Packing Company). While no records were found regarding fill on the site between 1928 and 1953, it appears that the shoreline has been straightened and a bulkhead has been constructed along the Duwamish River. If this map represents the actual configuration of the river in 1953, then it is likely that some fill has occurred in the area. There is no indication that Seattle City Light owned the property at this time.
- 1954 U.S. Army Corps of Engineers dredging records indicate that a dike was constructed and 220,000 cubic yards of dredged material were placed on site as fill for construction of the Seattle City Light (City of Seattle Department of Lighting) substation. The disposal area was bounded by Ham and Schmitz Roads and W. Marginal Way, which encompasses the entire Seattle City Light property.
- Condition Survey April 4, 1957 U.S. Army Corps of Engineers. See Figure A3 in Appendix A. The bulkhead configuration has changed, with only that portion of the Seattle City Light property used for the substation now bulkheaded. Some dredging appears to have occurred along the rest of the Seattle City Light shoreline. Dredging records indicate that it was common practice to perform "clean-up" dredging along the shoreline of material that

1

had escaped from the disposal site during dredging operations. A "boundary of fill" is indicated on the map and includes the entire site.

- Condition Survey⁻- April 19, 1960 U.S. Army Corps of Engineers. See Figure A4 in Appendix A. The shoreline and bulkhead configuration has not changed since 1957. Transmission poles and towers are shown, as is a disposal area in the northern portion of the site. Records indicate that 294,000 cubic yards of dredged material were placed on site in 1960. Disposal area dikes, bulkheads and weirs were built with the cost reimbursed by the Department of Highways, which reused the dredged material for construction along Highway 1 (Pacific Coast Highway).
- 1968 U.S. Army Corps of Engineers dredging records indicate that 375,000 cubic yards of dredged material were placed on site. The City of Seattle paid for the "extra diking" required and the Urban Renewal Department reused the dredged material for unspecified projects.
- 1971 U.S. Army Corps of Engineers dredging records indicate that 325,000 cubic yards of dredged material were placed on site in May of 1971. General Construction leased the Seattle City Light property as a disposal area. Dikes were constructed by "cat and can" operation. Due to wet weather the top 4 feet of the dike was completed by dragline after the dredging started. The shoreline permit stated that the dike shall be constructed of pit run gravel or some other suitable material. Dredged material was not allowed to be used for dike construction. Bob Parker, the dredging manager for the Corps of Engineers at the time, indicated that pit run material would not have been used, that site material would have been scraped up and pushed into place to construct the dike.
- Condition Survey November 21, 1975 U.S. Army Corps of Engineers. See Figure A5 in Appendix A. The photograph was taken in September 1971, after the 1971 dredged material disposal event. It clearly shows the dredged material rehandling area and the diked perimeter. It appears from the bulldozer scrape marks that, within months of the May dredging event, much of the dredged material had already been rehandled and trucked off site. The shoreline differs from earlier drawings, showing perhaps that some filling had occurred.
- Condition Survey July 31, 1983 U.S. Army Corps of Engineers. See Figure A6 in Appendix A. The aerial photograph was taken in July 1980. The copy of the photograph is of poor quality but the site appears to be vegetated. The dike along the Duwamish River is still clearly visible and appears to have changed little since 1971. The shoreline had seen minor modifications since the earlier photograph.
- 1985 Weston (1990) indicates that dredged material from the Duwamish Yacht Club was placed on site. See Appendix B for details.

1.3 Site Description. The following site description was taken from Weston (1990):

"The property comprises approximately 20 acres of open grassy field. It is bounded to the south by Seattle City Light's Duwamish substation, to the north by the Delta Marine Industries facilities, to the east by the Duwamish Waterway, and to the west by West Marginal Place South, a frontage road of Highway 99...An open ditch runs along the west boundary of the property."

"The majority of the property is nearly level. A rectangular depression, approximately 200 feet on a side, is located in the east-central portion of the lease property. The depression apparently marks the area filled with dredged sediment in 1985. The depression appears to be an infilled impoundment in which dredged sediment was placed and allowed to drain."

"The easternmost portion of the property along the Duwamish Water [sic] contains several exposures of milled lumber debris mixed with sandy and clayey silt fill. The lumber-containing fill appears to be a separate fill unit from the 1968 or 1985 fills, although this is uncertain because the relationship between the fill units along the waterway is obscured by vegetation and _... recent sedimentation. Several decayed pilings are present along the waterway shoreline."

<u>1.4 Boeing Site Assessment.</u> Boeing conducted a site assessment in 1990 as part of its evaluation of a long-term lease option. The 1968 dredged fill was evaluated for metals and PAHs, while the 1985 dredged fill was evaluated for metals, semi-volatiles and PCBs. Additional soil samples were taken from the fence line along the substation perimeter and analyzed for PCBs and chlorinated pesticides. Groundwater was assessed for volatile organics to determine whether any spills had impacted the site.

Of the soil chemicals analyzed, only cadmium and mercury were detected above the PSDDA SL, with maximum concentrations of 1.3 and 0.51 mg/kg respectively. No organics were detected above PSDDA SLs. However, detection limits in the site assessment were geared toward meeting the Washington Model Toxics Control Act Cleanup Regulations rather than PSDDA testing requirements, therefore a number of detection limits were above the PSDDA SLs. For example, PCBs were not detected in the 1985 dredged fill, but the detection limit for Aroclor-1254 and Aroclor-1260 was 210 ug/kg (SL = 130). The only chemical detected in the groundwater was acetone, a common laboratory contaminant.

Weston (1990) includes the following description of the subsurface stratigraphy:

"The subsurface investigation indicates that the property is underlain by approximately 5 to 10 feet of stratified, heterogeneous fill that, in turn, overlies alluvium of the Duwamish River floodplain. Apart from the man-made levee along the present bank of the Duwamish Waterway, the fill appears to thicken progressively westward across the property. The fill is thinnest (5.5 to 6.2 feet) in the topographic depression in the east portion of the property that apparently coincides with the limits of the 1985 dredge fill."

"Relatively little lithologic or textural difference was noted between the 1968 and 1985 fills. The fill is composed predominantly of crudely layered silty sand and clayey silt. The upper 1 to 4 feet of the fill is typically a loose to medium-dense, moist, brown, silty sand. Dense, black, carbonaceous, fine sand and stiff, black, clayey silt typically occur beneath the surface layer. The black sand and silt often contain abundant wood fragments. In some borings, a saturated, gray, well-graded sand layer 0 to 4 feet thick occurs at or near the base of the fill."

"Fill overlying alluvium was also observed in an eroded exposure along the west bank of the Duwamish Waterway. Very abundant milled lumber debris occurs in a sandy to clayey matrix at low elevations along the bank and may be a separate fill unit from the 1968 and 1985 dredge fill units described here."

"Alluvium underlying the fill consists of approximately 2 to 3 feet of gray, mottled, massive, clayey silt that often contains plant fragments. Below the mottled clayey silt is a 1.5 to 4-foot-thick unit composed of thinly bedded, gray and brown, clayey silt and fine sand. In the three

deepest borings, (i.e., MW-1, MW-2, and MW-3), a minimum of 3 to 7 feet of saturated, gray sand is present at the base of the explorations. The total thickness of this sand unit at the site is not known because it was not fully penetrated by any of the borings. The alluvium is interpreted to be fine-grained bioturbated and stratified overbank deposits and coarser channel sands of the Duwamish River."

See Appendix B for details of the site assessment.

2.0 SAMPLING AND ANALYSIS OBJECTIVES

The sediment characterization program objectives and constraints are summarized below:

- To characterize sediments to be dredged in conformance with PSDDA requirements to enable the PSDDA agencies to provide a suitability determination relative to PSDDA disposal.
- To provide detection limits comparable to SMS standards where practicable in order to allow determination of the acceptability of beneficial use of dredged material.
- To collect, handle and analyze representative sediment core samples characterizing the full dredging
 prism in accordance with protocols and QA/QC requirements outlined in the PSDDA Evaluation
 Procedures Technical Appendix (June 1988), the updated procedures documented in Chapter 5 and
 Appendix A of the PSDDA Phase II Management Plan Report (September, 1989), modifications
 made through the PSDDA Annual Review Process and procedures presented in PSEP Recommended
 Protocols for Measuring Selected Environmental Variables in Puget Sound.
- To conduct core sampling, compositing and analyses in a timely manner to meet PSDDA requirements for sample holding times, including those related to possible biological analysis if needed.

3.0 PROJECT TEAM AND RESPONSIBILITIES

The sediment characterization program will include 1) project planning and agency coordination, 2) field sample collection, 3) laboratory preparation and analysis, 4) QA/QC management and 5) final data report. Staffing and responsibilities are outlined below:

Task/Responsibility	Pat Cagnev	David Fox	Lisa Roach	Mark Fugiel	Ormerod/ Redmond
Overall project management			<u> </u>	I ugici	Reumond
Sampling plan development		~			1
Positioning		· · · ·		+	
Sediment sampling	1		~		
Compositing/subsampling				<u> </u>	
Chemical analysis & QA	1 1		<u> </u>		
Biological analysis & QA				1	
Final Report				+	

Table 1. PSDDA characterization responsibilities

Pat Cagney, U.S. Army Corps of Engineers, Seattle District, Environmental Resources Section David Fox, U.S. Army Corps of Engineers, Seattle District, Dredged Material Management Office Lisa Roach, Science Application International Corporation, Bothell Mark Fugiel, AmTest Laboratories, Seattle Dayle Ormerod, Parametrix, Kirkland Michelle Redmond, NW Aquatic Sciences, Newport

4.0 PSDDA SAMPLING AND ANALYSIS REQUIREMENTS

4.1 PSDDA Ranking.

The proposed restoration site is adjacent to the section of the Duwarnish River where the rank for the federal navigation project changes from low-moderate to high-ranked. However, the site assessment completed by Boeing in 1990 indicates that the material proposed to be dredged for this project should be ranked low-moderate for PSDDA characterization. The maximum concentrations of the only detected metals, cadmium and mercury, were between SL and (SL+ML)/2, the range associated with a lowmoderate rank (EPTA 1988). All detected concentrations of organics were below SLs. Detection limits for undetected organics were generally in the low to low-moderate range, including the detection limits

In addition, dike material appears to have come from onsite. Since the site had never been developed for industrial use and since the Boeing site assessment did not show any chemicals of concern at concentrations above those qualifying for a low-moderate rank, a low-moderate rank was used to determine the sampling and analysis requirements for this project.

4.2 Sampling and Analysis Requirements.

Based on a low-moderate rank, full characterization requirements for this project are outlined below:

<u>Surface Sediments</u> : (0 to 4 ft.)	One core section for every 8,000 cubic yards and one laboratory analysis for each 32,000 cubic yards.
Subsurface Sediments:	One core section for every 8,000 cubic yards and one laboratory analysis for each 48,000 cubic yards.

The estimated total volume of material to be characterized for PSDDA disposal is 80,000 cubic yards. The quantity and related sampling requirements are distributed as follows:

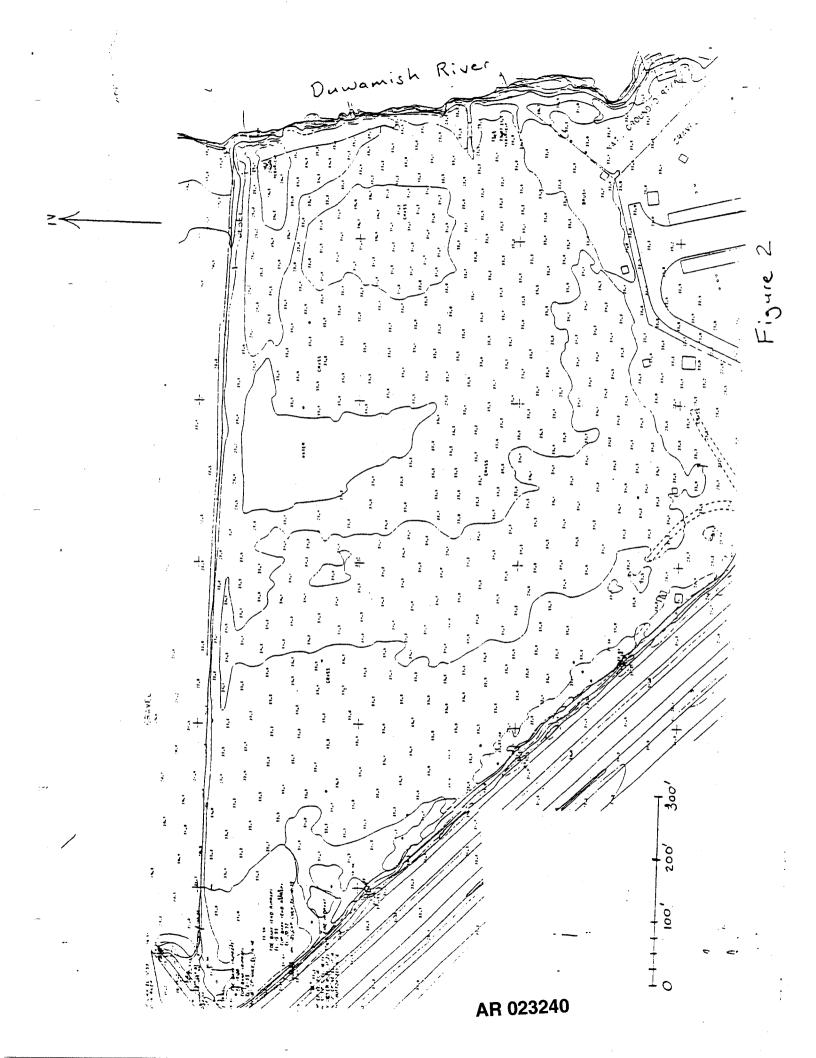
Depth Interval	Volume (cu.yds.)	Minimum No. of Core Sections	Number of Analyses
0-4 ft.	32.000	4	1
>4 ft.	48,000	6	
Total	80.000	10	1
		10	2.

6

Table 2. PSDDA sampling and testing requirements

5.0 SAMPLE COLLECTION AND HANDLING PROCEDURES

5.1 Sampling and Compositing Scheme.


Figure 2 shows the existing ground elevations, while Figure 3 shows the design elevations and PSDDA sampling locations. Table 3 includes the existing and design elevations at each sampling location, the total length of each PSDDA bore, and the core section designations at each location. Table 4 shows the corresponding core sections and laboratory composites. The "Z" samples will be taken from the first foot beyond the design depth at stations 2 and 4 and archived for potential future analysis.

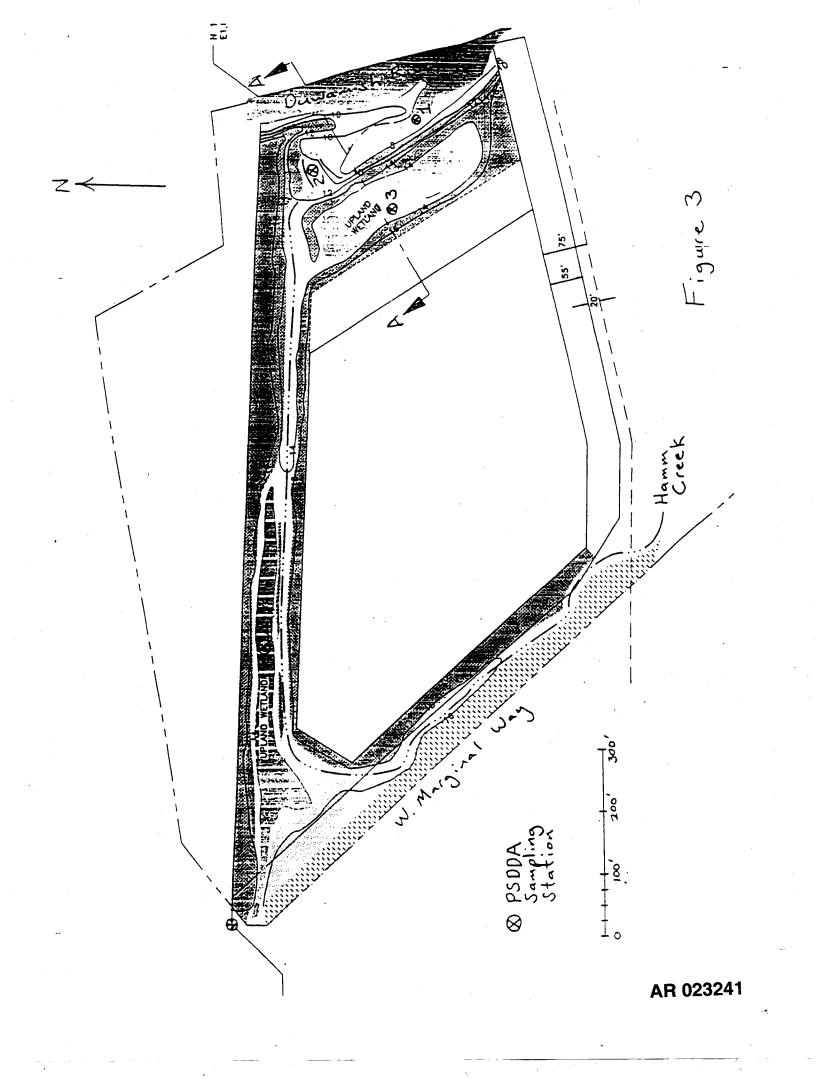

Sampling Station Number	Existing Elevation (MLLW)	Design Elevation (MLLW)	Length of Sediment Bores (including "Z" samples)	Core Section Designations and Depths
1	+23	+4	19	A +23 to +19 B +19 to +15 C +15 to +11 D +11 to +7 E +7 to +4
2	+25	+13	13	A +25 to +21 B +21 to +17 C +17 to +13 Z +13 to +12
3	+21	+11	10	A +21 to +17 B +17 to +13 C +13 to +11
4	+23	+13	11	A +23 to +19 B +19 to +15 C +15 to +13 Z +13 to +12

Table 3. Sampling station elevations and boring depths

Table 4. Sample Compositing Plan

DMMU	Core Sections	Volume (CY)
C1	1A/2A/3A/4A	32,000
C2	1BCDE/2BC/3BC/4BC	48,000

5.2 Field Sampling Schedule. Sampling is planned for May 1997. All sampling will be completed in a single day. Compositing will occur in the field and laboratory samples will be delivered the same day to AmTest.

<u>5.3 Sample Collection Method.</u> Samples will be collected using a truck-mounted, hollow-stem auger drilling rig equipped with a split-spoon sampler. The first sample will be collected from zero to two feet of depth. The auger will then be advanced to the bottom of the sample depth and the next two-foot sample will be taken. These two subsamples will be labeled "A1" and "A2" on the boring logs.

This method of sampling, retrieval and auger advancement at two foot intervals will be utilized until the total sample depth is reached. The recovered subsurface core-segments will be labeled in alphabetical order starting with "B". There will be two cores for each letter, except in those cases where the deepest core is two feet long or less. Compositing will follow the scheme presented in Table 4. The "Z" samples will be taken from stations 2 and 4, consisting of one foot of sediment beyond the design depth at these two stations.

5.4 Field Notes. Field notes will be maintained during sampling and compositing operations. Included in the field notes will be the following:

- Names of the drilling rig operator and person(s) collecting and logging in the samples.
- Weather conditions.
- Elevation of each boring station sampled as measured from mean lower low water (MLLW NAD83). This will be accomplished using a surveyor's level to determine the elevation at the sampling location referenced to an on-site vertical reference.
- Date and time of collection of each sediment split-spoon sample.
- The sample station number as derived from Figure 2 and Table 3, and individual designation numbers assigned for each individual core section.
- Descriptions of core sections.
- Any deviation from the approved sampling plan.

5.5 Positioning. Sampling locations will be surveyed and flagged prior to the actual sampling effort. The flagged stations will be used to position the drill auger during sampling. Elevations will be referenced to local MLLW (NOAA). Horizontal coordinates will be referenced to the Washington Coordinate System for proper North or South Zones NAD 83 (North American Datum 1983). Horizontal coordinates will be converted and identified as latitude and longitude (NAD 83) to the nearest 0.1 second.

<u>5.6</u> Decontamination. The split-spoon, stainless steel compositing pans and sampling utensils will be thoroughly cleaned prior to use according to the following procedure:

- Wash with brush and Alconox soap
- Tap Water Rinse
- Rinse with distilled water
- Rinse with 10% nitric acid solution
- Rinse with methanol
- Rinse with distilled water

All hand work will be conducted with disposable latex gloves which will be rinsed with distilled water before and after handling each individual sample, as appropriate, to prevent sample contamination. Gloves will be disposed of between composites to prevent cross contamination between the DMMUs.

5.7 Volatiles Subsampling. For one randomly chosen core section from each composite, two subsamples will be removed for volatile organics testing immediately upon opening the split-spoon. The samples will be taken from along the entire length of the core section, from sediment which has not had contact with the split spoon.

Two separate 4-ounce containers will be completely filled with sample sediment for volatiles. No headspace will be allowed to remain in either container. Two samples are collected to ensure that an acceptable sample with no headspace is submitted to the laboratory for analysis. Prior to sampling, the containers, screw caps, and cap septa (silicone vapor barriers) will have been washed with detergent, rinsed once with tap water, rinsed at least twice with distilled water, and dried at >105 C. A solvent rinse will not be used because it may interfere with the analysis.

To avoid leaving headspace in the containers, sample containers can be filled in one of two ways. If there is adequate water in the sediment, the vial will be filled to overflowing so that a convex meniscus forms at the top. Once sealed, the bottle will be inverted to verify the seal by demonstrating the absence of air bubbles. If there is little or no water in the sediment, jars will be filled as tightly as possible, eliminating obvious air pockets. With the cap liner's PTFE side down, the cap will be carefully placed on the opening of the vial, displacing any excess material.

The volatiles sampling jars will be clearly labeled with the project name, sample/composite identification, type of analysis to be performed, date and time, and initials of person(s) preparing the sample, and referenced by entry into the log book

Table 5 contains those cores, randomly selected, which will be used to collect representative sediment for volatiles sampling.

DMMU	Random core section
C1	2A2
C2	3B1

Table 5. Random core sections for volatiles samples

5.8 Core Logging. After the volatiles sample has been taken, each discrete core section will then be inspected and described. For each split-spoon sample, the following data will be recorded on the core log:

- Depth interval of each core section as measured from MLLW.
- Sample recovery
- Physical soil description in accordance with the Unified Soil Classification System (includes soil type, density/consistency of soil, color)
- Odor (e.g., hydrogen sulfide, petroleum products)
- Visual stratifications and lenses
- Vegetation
- Debris

- Presence of oil sheen
- Any other distinguishing characteristics or features

5.9 Compositing. After the core section has been logged, the remaining contents of the split-spoon will be placed in a stainless-steel pan and the pan covered with foil. Separate pans will be kept for surface and subsurface core sections and for the individual "Z" samples. Once all core sections for a composite have been collected and placed into the same stainless steel pan, the sample will be stirred and homogenized until a consistent color and texture is achieved.

At least 7 liters of homogenized sample will be prepared to provide adequate volume for laboratory analyses. Physical, chemical and bioassay samples will be taken from the same homogenate. Portions of each composite sample will be placed in appropriate containers obtained from the chemical and biological laboratories ("Z" samples will be archived for physical and chemical testing only). Each sample container will be clearly labeled with the project name, sample/composite identification, type of analysis to be performed, date and time, and initials of person(s) preparing the sample, and referenced by entry into the log book. See Table 6 for sample volume and storage information.

Approximately 15-20 additional liters of sediment would be required for bioaccumulation testing. This additional volume will not be collected at this time, as the requirement to conduct bioaccumulation testing is not anticipated.

5.10 Sample Transport and Chain-of-Custody Procedures. After sample containers have been filled they will be packed on blue ice in coolers. The coolers will be transferred to AmTest at the end of the day. Chain-of-custody procedures will commence in the field and will track delivery of the samples to AmTest. Specific procedures are as follows:

- Samples will be packaged and shipped in accordance with U.S. Department of Transportation regulations as specified in 49 CFR 173.6 and 49 CFR 173.24.
- Individual sample containers will be packed to prevent breakage.
- The coolers will be clearly labeled with sufficient information (name of project, time and date container was sealed, person sealing the cooler and SAIC's office name and address) to enable positive identification.
- A sealed envelope containing chain-of-custody forms will be enclosed in a plastic bag and taped to the inside lid of the cooler.
- Signed and dated chain-of-custody seals will be placed on all coolers prior to shipping.

Upon transfer of sample possession to the compositing laboratory, the chain-of-custody form will be signed by the persons transferring custody of the coolers. Upon receipt of samples at the laboratory, the shipping container seal will be broken and the condition of the samples will be recorded by the receiver.

Sample Type	⁻ Holding Time	Sample Size [*]	Temperature	Container	- Archive
Particle Size	6 Months	200g	4°C	l-liter Glass (combined)	X
Total Solids	14 Days	125g	4°C		
Total Volatile Solids	14 Days	125 g	4°C		
Total Organic Carbon	14 Days	125 g	4°C		
Metals (except Mercury)	6 Months	50 g	4°C		
Semivolatiles, Pesticides and PCBs	14 Days until extraction	150 g	4°C		
	1 Year until extraction	- -	-18°C		
	40 Days after extraction		4°C		
Mercury	28 Days	5 g	-18°C	125 ml Glass	
Volatile Organics	14 Days	100 g	4°C	2-40 ml Glass	
Bioassay	8 Weeks	4 L	4°C	6-1 liter Glass ^d	

Table 6. Sample volume and storage

a. Required sample sizes for one laboratory analysis. Actual volumes to be collected have been increased to provide a margin of error and allow for retests.

b. During transport to the lab, samples will be stored on blue ice.

c. For every DMMU, a 250 ml container is filled and frozen to run any or all of the analyses indicated.d. Containers will be completely filled with no headspace allowed.

6.0 LABORATORY PHYSICAL AND CHEMICAL SEDIMENT ANALYSIS

The surface and subsurface composited samples will be analyzed for all the parameters listed in Appendix C and will be compared to PSDDA guidelines for open-water disposal, as well as the SMS sediment quality standards (SQS) to determine the potential for beneficial use.

6.1 Laboratory Analyses Protocols. Laboratory testing procedures will be conducted in accordance with the PSDDA Evaluation Procedures Technical Appendix, June 1988; the PSDDA Phase II Management Plan Report, September 1989; and with the PSEP Recommended Protocols. Several details of these procedures are discussed below.

6.1.1 Chain-of-custody. A chain-of-custody record for each set of samples will be maintained throughout all sampling activities and will accompany samples and shipment to the laboratory. Information tracked by the chain-of-custody records in the laboratory include sample identification number, date and time of sample receipt, analytical parameters required, location and conditions of storage, date and time of removal from and return to storage, signature of person removing and returning the sample, reason for removing from storage, and final disposition of the sample.

6.1.2 PSDDA Limits of Detection. For purposes of PSDDA testing, detection limits of all chemicals of concern must be below PSDDA screening levels. Failure to achieve this may result in a requirement to reanalyze or perform bioassays. The testing laboratory will be specifically cautioned by SAIC to make certain that it complies with the PSDDA detection limit requirements. All reasonable means, including additional cleanup steps and method modifications, will be used to bring all limits-of-detection below PSDDA SLs. In addition, an aliquot (250 ml) of each sediment sample for analysis will be archived and preserved at -18 C for additional analysis if necessary.

The following scenarios are possible and will be handled appropriately:

- 1. One or more chemicals-of-concern (COC) have limits of detection exceeding screening levels while all other COCs are quantitated or have limits of detection at or below the screening levels: the requirement to conduct biological testing would be triggered solely by limits of detection. In this case the chemical testing subcontractor will do everything possible to bring limits of detection down to or below the screening levels, including additional cleanup steps, re-extraction, etc. This is the only way to prevent unnecessary biological testing. If problems or questions arise, the chemical testing subcontractor will be directed to contact the Dredged Material Management Office.
- One or more COCs have limits of detection exceeding screening levels for a lab sample, <u>but below</u> respective bioaccumulation triggers (BT) and maximum levels (ML), <u>and</u> other COCs have <u>quantitated</u> concentrations above screening levels: The need to do bioassays is based on the detected exceedances of SLs and the limits of detection above SL become irrelevant. No further action is necessary.
- 3. One or more COCs have limits of detection exceeding SL and exceeding BT or ML, and other COCs have <u>quantitated</u> concentrations above screening levels: the need to do bioassays is based on the detected exceedances of SLs but all other limits of detection must be brought below BTs and MLs to avoid the requirement to do bioaccumulation testing or special biological testing. As in case i) everything possible will be done to lower the limits of detection.

4. One COC is <u>quantitated</u> at a level which exceeds ML by more than 100%, or more than one COC concentration exceeds ML: there is reason to believe that the test sediment is unsuited for open-water disposal without additional chronic sublethal testing data. In the absence of chronic sublethal data, problems with limits of detection for other COCs are irrelevant. No further action is necessary.

In all cases, to avoid potential problems and leave open the option for retesting, sediments or extracts will be kept under proper storage conditions until the chemistry data is deemed acceptable by the PSDDA agencies.

6.1.3 SMS Limits of Detection. For purposes of comparison to SQS, a tiered approach will be used to evaluate detection limits:

- Detection limits will be compared to the July 1996 draft SMS detection limits. While the laboratory will be instructed to attempt to meet these recommended detection limits, it should be noted that some of these are very low (e.g. Aroclors) and may be unobtainable.
- If the recommended SMS detection limits cannot be met, a secondary comparison will be made directly to SQS, carbon-normalizing where appropriate.
- In addition, the 1988 dry-weight LAETs may be used if necessary to evaluate detection limits.

See Appendix C for a complete listing of these guidelines.

6.1.4 Sediment Conventionals. All conventional parameters will be analyzed. Particle grain size distribution for each composite sample will be determined in accordance with ASTM D 422 (modified). Wet sieve analysis will be used for the sieve sizes U.S. No. 4, 10, 20, 40, 60, 140, 200 and 230. Hydrogen peroxide will not be used in preparations for grain-size analysis. Hydrometer analysis will used for particle sizes finer than the 230 mesh. Water content will be determined using ASTM D 2216. Sediment classification designation will be made in accordance with U.S. Soil Classification System, ASTM D 2487.

6.1.5 Holding Times. The tiered testing option will be implemented for biological testing (see Section 7, Biological Testing). To the maximum extent practicable all chemical results will be provided within 28 days of sampling to allow a timely decision for tiered biological testing. Sediment samples reserved for potential bioassays will be stored under chain-of-custody by SAIC.

All samples for physical, chemical and biological testing will be maintained at the testing laboratory at the temperatures specified in Table 6 and analyzed within the holding times shown in the table.

6.1.6 Quality Assurance/Quality Control. The chemistry QA/QC procedures found in Table 7 will be followed.

<u>6.2 Laboratory Written Report.</u> A written report will be prepared by the analytical laboratory documenting all the activities associated with sample analyses. As a minimum, the following will be included in the report:

- Results of the laboratory analyses and QA/QC results.
- All protocols used during analyses.
- Chain of custody procedures, including explanation of any deviation from those identified herein.

- Any protocol deviations from the approved sampling plan.
- Location and availability of data.

As appropriate, this sampling plan may be referenced in describing protocols.

In addition, QA2 data required by Ecology for the SEDQUAL database will be submitted to the DMMO along with the report (see Appendix D for QA2 requirements).

Table 7.	Minimum Labo	ratory QA/	QC	
Blank ²	Duplicate ²	RM ^{2,4}	Matrix Spikes ²	Surrogates ⁷
X	X³	والمرتبي المترج المحيط المتلك	Y	Juilogates
X	Y ³	vi	<u></u>	X
x	<u>^</u>	<u> </u>	<u> </u>	X
v	<u> </u>	<u> </u>	X	X
<u>A</u>	X	X°	<u> </u>	
<u> </u>	X	X°		
	X			
	X			
	X			
	Method	Method	Method	Blank ² Duplicate ² $RM^{2.4}$ MatrixXX ³ XXX ³ XXX ³ X ³ XX ³ X ³

1. Initial calibration required before any samples are analyzed, after each major disruption of equipment, and when ongoing calibration fails to meet criteria. Ongoing calibration required at the beginning of each work shift, every 10-12 samples or every 12 hours (whichever is more frequent), and at the end of each shift.

2. Frequency of Analysis = one per batch

3. Matrix spike duplicate will be run

4. Reference Material

5. Canadian standard SRM-1

6. NIST certified reference material 2704

7. Surrogate spikes will be included with every sample, including matrix-spiked samples, blanks and reference materials

7.0 BIOLOGICAL TESTING

7.1 Bioassay Laboratory Protocols. The tiered testing approach will be used. Biological testing will be undertaken on any composite sample which has one or more chemicals of concern above the PSDDA screening level (SL). If more than one COC exceeds the PSDDA maximum level (ML) or if a single COC is greater than two times its ML, then biological testing will not be conducted. If any COC exceeds a bioaccumulation trigger (BT), a decision will be made as to whether or not to pursue biological testing. To the maximum extent practicable, chemical results will be provided for bioassay decisions within 28 days of first sample collection. The remaining four-week period will allow time for bioassay preparation as well as time for retests if necessary.

Bioassay testing requires that test sediments be matched and run with an appropriate PSDDA-approved reference sediment to factor out sediment grain-size effects on bioassay organisms. SAIC will coordinate with DMMO in making this match. Wet-sieving in the field, using a 63-micron sieve, will be utilized in identifying a suitable reference station.

The acute toxicity and chronic sublethal bioassays prescribed by PSDDA (amphipod, sediment larval, Neanthes growth) will be conducted on each sample identified for biological testing. All biological testing will be in strict compliance with Recommended Protocols for Conducting Laboratory Bioassays on Puget Sound sediments (1995), with appropriate modifications as specified by PSDDA in the MPR-Phase II, public workshops and the annual review process. General biological testing procedures and specific procedures for each sediment bioassay are summarized below:

7.2 General Biological Testing Procedures.

7.2.1 Negative Controls. Negative control sediments are used in the amphipod and *Neanthes* bioassays to check laboratory performance. Negative control sediments are clean sediments in which the test organism normally lives and which are expected to produce low mortality. The sediment larval test utilizes a negative seawater control rather than a control sediment. The amphipod, sediment larval and *Neanthes* tests all have performance standards for negative controls, which are identified in Section 7.3.

7.2.2 Reference Sediment. All bioassays have performance standards for reference sediments (see Section 7.3). Failure to meet these standards may result in the requirement to retest. All reference sediments will be analyzed for total solids, total volatile solids, total organic carbon and grain-size.

7.2.3 Replication. Five laboratory replicates of test sediments, reference sediments and negative controls will be run for each bioassay.

7.2.4 Positive Controls. A positive control will be run for each bioassay. Cadmium chloride will be used for all three bioassays.

7.2.5. Interstitial salinity, ammonia and sulfides. For the *Neanthes* and amphipod bioassays, sacrificial beakers will be used to determine interstitial salinity, ammonia and sulfides for all test and reference sediments at the beginning and end of the test period.

7.2.6 Water Quality Monitoring. Water quality monitoring will be conducted for the amphipod, sediment larval and *Neanthes* bioassays. This consists of daily measurements of salinity, temperature, pH and dissolved oxygen for the amphipod and sediment larval tests. These measurements will be made every three days for the *Neanthes* bioassay. Overlying ammonia and sulfides will be determined at test

And the second sec

initiation and termination for the larval test. Monitoring will be conducted for all test and reference sediments and negative controls (including seawater controls). Parameter measurements must be within the limits specified for each bioassay. Measurements for each treatment will be made on a separate chemistry beaker set up to be identical to the other replicates within the treatment group, including the addition of test organisms.

7.3 Bioassav-specific Procedures.

7.3.1 Amphipod Bioassay. NW Aquatic Sciences will conduct this test, which involves exposing the amphipod *Rhepoxynius abronius*, *Ampelisca abdita* or *Eohaustorius estuarius* to test sediment for ten (10) days and counting the surviving animals at the end of the exposure period. Daily emergence data and the number of amphipods failing to rebury at the end of the test will be recorded as well. The control sediment has a performance standard of 10 percent mortality. The reference sediment has a performance standard of 20 percent mortality greater than control.

7.3.2 Sediment Larval Bioassay. This test monitors larval development of a suitable bivalve or echinoderm species (e.g. *Stronglyocentrotus purpuratus* or *Dendraster excentricus*) in the presence of test sediment. The test is run until the appropriate stage of development is achieved in a sacrificial seawater control (PSDDA MPR-Phase II, pp. 5-20). At the end of the test, larvae from each test sediment exposure are examined to quantify abnormality and mortality.

The seawater control has a performance standard of 30 percent combined mortality and abnormality. The reference sediment has a performance standard of 35 percent combined mortality and abnormality normalized to seawater control.

Initial counts will be made for a minimum of five 10-ml aliquots. Final counts for seawater control, reference sediment and test sediment will be made on 10-ml aliquots.

The sediment larval bioassay has a variable endpoint (not necessarily 48 hours) which is determined by the developmental stage of organisms in a sacrificial seawater control (PSDDA MPR Phase II, page 5-20).

Aeration will be conducted throughout the test to minimize effects from sulfides.

7.3.4 Neanthes Growth Test. This test utilizes the polychaete Neanthes arenaceodentata, in a 20-day growth test. The growth rate of organisms exposed to test sediments is compared to the growth rate of organisms exposed to a reference sediment. Neanthes will be obtained from Dr. Don Reish in Long Beach, California. Neanthes worms from Don Reish's lab may take 2 or 3 weeks to culture and deliver and will be ordered regardless of the outcome of the chemical characterization.

The control sediment has a performance standard of 10 percent mortality. The reference sediment has performance standards of 80 percent of the control growth rate and 20 percent mortality.

<u>7.4 Interpretation</u>. Test interpretations consist of endpoint comparisons to controls and reference on an absolute percentage basis as well as statistical comparison to reference. Test interpretation will follow the guidelines established in the PSDDA Management Plan Report-Phase II (page 5-17) for the amphipod and sediment larval bioassays, and the minutes of the dredging year 1991 annual review meeting for the *Neanthes* bioassay, as modified by subsequent annual review proceedings and workshops.

<u>7.5 Bioassav Retest.</u> Any bioassay retests must be fully coordinated with, and approved by, the PSDDA agencies. The DMMO will be contacted to handle this coordination.

7.6 Laboratory Written Report. A written report will be prepared by the biological laboratory documenting all the activities associated with sample analyses. As a minimum, the following will be included in the report:

- Results of the laboratory bioassay analyses and QA/QC results, including all DAIS data found in Appendix E.
- All protocols used during analyses, including explanation of any deviation from PSEP and the approved sampling plan.
- Chain of custody procedures, including explanation of any deviation from the identified protocols.
- Location and availability of data, laboratory notebooks and chain-of-custody forms.

As appropriate, this sampling plan may be referenced in describing protocols.

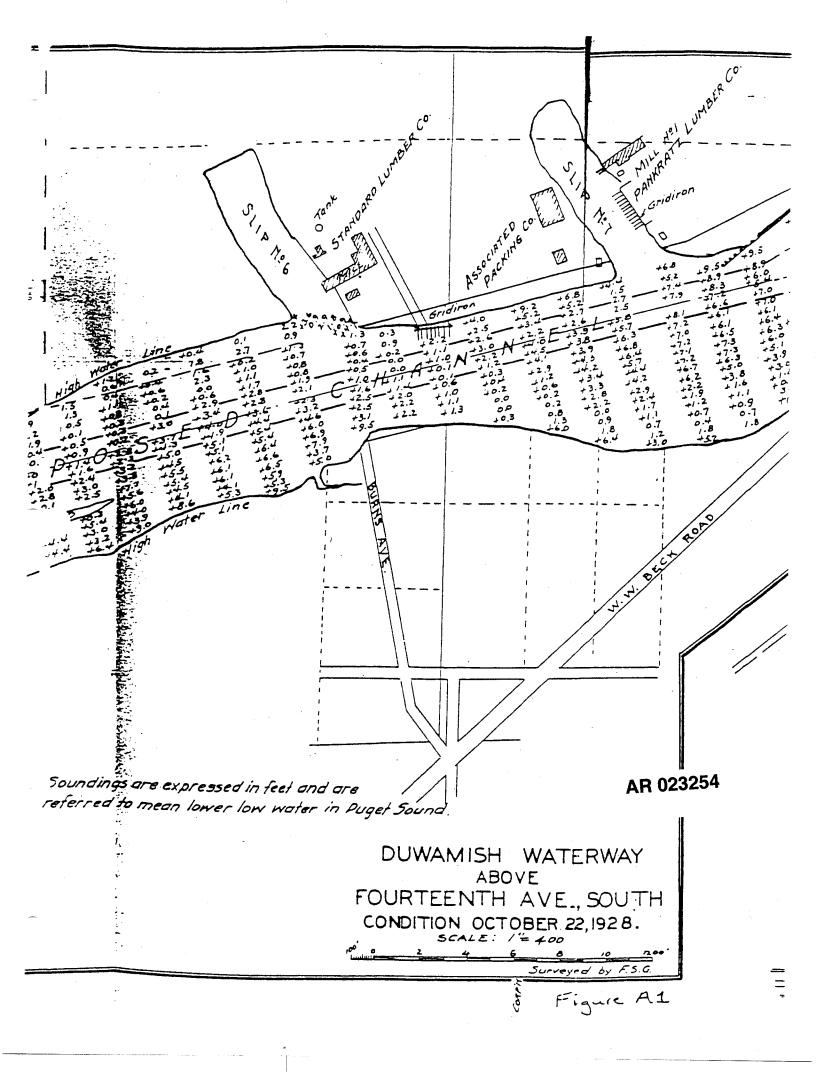
8.0 REPORTING

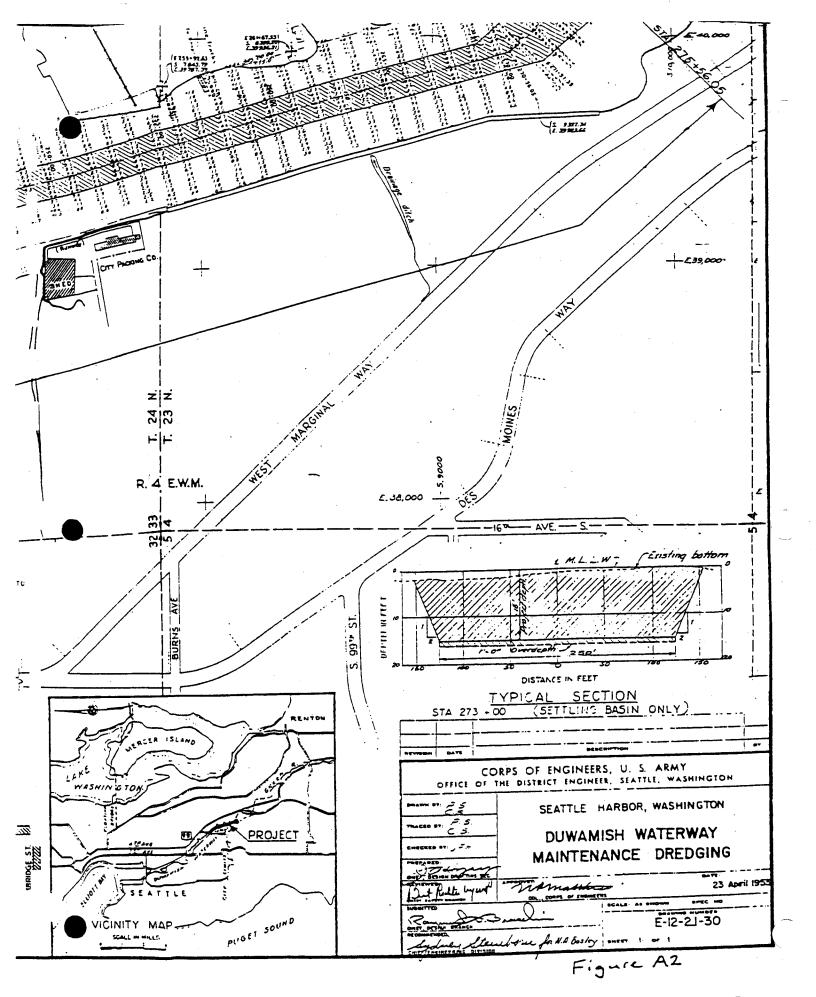
8.1 OA Report. The project quality assurance representative will prepare a quality assurance report based upon activities involved with the field sampling and review of the laboratory analytical data. The laboratory QA/QC reports will be incorporated by reference. This report will identify any field and laboratory activities that deviated from the approved sampling plan and the referenced protocols and will make a statement regarding the overall validity of the data collected. The QA/QC report will be incorporated into the Final Report.

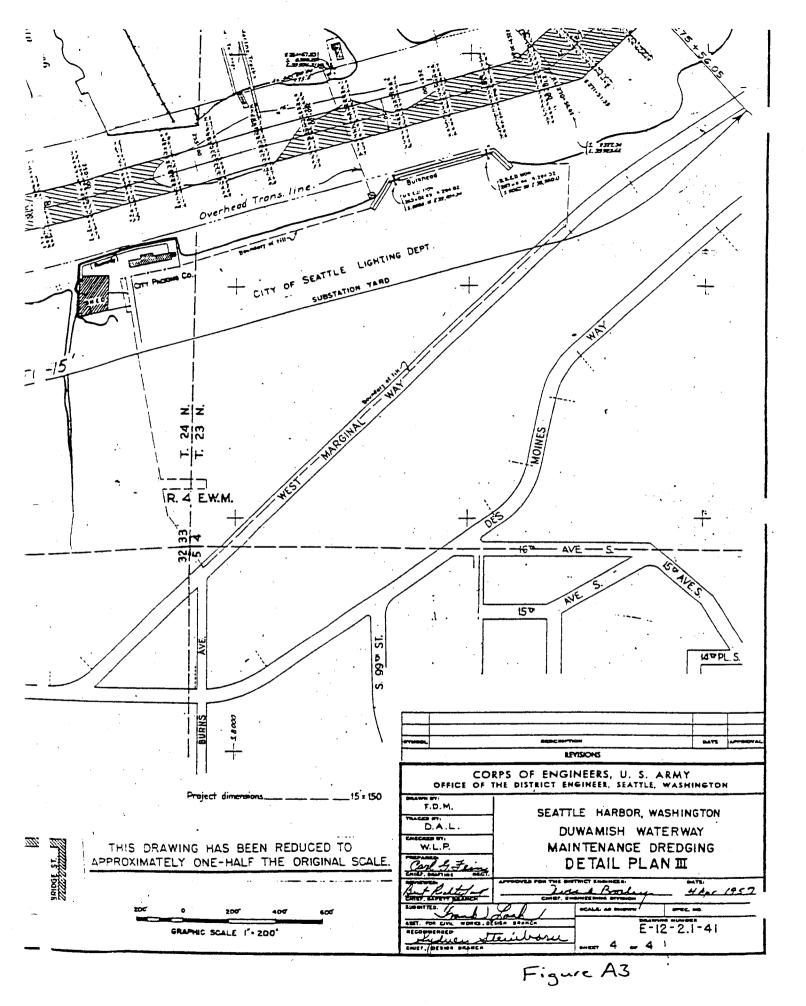
<u>8.2 Final Report.</u> A written report shall be prepared by SAIC documenting all activities associated with collection, compositing, transportation of samples, and chemical and biological analysis of samples. The chemical and biological reports will be included as appendices. As a minimum, the following will be included in the Final Report:

- Type of sampling equipment used.
- Protocols used during sampling and testing and an explanation of any deviations from the sampling plan protocols.
- Descriptions of each sample.
- Locations where the sediment samples were collected. Locations will be reported in latitude and longitude to the nearest tenth of a second.
- A plan view of the project showing the actual sampling location.
- Chain of-custody procedures used, and explanation of any deviations from the sampling plan procedures.
- Description of sampling and compositing procedures.
- Final QA report for Section 8.1 above.
- Chemical and biological testing data, with comparisons to PSDDA and SMS guidelines.
- QA2 data required by the Department of Ecology for data validation prior to entering data in their Sediment Quality database. These data are listed in Appendix D.
- Sampling and analysis cost data will be submitted upon project completion on forms provided by the Dredged Material Management Office.

9.0 REFERENCES


PSEP, Recommended Protocols for Measuring Selected Environmental Variables in Puget Sound, 1986-1996, Puget Sound Estuary Program.


PSDDA, 1988. Evaluation Procedures Technical Appendix - Phase I, prepared by the PSDDA agencies.


Weston, 1990. Baseline Soil and Groundwater Quality Assessment, Seattle City Light Long-Term Lease Option, Seattle, Washington. Prepared for Boeing Environmental Affairs, Seattle, Washington by Roy F. Weston, Inc., Seattle, Washington.

APPENDIX A

Historical Maps and Photographs

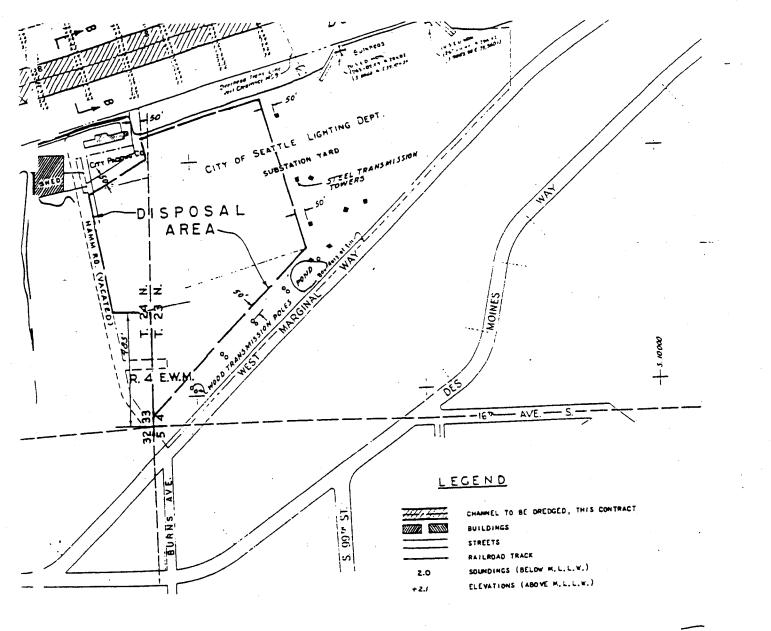
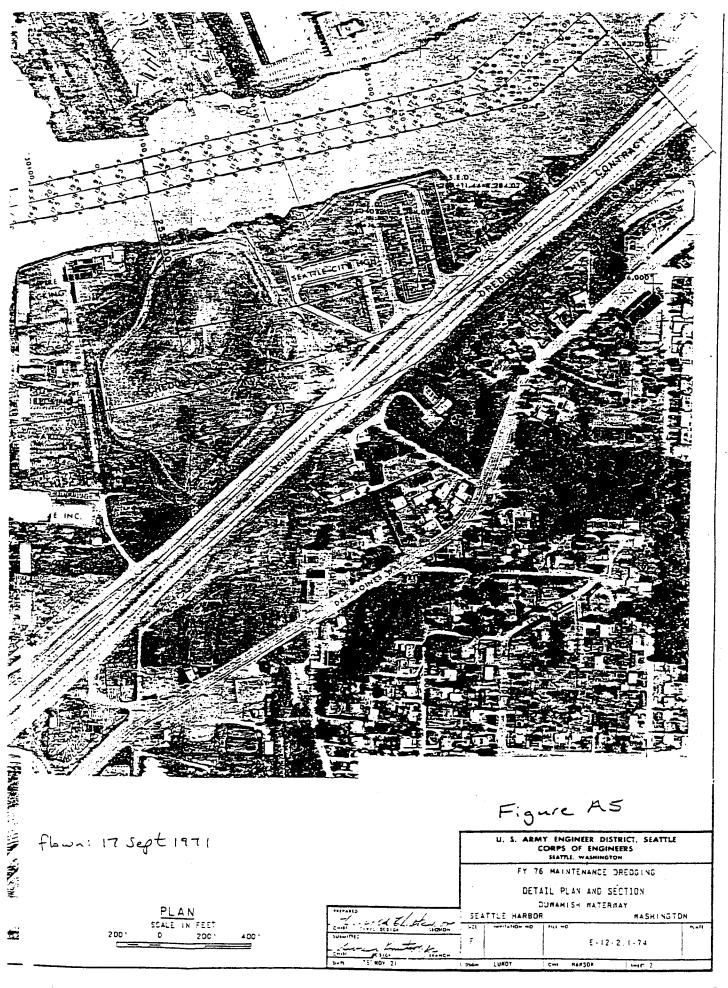



Figure A4 DATE IAP REVISIONS U. S. ARMY ENGINEER DISTRICT, SEATTLE CORPS OF ENGINEERS, SEATTLE, WASHINGTON SEATTLE HARBOR WASHINGTON W.KM DUWAMISH WATERWAY C. M. MAINTENANCE DREDGING r,A DETAIL PLAN & SECTIONS 1960 19 Ď F- 12-2.1-49 AR 023257

THIS DRAWING HAS BEEN REDUCED TO APPROXIMATELY ONE-HALF THE ORIGINAL SCALE.

THE AND	
DELTA MARINE INC.	
	Figure A6
The information depicted on this map represents the results of Surveys mode m. FEMULAR, 1983 and can only be conserved as indicating an estimated condition	U. S. ARMY ENGINEER DISTRICT, SEATTLE CORPS OF ENGINEERS
existing at the time of this Survey. Writehiel control based on Lambert grid projection for mashingtor North Zone,	FT 84 MAINTENANCE DEEDGING
Soundings and elevations are in feet and are referred to plane at Mean Lower Low woter Soundings taken above the satium plane are prefixed with (-) stor	DETAIL PLAN I
Phata-Map prepared by Survey Branch, Engineer ing Division, 1 of 1.	DUWAMISH WATERWAY SEATTLE HARBOR WASHINGTON
The second secon	E+12-2,1-89 B3 JULY 31
	MAN PARRY ENE SUMERI (MANY 2 5 2

.

APPENDIX B

Baseline Soil and Groundwater Quality Assessment Seattle City Light Long-Term Lease Option Seattle, Washington

APPENDIX C

PSDDA PARAMETERS AND METHODS

							July 96	-
	Prep	Analysis		PSDDA		SMS	draft SMS	1988
Parameter	Method	Method	SL	BT	ML	SQS	detection limits (1)	LAET
CONVENTIONALS:								
Total Solids (%)	1	Pg.17 (2)	1		1	1		1
Total Volatile Solids(° •)	••	Pg.20 (2)	1	:	:		1	
Total Organic Carbon (* •)	1	DOE (3)	;	1	1	1		1
Grain Size	1	Modified ASTM with Hydromater	ł		1		1	;
METALS				units: mg/kg dw (4)		units: me/ke dw	units: me/ke dw	e dw
Antimony	3050 (5)	GFAA (6)	20	146			l I	150
Arsenic	3050	GFAA	57	507.1	700	57	61	57
Cadmium	3050	GFAA	0.96	:	9.6	5.1	1.7	51.
Chromium	3050	GFAA	2	1	:	260	87	260
Copper	3050	ICP (7)	81		. 018	390	130	190
Lead	3050	ICP	66		660	450	150	150
Nercury	7471 (8)	1471	0.21	1.5	2.1	0.41	0.14	0 59
Nicket	3050	ICP	140	1022	1			>140
Silver	3050	GFAA	1.2	4.6	6.1	6.1	2.0	>0.56
Zinc	3050	ICP	160	1	1600	410	137	410
ORGANICS								
LPAH				units: ug/kg dw		units: mg/kg oc	units: ue/ke dw	e dw
Naphthalene	3550 (9)	8270 (10)	210	:	2100	66	700	2100
Acenaphthylene	3550	8270	64	1	640	66	133	>560
Accnaphthene	3550	8270	63	1	630	16	167	500
Fluorene	3550	8270	64	1	640	23	180	540
Phenanthrene	3550	8270	320		3200	100	500	1500
Authracene	3550	8270	130	1	1300	220	320	960
2-Methylnaphthalene	3550	8270	67	-	670	38	223	670
Total LPAH			610		6100	370	:	5200
HPAII				units: ug/kg dw		units: mg/kg oc	units: ug.kg dw	
r iuoranthene	3550	8270	630	4600	6300	160	567	1700
Pyrene	3550	8270	430	1	7300	1000	867	2600
Benzo(a)anthracene	3550	8270	450	;	4500	110	433	1300
Chrysene	3550	8270	670	:	6700	110	467	1400
Benzolluoranthenes	3550	8270	800	-	8000	230	1067	3200
Benzo(a)pyrene	3550	8270	680	4964	6800	66	533	1600
Indeno(1,2,3-c,d)pyrene	3550	8270	69	:	5200	34	200	600
Dibenzo(a.h)antluacene	3550	8270	120		1200	12	17	230
Benzo(g,h.i)perylene	3550	8270	540		5400	31	223	670
I otal HPAH			1800		51000	960		12000
CHLORINALED H) DROCARBONS				units: ug/kg dw		units: mg/kg oc	units: ug/kg dw	4 I
1,3-Dichlorobenzene	P&I (11)	8260 (11)	170	1241			1	>170
							-	

							July 96	
							SINS D-F	1000
<u> </u>	Pren	Analysis		PSDDA		SMS	drall SMS	1900
Parameter	Method	Method	SL	BT	ML	sQS	detection	LAET
							limits (1)	011
1.4 Dicklorahanzane	P&T	8260	26	190	260	1.[
1.3 Dicklorchentene	P&T	8260	19	37	350	2.3	30	
	1550	8270	13		64	0.81	31	16
	1550	8270	23	168	230	0.38	22	77
Hexachiorobenzene (n. D)				units: ug/kg dw		units: mg/kg oc	units: ug/kg dw	1
PHTHALALES	1550	8170	160	1168	1	53	24	71
Dimethyl phthalate	0000	0170	07	1	1	61	- 67	>48
Diethyl phthalate	0000	0/70	1400	10220	1	220	467	1400
Di-n-butyl phthalate	0000	0/70	011			4 9	21	63
Butyl benzyl phthalate	0000	0/72	1001	02811		47	433	1300
Bis(2-ethylhexyl)phthalate	3550	82/0	0010	0,001		58	2067	>420
Di-n-octv1 phthalate	3550	8270	0700				inite not o du	1
PHENOLS				units: ug'kg dw		units: ug/kg aw		1 110
Phenol	3550	8270	120	876	1200	420	140	075
2 Alethylahenol	3550	8270	20	-	72	63	63	60
- A Contraction	1550	8270	120	;	1200	670	223	6/0
	1550	8270	29	1	50	29	29	29
2,4-Dimemvipmenoi	0550	8270	100	504	690	360	120	140
Pentachiorophenol	2000			units, ue/ke dv		units: ug/kg dw	units: ug kg dw	
NISCELLANEOUS ENTRACTABLES	1660	8270	25		73	57	57	1
Benzyl alcohol	0000	0170	400		. 069	650	217	650
Benzoic acid	0000	2.49	2	units: ue/kg dw		units: mg/kg oc	units: ug kg dw	- 1
	2650	0219	54		540	15	180	540
Dibenzoturan	0222	8270	1400	10220	14000			1
Hexachloroethane	0000	0/70	96	212	290	3.9	=	1
Hexachlorobutadiene	0000	0/70	20	191	220		28	28
N-Nitrosodiphenylamine	0666	0/ 70	°,	unite ue ko dw			units: ug kg dw	kg dw
VOLATILE ORGANICS			071	1169	1600	:		
Trichloroethene	1 2 4	Per L	200	107			1	57
Tetrachloroethene	D.T.	D&T		27	50		1	10
Ethylbenzene	DET	P&T	12		160	1	1	40
I otal Aylene				units: ue ke dw		units: mg/kg oc	units: ug kg dw	hg dw
PESTICIDES & PUBS			6.9	50	69		1	
I OLAI UUI	1617 0551	8081 (12)		:	:	:		6
p.p0.05	UFST	8081	1		1	1	1	16
P.PUUU	0151	8081		1		1	;	×6
P.PUDI	0400	1000		17	:			;
Aldrin	0+C C	1000		,				
Chlordane	3540	8081		3/	1			
Dieldrin	3540	8081	10	37	:			:
Hentachlor	3540	8081	10	37	1	1		1
1 indane	3540	1808	10	1	1	1	1	
	3540	8081	130	38 (13)	2500	12	9	130
I Utal I C.L.S								

•

1. Recommended Sample Preparation Methods, Cleanup Methods, Analytical Methods and Detection Limits for Sediment Management Standards, Chapter 173-204 WAC, Draft - July 1996.
2. Recommended Protocols for Afeasuring Conventional Sedment l'artables in Puget Sound, Puget Sound Estuary Program, March, 1986.
3. Recommended Afethods for Afeasuring TOC in Sediments, Kathryn Bragdon-Cook, Clarification Paper, Puget Sound Dredged Disposal Analysis Annual Review, May, 1993.
4. units: ug = microgram, mg = milligram, kg ≖ kilogram, dw = dry weight, oc = organic carbon.
5. Test Methods for Evaluating Solid If aste. Laboratory: manual physical chemical methods. Method 3050, SW-846, 3rd ed., Vol 1A, Chapter 3, Sec 3.2, Rev 1. Office of Solid Waste and Emergency Response, Washington, DC.
6. Graphite Fumace Atomic Absorption (GFAA) Spectrometry - SW-846. Test Methods for Evaluating Solid II'aste Physical Chemical Methods, EPA 1986.
7. Inductively Coupled Plasma (ICP) Emission Spectrometry - SW-846, Test Methods for Evaluating Solid II aste Physical Chemical Methods, EPA 1986.
8. Test Methods for Evaluating Solid II aste. Laboratory manual physical chemical methods. Method 7471, SW-846. 3rd ed., Vol 1A, Chapter 3, Sec 3.3. Office of Solid Waste and Emergency Response. Washington, DC.
9. Sonication Extraction of Sample Solids - Method 3550 (Modified), SW-846, Test Afethods for Evaluating Solid Waste Physical Chemical Afethods, EPA 1986. Method is modified to add matrix spikes before the dehydration step rather than after the dehydration step.
10. GCMIS Capillary Column - Method 8270, SW-846, Test Methods for Evaluating Solid II aste Physical Chemical Methods, EPA 1986.
11. Purge and Trap Extraction and GCMS Analysis - Method 8260, Test Methods for Evaluating Solid If aste Physical Chemical Methods, EPA 1986.
12. Soxhlet Extraction and Method 8081, Test Methods for Evaluating Solid II aste Physical Chemical Methods, EPA 1986.
13. Total PCBs BT value in mg kg oc.

CHECKLIST FOR SEMIVOLATILE ORGANIC COMPOUNDS IN SEDIMENT

Project Name Hamm Creek Restoration Project	SAIC Project No. <u>01-0440-04-8357</u>
Lab <u>AmTest, Inc.</u>	Lab # 97-A008101 and 97-A008102
Responsible Technician <u>Mark Fugiel</u> , General	Manager
Reviewed by Lisa Roach	Date checklist preparedJuly 24, 1997
Date: Sampled June 16 and 17, 1997	
Received by lab June 18, 1997	
Analysis began Semivolatiles: extraction	n on June 30, 1997; analysis on July 10, 1997
Pesticides/PCBs: extrac	tion June 27, 1997: pesticide analysis on July 3, 1997 and
PCB analysis on July 8,	1997
Problems noted (e.g., deviations from prescribed	methods, analytical problems)

All required documents submitted?" (Y/N) Yes

Analytical method Semivolatiles: SW3550/8270; Pest/PCB: SW3540/8081

COMPLETENESS AND HOLDING CONDITIONS

	# Samples	# Samples
	Submitted	Analyzed
A/B/N	2	2
Pesticides/PCB	2	2

Holding conditions acceptable? (Y/N) (1 year for frozen sediment or 14 days at 4°C until extraction: extracts must be processed within 40 days)^b Yes

If no. identify samples _____

Extract conditions acceptable? (Y/N) (1 year for frozen sediment or 14 days at 4°C)^b Yes

If no, identify samples _

- Checklists adopted from PSDDA guidance manual: PTI, 1989. -

.

BIOASSAYS

Amphipod Mortality Test

The following data should be reported by all laboratories performing this bioassay:

- Daily water quality measurements during testing (e.g., dissolved oxygen, temperature, salinity, pH) (plus ammonia & sulfides at test initiation and termination)
- Daily emergence for each beaker and the 10-day mean and standard deviation for each treatment
- 10-day survival in each beaker and the mean and standard deviation for each treatment
- Interstitial salinity values of test sediments
- 96-hour LC₅₀ values with reference toxicants.
- Any problems that may have influenced data quality.

Neanthes Growth Test

The following data should be reported by all laboratories performing this bioassay:

- Water quality measurements at test initiation and termination and every three days during testing (e.g., dissolved oxygen, temperature, salinity, pH) (plus ammonia & sulfides at test initiation and termination)
- 20-day survival in each beaker and the mean and standard deviation for each treatment.
- Initial biomass
- Final biomass (20-day) for test, reference and control treatments.
- 96-hour LC₅₀ values with reference toxicants.
- Any problems that may have influenced data quality.

Sediment Larval Test

The following data should be reported by all laboratories performing this bioassay:

- Daily water quality measurements (e.g., dissolved oxygen, temperature, salinity, pH) (plus ammonia + sulfides at test initiation & termination)
- Individual replicate and mean and standard deviation data for larval survival at test termination.
- Individual replicate and mean and standard deviation data for larval abnormalities at test termination
- 48-hour LC₅₀ and EC₅₀ values with reference toxicants.
- Any problems that may have influenced data quality.

DAIS DATA CHECKLIST

Sample Locations and Compositing				
	Test	Reference	Control Sediment	Seawater Control
	Sediment	Sediment	Jeumen	Condo
atitude and Longitude (to nearest 0.1 second)				
IAD 1927 or 1983				
JSGS Benchmark ID		The second s	Martan September 199	
tation name (e.g. Carr iniet)				
Vater depth (corrected to MLLW)				
Drawing showing sampling locations and ID numbers				
Compositing scheme (sampling locations/depths for composites)				
Sampling method			-	
Sampling dates				
Estimated volume of dredged material represented by each DMMU				
Positioning method				<u> </u>
Sediment Conventionals Preparation and analysis methods				
Sediment conventional data and QA/QC qualifiers			·	
QA qualifier code definitions				
Triplicate data for each sediment conventional for each batch		a annahit anna 2000 a an		<u> </u>
Units (dry weight except total solids)				
Method blank data (sulfides, ammonia, TOC)				<u> </u>
Method blank units (dry weight)				
Analysis dates (sediment conventionals, blanks, TOC CRM)			S	
TOC CRM ID				
TOC CRM analysis data				_ _
TOC CRM target values				
Grain Size Analysis		The Designation of the A		
Fine grain analysis method				
Analysis dates	2 2		a A	
Triplicate for each batch	Service Service			
Grain size data (complete sieve and phi size distribution)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			

BIOASSAYS

nphipod Mortality and Emergence	Each	Test	Reference	Control
	Batch	Sediment	Sediment	Sediment
ecies Name				
ortality and Emergence:				
Start date			and the second second second	
Daily emergence (for 10 days)				
Survival at end of test		T. C.		
Number failing to rebury at end of test				
ositive Control:				
Toxicant used			 	<u> </u>
Toxicant concentrations				
Exposure time				
LC50				
LC50 method of calculation				
Start date				<u> </u>
Survival data				
Water Quality Measurement Methods:				
Dissolved oxygen				
Ammonia				
Interstitial salinity				
Sulfide				
Water salinity		ž.		
Water Quality:				International States of Long
Temperature (day 0 through day 10)				
pH (day 0 through day 10)	-			
Dissolved oxygen (day 0 through day 10)				
Water salinity (day 0 through day 10)				
Sulfide (day 0, day 10)				
Ammonia (day 0. day 10)				
Interstitial water salinity (day 0)			-	

ediment Larval Mortality and Abnormality	Each	Test	Reference	Seawater
	Batch	Sediment	Sediment	Control
pecies Name				
ioassay Parameters				
Inoculation time (hours)				
Exposure time (hours)				
Stocking beaker density (#/ml)				
- Stocking aliquot size (ml)				<u> </u>
Aeration (yes/no)	STORE			
Mortality and Abnormality:				
Start date				<u> </u>
Initial count (minimum of five 10-ml aliquots)				<u></u>
Final Count:				The second second second
Aliquot size (ml)				
Number normal per aliquot				Carlos
Number abnormal per aliquot		a fill and a second second		
Water Quality Measurement Methods:				
Dissolved oxygen		· · · · · · · · · · · · · · · · · · ·		
Ammonia		l 		
Sulfide		si	<u> </u>	
. Water salinity				
Water Quality:				
Temperature (daily)		and the second second second second		
pH (dily)		and the second second		
Dissolved oxygen (daily)				
Water salinity (daily)				and a sub-
Sulfide (initial and final)				
Ammonia (initial and final)				
Positive Control:				
	THE R	1		
Toxicant used				
Toxicant concentrations				
Exposure time		ii ii		
EC50				
EC50 method of calculation				
Start date				

APPENDIX B

STATION LOCATIONS AND COMPOSITING SCHEME

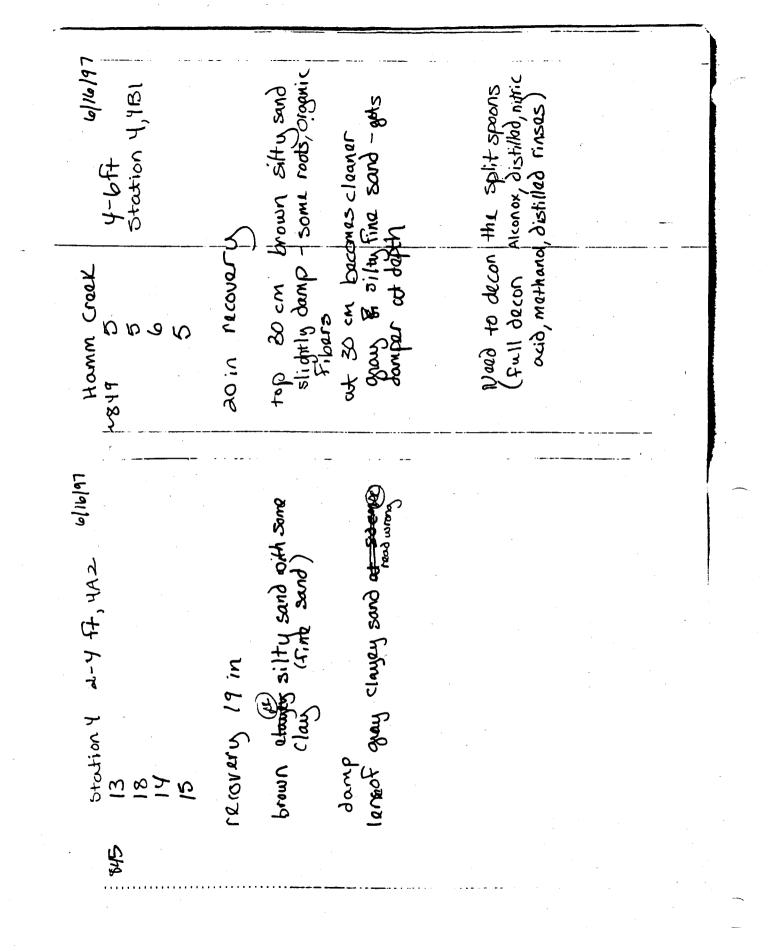
AR 023270

An Employee-Owned Company

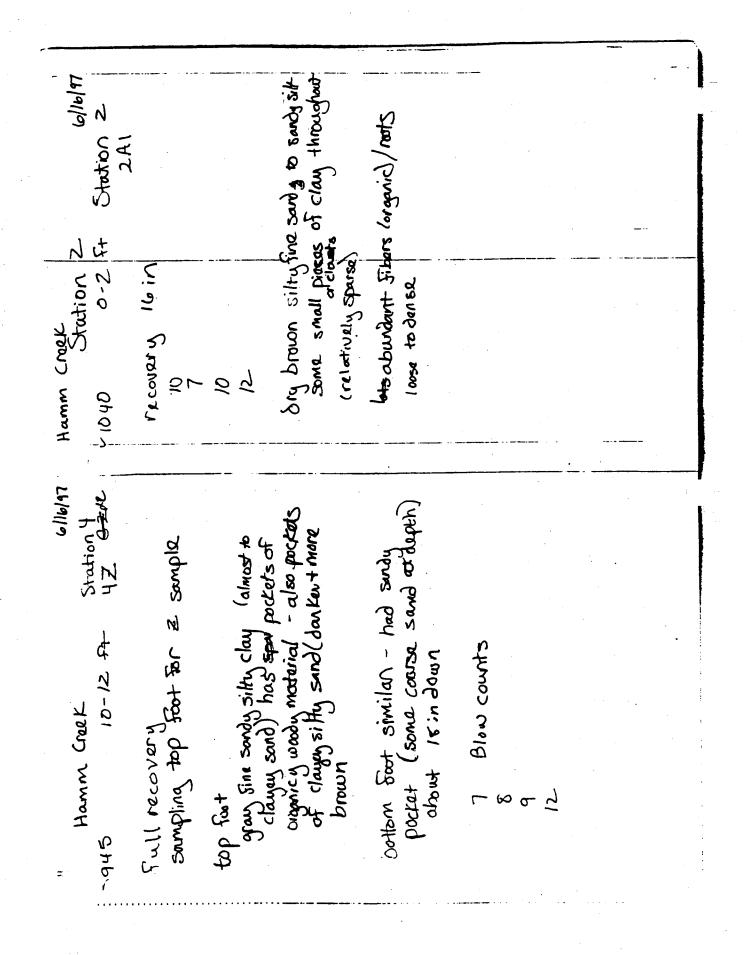
Station	Latitude (NAD83)	Longitude (NAD83)	Elevation (feet)	Length of Core Sampled (feet)	Core Section Designation (feet)	Sample
1	47 30 58.8 N	122 18 26 1 W	23	19	A +23 to +19	C1
		• • •			B +19 to +15 C +15 to +11 D +11 to +7 E +7 to +4	C2
2	47 31 00.4 N	122 18 27.0 W	22	13	A +22 to +18	Cl
					B +18 to +14 C +14 to +10	C2
					D +10 to +9	Z2
3	47 30 59.1 N	122 18 28.1 W	21.7	12	A +21.7 to +17.7	Cl
			,		B +17.7 to +13.7 C +13.7 to +9.7	C2
4	47 31 01.0 N	122 18 39.3 W	22.5	11	A +22.5 to +19.5	Cl
					B +19.5 to +14.5 C +14.5 to +12.5	C2
					Z +12.5 to +11.5	Z4

Table B Station locations and compositing scheme for the Hamm Creek restoration project.

APPENDIX C


FIELD AND BOREHOLE LOGS

AR 023272



An Employee-Owned Company

material. touching the sides of the sampler tell them I wanted to be nitric tructhoural niners They indicated they had been cleaned prior to coming out. I made sure I didn't somple 26/01/0 0-2 ft 4A1 rate: drillers began compling before I could 2315 stainlese 2 ft split spons Jew small gravel pieces at about \$0 cm some bown silty supp with coopging fibers roots Station 4 claughense moderne 0-2 ft recovery Hamm Creek dry loose Blow count moun 0839 12 7 Ц 9 Note: mat at substation gate at 7:30 - drilles plastic (will avoid sampling material split-span is stainloss steel; 2 fait ofotech USACE Horty WERMORTE weather : overcast, brief moments of sampling aggipment: hollow stem auger, split-spon sampler 79 |ai |a Mike Brankline Cora catchars how ever work Dan Harris 3 split-spans audilable SAIC Lisa Roach Tacona Runp+Drill SW, 6ds touching this) arrived at 5:00 0200 Hamm Creek Drillars halper Crew:

6/16/97 5-10 ft Stadion 4 4Cl	Sull recovery top 10 cm perform clauged sittly fine sand, space perform clauged sittly fine sand, space below 10 cm; below 10 cm; Siburs mixed in with the claut at accosionally throughout about that below the 10 cm it becomes a sitty claug light gray plastic, stift gray	
Hamm Creek 925 6 12 12	Sull recovery top 10 cm below 10 cm below 10 cm 5. bus mixed in at occasionally that below the 10 cm sitty clay light plastic, stift	· · ·
130 Hamm Creak 6/16/97 130 Blow count 6-8 ft 810 count 2-tailion 4482 12 12	Facouary 24 in Jark graven brown clayery silver fine cand - pockats of clay throughout also some small gravelo some organics - pieces of wood chips in top 10 cm damp to noist near bettom nates thread in some porto loose in others	

reak - 6/16/97	15 	moist to mot loose sine to madium sand with some sitt	come coursar sand particles also homogynous throughout	blow count			
Hamm Creek 1052 Star	recovery	madium s	tome coo) = 6 6	, y, y		
Hamm Greek 19:5-20 Welleft 1045 2-454 Fecovery 197:1 Plus Station 2A2	13 blow count 23	3C 3C	top 3 in Similar to the 0-2.ft sample	below that is an orange bown Sine to madium sand with Some sith - also long	11-2mm of gray clay -particularly in the bottom 20 cm	collected the ust sample from this 2-4 ft depth sample	

.

8-10 2CL	ج ب 1	of the second 14 in (35% cm) depth is grauged Sim to mad sound with some sitt - fairly clean thoug 1 moist	clay with some fine sands chamber mostly sithy clay at bottom plastic + moist practed of wood dabris organicy, suffic dor	
Hamm Creek 1145 Star 2 8		The part to the about 14 in in depth is grauged sine to n some sitt - fa moist	clay with some sine sonds mostly sithy clay at bottom plastic + moist pieced of ward dabris organicy, suffic addr	
Hamm Creek 6-16-91. 135 Staz 6-8 2B2	5 1 2 2 2 2 2 2 0 2	recovery 23 in top 11 in are similar to the previous sample Bine to madium sand with zone sith moist, loose moist, loose rish 11-17 in similar meterial but Slightly darker t more gray	43 cm + balow has less sift + is graugh	

Hamm Creek 6/14 ft ZJ	5 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Will sample top Scot For the Z archive sample Sull recovery ful recovery for a sch is a soft black silty clay with some Fine sand below that to 30 cm is fine to med sand with some sitt also pockets of dayaysith to sitty clay (gray brown) bortom 5 cm of that top 30 cm fue brack of unsur than the brack of unsur than the brack of unsur than the brack of unsur than fine to may and yong brown sitty cray that and outsur than
Hamm Creek 6/16/97 1150 Etc. 2 10-12 ft 202	5005	Tull recovery ant the madium, sand with sith grandbrown with sith grandbrown with sith grandbrown with sith grandbrown erelow is graun fine to med sand pockat in a black B sith day, onganic with small wood filmers small wood filmers and wood filmers and wood filmers (above is rocm y 7 cm) balow 47 cm is a lighter tonunisty grau day which has none soud in it t is lest noist gharder

61697 1A1 (similar to dry sity Fine Sand, brown abundant roots on surface but Station 472 0-2 A blow founts present throughout Station 5. 5 RCOVERY \overline{o} Q 7 1250

Hamm Creak b) 16/97 - he bottom Soot continues with. the light brownlengery clay but a perfat of lense of Fineto med said occurs botween 48-51 cm

4-6 & 0/16/97	20 in 5 the silty fine with organic fibers dense to	10 cm damp black silty utime to sandy silt - ninor clay n't for a finead	
Hamm Craek 1310 Station 1 30 47 49 49	Racevery ZO in 100 :0 cm is the silty fine brown sand with organic file (roots etc.) divert	Dottom 10 cm hard, damp black sand to sandy sitt (dogsn't for a thread	
Hamm Creat Colle 197 1300 Station (2-497 1AZ 6 9 20 32	recovery -full top as cm similar to previous comple similar material but 25-34 cm - mottled with a gray claypy send (fine)	34-44 on lanse that is sandien but similar to previous material balow 44 cm Silly Fine sand mottlad with Cauge material + an orange organic (abod) material	derse to hard

note a mu lenses of wood debris in the lenses of silty fine sand on Iddni From 5. Social lighter gray brain clayery sandy to Sandy clay wolfled with the blacker sandy 116/91/9 top & an black gray saidy day church sand (fine) has a bit more sood sitt+ clary Lipurar sandy day 8-10-4 - duich - still damp than the trown law <u>ه</u>ر م 101 Hann Creek Star 1 30-50 cm dwy+loose re covery Clary dense moist 2 ୭ 80 front 0261 L6/91/27 moffled with the less blact material actually top 3 4-5 AP 182 groups clauger Fine sand (less clay than the 18-30 cm top 18 cm to black silty sand 18 to 30 black silly clay stift, farms thread recortly 23 in oue stough With some day Hamm Creek Station Delow 30 cm es co $\overline{\alpha}$ ŝ 5121

Hamm Creek 6/17/97 Day 2 Crew:	Tacoma Pump mid Dill: Hike Branktine Dan Harris UTACE Montry Kaizer SAIC UTEA Ronch	witather guile priciple drizzles then sunstina, then tern etc. Windy charm	OTES MOTACE Ecalllo Citution Millerin Will Eat up Mr provessing while Will Bor Millers	(nin 31 million Acrime malling)
Hamm Creek 6/16/97 1400 Drillers hud to leave for the day	Bacausa we are not done samples for both composites, I. needed to for up the mud collected (after rinking and will combine + three with material collected tomorrow (i.e., one material for 4+CZ (i.e., one material for 4+CZ	out material collected on 1/10 + will homogenize with that collected 1/1).	note: botween sampling, the stainless stad pan with the sample was Keptonice in alange cooler	

Hamm Creek 6/17/97	<i>∞ ∞</i> ⊙	Facovery 22 in Top to cin Similar to 10/2 Schipte	Bine sand - dance	in the dest h of of of of the line of the clarker of the clarker find curry the clarker of the clarker the clarker of the clarker the clarker of the clarker	
Hamm Creek 6/17/97 0605 Station 1 10-12 1(2	10 Blaw Counts 11 14	Full recovery to 7 cm new be fough silty clay, sattstiff dark growth t	7-11 cm Snato mad sand lense	Il cr Dottom silty Jine sand with claw dense, damp, sngaric Jibers present	

27 studion 1 16-15 1E1 wet sine to held sand, loose will some silt bow uis or Hamm Creek Reconstic 18300 1580 191191---201 top 34 cm sittly clayer fore said month is the said with gay t charge all black from a pintich lenges beku zy Cin is a jine to nied sand with some sitt new st dank graup 91-H RECOVERY FWU Hamm Creek 1520 Station કેર્ટે Å ક ۍ ۲

HOWN NEETLED WITH CHUR , CONTRACT WOOD bouri silty file sand with aburdant works, some clay plasent dry, worm Sulfided subsample (did not analyze dee (did not analyze dee 62 LP11/2 0-2.54 ring surly silly day with organics lupod thrun 3A1 collacted a nunad 41.5 M Station Hann Creek bp locm 22 -30 Silyfin and Se- tollon Recovery 28 $\overline{\mathfrak{O}}$ <u>6</u> e 0260 18-2044 1ED. relrito (come as provious split form sample (set of this core leten ine (op toot is the same) nicist to wet man fing to medium cond with silt will somple by It only blow counts 2015 IN Stalion 1 Hamm Creak plavery a २ न्न् श्र 5 0855 ц.

31 12/11/97 Address on bytom 381 whole cord is situting to mad sand loose, moist dank grawn recoverly . 15.5 m ŝ Hamm Creek to Studion 28 <u>59</u> ğ 2004 to reltila y - c Lelow 40 cm is a black silty clayer u entit at 51 cm on Othar lonse of line cand (gray) with some your time calle coorsar clayon fille sare top 10 mi Fine south dan to clauser south darip danse has root filmes arasin'nal pockets of brown, with propries telows iscanto 40 cm bonce Recovery 21 cm at hit 20 cm 3 3 rum IRN. TOC. 6 Hamm Creek 0730 Sta. 2 + 0 23 С N 00 30

g gray notfled with black + pinkish gray clayery fine sand to fine sandy clay domp fink 2917192 8-10 3CI > 511 cm Fine sity and (sintilar to 8-54 cm but a bit nore sandy damp top & cm V soft wat black claused silt with minor 1 ഹ Statidn Hamm Creek Recovery Sull 8-54 cm - $\overline{\omega}\overline{\upsilon}$ ହ top 10 cm, brown mothed with blact "daycy sand (fine sand) moist damp Filled 4 jars (induded 115/1150) difficult the Fill with out an portets durg to texture (it and dim) 1917/97 282 of incutavial + the need to fill 4 , wis hapt gray fire sandy clay Dork gray motted with black One - Kupt Spoon Closed Fill will collect VOAS Sion this 8-9 hord FULL racevery D cm'- 34 CM S 34 to bottom Hamm Creek sta Dui chy ward a ~0360v £

Completed compositing around 1400 - took a while to homogenize due to the clay and also because I had to empty out jars from felle colloction of station's 2+4 Surfice (0-4 ft) 29/11/9 Jurt you wet, Sine scindysilt with clay, v. soft Composite (2 subsurface collected axthe material br QA/BC analyses (HSHSD, Lup, trips of c) brown Sity fine sand with clay abundant coots, loose, Janporodly to composite with motomoul raining agoin! | Pouring! collocted today Composite C Hamm Creek homoogniate : Fire clarker sand with (darkgray) pinkish lanses of sandyclay L6/L1/9 (note: did not analyza der 98/97) 10-12 302 10-30 cm fine sardy silt with 12/1400 sulfided subsarpha fust top 10 cm silty fine clayery sand chay v soft t wot Full recovery ad to bottom Hamm Creek (2) by d D D 65 , /030

0330 JN + Lisa Roach mot at Southerport 0.025 m2 Stainless van Veen waathar: N. nice Swny 70's, cam at Sirst (winds picted up in atternoon) 26. 1 ~ Same IR's car-headed to Carr Inlet Raf Collection 7/17/97 0745 John Natayama picked up UW Lisa Roach, John - 35-40% 1030-101 Arrived at boot-loundy of Horseshop Bay - loaded up + prepared to loundr Nakayama Arrived at Car Inlet Sines of Cart Sines of Cart Incution, Mall - left off Crew: SAIC Baston whalar Carr Inlot Using (4) 1 26/L1/9 1430 Everything loaded up the officer to the officer Hannerger Ê

2 Cary Ref. Sed. Collection 7/17/97 239 279537 34 A B17R 05 F The sandy (didn't sour) 37.42 surviver that can't 21953.6 27953. 5 42214.8 tw Fin way too fine 4.22 14.4 Dave 23 W 27953. U 422 J ۲۶ 542 (235 8601 PER) and attempt - moved in forwards 28.5 Ft 2793.5 42215.0 Note: positions positioning using LORAN TDS HODD Carr Intraf. sad Collection 7/17/97 (may be too doop - may nood to be in 2557 besad of notes stom BAX (Parametrix) 44 moving a bit more west 4570 Sond 553 sand 27953.6 42215.0 First attempt 1145 1219

Carr Inlet Rof Sed Calection 7/1797 ゴ中 ay A 26A 65-66 70 sand £ 27953, 5 42214 8 winds picking w 2214.8 42214.8 THIS IS T Can 4 Wis location drifting Has Fire 27953.4 322 27953.5 1319 52 329 みしい Rof sad. Collection 7/17/97 27953. 6 42214. 8 32 A 23ft oops anchardidit 8070 Sand Find of 21953.5 27953 , L 4,5375,6 4,5 H,5 too fine the first Carry 1253 1255 1313 1221 1921 0

abundant ophloroidst polychaeters (noticed some sulfider in last rep - avoided sulfidic pockets) 0630 Arrived at office, drapped samples off at storage facility (store at 4°C) -10500 ^(JU)ropped boat off at UW, rinsed with freshwater Headed back to beat loundy to damop wet sieve: 63% sand Carr Inlat Raf Sad Collection 7/17/97 homographic of ine silty sand (fine soud) END OF DAY <u>e :</u>

					В		REHOLE LOG PAGE 1_ OF 1_ IOLE NO. 1
	NG COMP	PANY:	Har Tac Hol	nm Cre oma Pi	ek, Sea ump & D m auger	ttie, WA Drill	Creek Restoration Project TOTAL DEPTH: 20 ft GROUND ELEVATION: 23 ft Don sampler DATE STARTED: 6/16/97 DATE COMPLETED: 6/17/97
LAB SAMPLE NUMBER	BLOW COUNTS	INTERVAL SAMPLED	MLLW ELEVATION	DEPTH IN FEET	PERCENT RECOVERY	SPLIT SPOON SAMPLE	
C1	7 10 10 13		+23	11111	79%	1A1	0 to 4.3 feet: Brown, dry, silty fine SAND with abundant roots and fibers; dense. The matrix becomes mottled with a gray clayey sand at about 3 feet, and organic woody material is present at 3.4 feet.
	6 9 20 32		-+19	31111	100%	1 A 2	
	30 47 49 49		+17	5	83%	181	4.3 to 7 feet: Hard, damp black silty very fine SAND to sandy SILT with minor clay. There is a lense of black silty stiff clay between 6.5 and 7.0 feet.
	8 6 13 13	┝╶╅╶┞╴ ┥╷╷╷	+15	7	83%	1B2	7 to 9 feet: Gray-brown clayey fine SAND mottled with the black silty sand material; damp, dense. 3-inch lense of black gray sandy clay (moist). 2 mm lenses of wood debris.
C2	8 8 12 16		+13	•	87%	1C1	9 to 10 feet: Brown sandy CLAY to clayey fine SAND; hard to dense; lense of silty fine sand - dry to loose on bottom.
	10 11 14 14				100%	1C2	10 to 12.2 feet: Gray-brown silty fine SAND with clay; moist; dense; organic fibers.
	7 8 8 10		+11	12	92%	1D1	12.2 to 15 feet: Gray-brown silty clayey fine SAND (more clay than 10-12 ft section) dense with 1 mm lenses of pinkish-gray clayey fine sand; also gray to charcoal clayey sand lenses.
	6 28 40 45		+9	14	100%	1D2	15 to 20 feet: Wet, loose; dark gray fine to medium SAND with some silt.
	12 30 33 33		+7	16	85%	1E1	
	9 10 21 30	╸┿╺┿ ┥╽╽ ┝─┴─┙	+5 +4	18	85%	1E2	Total Depth: 20 feet
NOTE:	<u></u> l	<u></u>	. 1			. <u>4</u>	

DIV0440HAMM.CRICORE01.DSF 9/12/97

 \mathcal{A}

BOREHOLE LOG BOREHOLE NO. 2

PAGE 1 OF 1

PROJECT NAME:
LOCATION:
DRILLING COMPANY:
DRILLING METHOD:
LOGGED BY:

Sed. Char.	for the Hamm	Creek Restoration Project

Hamm Creek, Seattle, WA Tacoma Pump & Drill

Hollow-stem auger/split-spoon sampler Lisa E. Roach

TOTAL DEPTH: **GROUND ELEVATION:** DATE STARTED: DATE COMPLETED:

14 ft 22 ft 6/16/97 6/16/97

LAB SAMPLE NUMBER	BLOW COUNTS	INTERVAL Sampled	MLLW ELEVATION	DEPTH IN FEET	PERCENT	SPLIT-SPOON SAMPLE	
C1	10 7 10 12		+22 +20		67%	2A1	0 to 2.2 feet: Brown, dry, loose to dense silty fine SAND to a sandy silt, some small day clasts throughout; abundant organic fibers (root material).
	13 23 26 25			, וון וון	83%	2A2	2.2 to 7.5 feet: Orange-brown fine to medium SAND with some silt; moist; loose (more brown below 4 feet and becomes grayer by 7.5 feet). 1-2 mm lenses of gray clay between 3.5 and 4 feet.
	11 23 23 23		+18 +16	511111	62%	281	Some coarser sand present at 4-6 feet. Subsample for volatile analysis collected between 2 and 4 feet (C1 - volatiles)
C2	15 17 22 20	┝╌┽╶╄╍ ┝╌┽╶╄╍ ┢╍╉╶╂╍	+14		96%	2B2	7.5 to 8.4 feet: Dark gray fine to medium SAND with little silt - fairly clean; moist.
	8 9 11 11		+12	9	96%	201	8.4 ft to 12 feet: Charcoal black silty clay to a clayey silt, with some fine sands; plastic and moist; pieces of wood debris; stilfer at depth. Lense (4 in.) of gray-brown fine to medium sand with silt at 10 feet. Material had
	3 5 25 26		+10		100%	2C2	sulfide odor in 8.4 to 10-foot section. Bottom 4 inches was a lighter brownish-gray clay with more sand; less moist; harder.
Z2	16 18 20		+10	13	100%	2D1	12 - 12.8 feet: Top inch soft black silty clay with fine sands below which is a fine to medium sand with silt and pockets of gray-brown clayey silt.
	25			11 14	P6.		12.8 to 14 feet: Light brownish-gray silty clay with a lense of fine to medium sand at 13.6 feet (1 in lense).
				15			Total Depth: 14 feet

DIV0440HAMM.CRICORE02.DSF 9/12/97

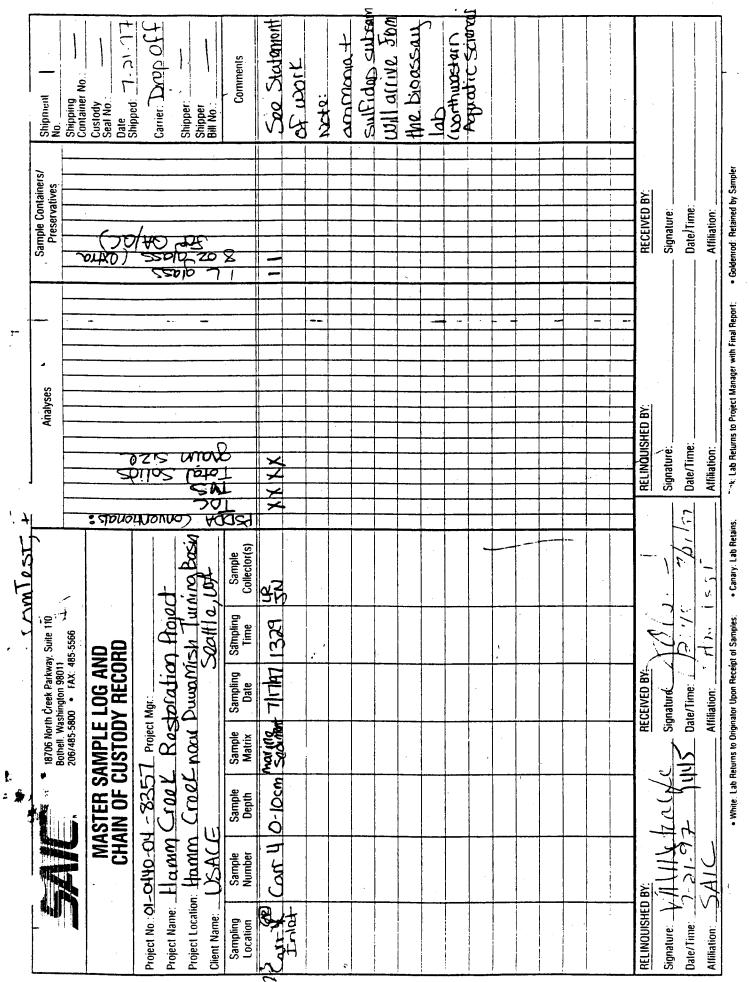
AR 023295

			1		E		REHOLE LOG PAGE 1 OF 1 HOLE NO
LOCAT DRILLI	NG COM	PANY:	Har Tac Hol	nm Cre oma Pu	ek, Sea ump & [m auge	ttie, WA Drill	Creek Restoration Project TOTAL DEPTH: <u>12 ft</u> GROUND ELEVATION: <u>21.7 ft</u> DATE STARTED: <u>6/17/97</u> DATE COMPLETED: <u>6/17/97</u>
LAB SAMPLE NUMBER	BLOW COUNTS	INTERVAL Sampled	MILW ELEVATION	DEPTH INFEET	PERCENT RECOVERY	SPLIT-SPOON SAMPLE	
C1	16 12 18 28		+21.7	11111	87%	3A1	0 to 2 feet: Brown, silty fine SAND, some clay, and abundant roots; dry; worm present. Between 4 and 9 inches is a lense of fine sandy silty clay with organics (wood). At 9-14 inches is brown silty fine sand. At 14 inches is a brown, mottled with gray clayey fine sand with decomposed organic wood.
01	11 23 18 23		+19.7	2111	87%	3A2	2 to 4 feet: Top 4 inches is a fine sandy clay to clayey sand with root fibers, below which is a coarser brown clayey fine sand with wood organics and occasional pockets of clay. At 3.3 feet is black silty clay; very stiff. There were 0.2-in. lenses of gray fine sand at 2.3 feet, 2.6 feet, and 3.3 feet.
	12 20 18 20		+17.7	5	64%	3B1	4 to 6 feet: Dark gray silty fine to medium SAND; moist; loose; wood chip and debris at 6 feet.
C2	8 12 18 20		+15.7		100%	3B2	6 to 8 feet: Top 4 inches is brown mottled with black slity clayey fine SAND; damp. From 6.3 to 7.1 feet hard fine sandy slity clay (dark gray mottled with black). 7.1 feet to 8 feet - hard light gray fine sandy clay (sandier). Collected volatile organics subsample for C2.
	7 10 13 15		+13.7	9 	100%	3C1	8 to 10 feet: Top 3 inches very soft wet black clayey silt with minor fine sand below which is a gray mottled with black and pinkish gray clayey fine sand to fine sandy clay (becomes sandier at depth).
	5 5 9 9		+97	10	100%	3C2	10 to 12 feet : Top 4 inches silty fine clayey SAND. 10.3-10.6 feet fine sandy silt with clay; very soft and wet; 10.6-12 feet dark gray fine clayey sand with pinkish lenses of sandy clay.
			1+9.7	13			Total Depth: 12 feet
				14			
				18			
				18	4		
NOTE:	Extra 1.3 f	eet was	inadver	tently sa	mpled a	this stati	iion.

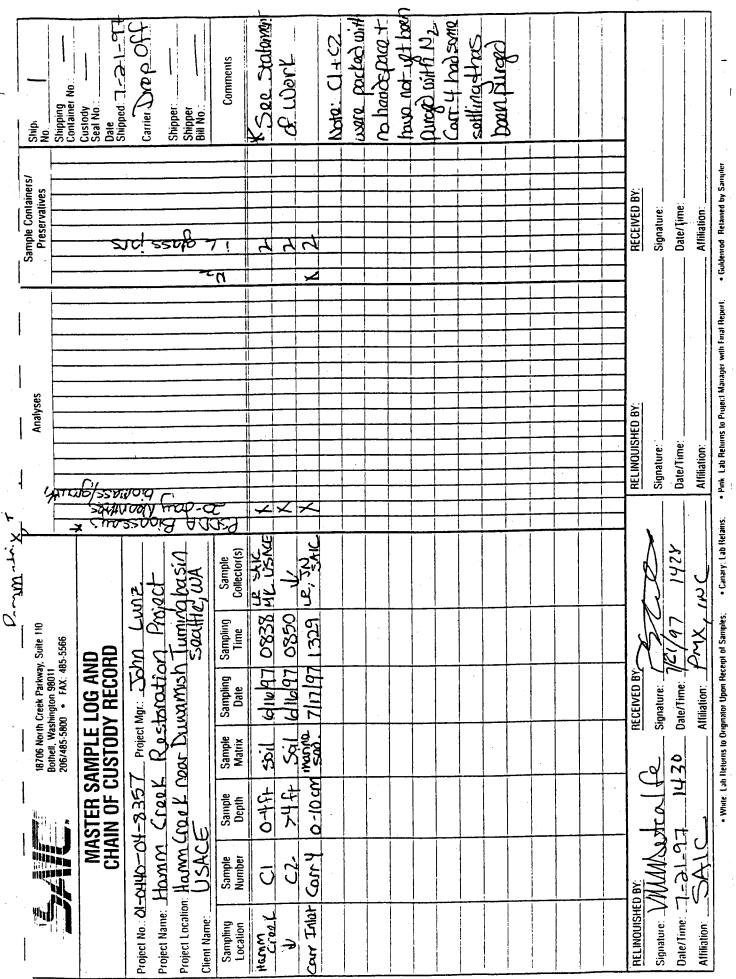
DIV0440HAMM.CRICORE03.DSF 9/12/97

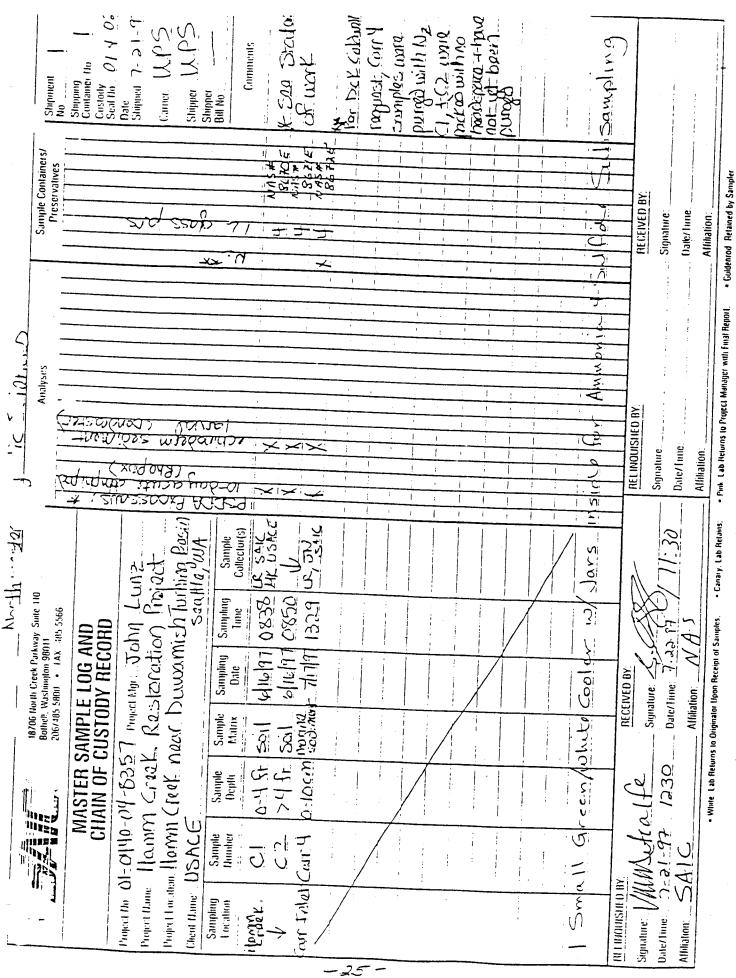
					E		REHOLE LOG PAGE 1_ OF 1_ HOLE NO4 4
LOCAT	NG COM	PANY:	Ha Ta Ho	mm Cr coma F	eek, Se Pump & em auge	attie, WA Drill	Creek Restoration Project TOTAL DEPTH: 12 ft A GROUND ELEVATION: 22.5 ft poon sampler DATE STARTED: 6/16/97 DATE COMPLETED: 6/16/97
LAB SAMPLE NUMBER	BLOW	INTERVAL Sampled	MLLW	DEPTH In Feet	PERCENT RECOVERY	SPLIT-SPOON SAMPLE	LITHOLOGIC DESCRIPTION -
01	12 16 18 24		+22.5	าเเเิน	96%	4A1	0 to 5 feet: Brown, dry, loose silty fine SAND with few small gravels and organic fibers and roots; occasional lenses of gray moist clayey sand; becomes more moist at depth; worm present in top 2 feet.
C1	13 18 14 15		+20.5	2 1 1 1 1 1 1	79%	4A2	
	5 5 6 5		+19.5		83%	4B1	5 to 6 feet: Gray, silty fine SAND; increasingly moist at depth.
C2	10 12 16 14		+14.5	7	100%	4B2	6 to 8.3 feet: Dark gray to brown clayey, silty fine SAND with some small gravels and pockets of clay. At 6 to 6.3 feet were pieces of wood chips.
×	6 8 12 14		+12.5	9	100%	4C1	8.3 ft to 12 feet: Light gray, fine sandy, silty CLAY; plastic and stiff with occasional woody fibers; these were more abundant at 9.6 feet; pockets of organic woody material occurred below 10 feet; pockets of clayey silty sand in the bottom 2 feet.
Z4	7 8 9 12		+11.5	"	100%	4C2	
				12			Total Depth: 12 feet
				14			
				16 17			
				18			
NOTE:	_	_ 	<u> </u>	_ _	_ _	.I.,	

DIV0440HAMM.CR\CORE04.DSF 9/12/97


APPENDIX D

CHAIN-OF-CUSTODY FORMS




An Employee-Owned Company

Shipment No.	Shipping Container No	Custody Seal No Date Shipped	Cartier	Shipper	Shipper Bill No	Comments	n sad soult	- Samplingt Analy	1 100 CINCLUCIO	(manuly somiror)			Styta wateral	collected for C2.	For an ac	Please reput	IN BDAR + SAIS	Permat						
Sample Containers/ Preservatives	wn	dos yr zay - s	220 AOV	20 20 20 20		1 571 56	211	224												RECEIVED BY:	Signature:	Date/Time:	Affiliation:	
Analyses	R R	5. (UDZO !PS 7	ייניסג געשייי געשייי געשייי		2 0140 2 0140			XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX												RELINQUISHED BY:	Signature:	Date/Time:	Affiliation:	
	10000	ی م در او	גרשר <u>ן</u> גרשר		d	Sample Collector(s)	LE SALF XXX	X X													<u> </u>	19 1.4)	255	
reek Parkway. Suite 110	Bothell. Washington 98011 206/485-5800 • FAX. 485-5566	OG AND Record	Project Mgr. John Lunz	tion Project	During Basil	Sampling Sampling Date Time		6/10/11 0850	-											RECEIVED BY	Signature:	Date/Time: / / 4 - // 5	Affiliation ARI	IIUIUII.
18706 North C	Bothell, Washi 206/485-5800	MASTER SAMPLE LOG AND CHAIN OF CUSTODY RECORD	Project M	Creek Restarian Inject		Sample Sample Matrix	t soil	+													Rauch sig	/ <u>.'<!--</u--></u>	Affi	
		MAST	-0440 -	Harrin	Project Location Han M Creek, Near															LED BY:	din E Ra	1-18/01	5410	
-			Project No. CI	Project Name	Project Locat	Sampling Location	HOUND				3	• 				 	2 0	232	000	RELINQUISHED BY	Signature:	Date/Time		

			18706 Nort	18706 North Creek Parkway. Suite 110	y. Suite 110		Analyses		Sample Containers/ Preservatives	Shipment
	74 A.	ал .	Bothell, Wa 206/485-56	Bothell, Washington 98011 206/485-5800 • FAX: 485-5566	85-5566				pota	Shipping Container No
	CHA	MASTER SAMPLE LOG AND CHAIN OF CUSTODY RECORD	AMPLE	LOG AV	0 D D D D D D D D D D D D D D D D D D D	. 1-0-2	ریا ک		ין זי גע עצ	Custody Seal No Date Shipped
Project No. C	Project No : U - CH40 - CY - 8357	- 8357	Project	Project Mgie John Liu	trind					Carrier
Project Name Project Locati	Project Location: Harvin Cr22L DPAL	(122k	Judu	CLEMMANNO CLEMMANNO	Hish Ta	Inning Bush			जोवस्ट र वाव	Shipper Shipper Bill No
Client Name: Sampling Location	Client Name: LTATC L Sampling Sample Location Number	Sample Depth	Sampte Matrix	Sampling Date	Sampling	Sample Collector(s)	24 24 2(17:5)		20 h	Comments
1001 June 1001		13 1-0	1192	66-18-6	11:00	Degis LE	X Y.		1 L CONCHASTO	Note Sample on
		246	Ņ	7.31.97	1 .	\rightarrow	<u>V</u>	-		thim are why
28 ENCLUNCH	しい	1	Mur 10			ΥĜ	XX			Subsamptes war
		1	, , ,	÷						taten at the
										de proseciul
										-
										Mease analyse
										Within 48 hi up
										arrivel of Mules
										-
										Refer to Statema
• •										of ubit- (include
										when carry have
•										Submitted Br Hu
<u></u>						-				rector another
	-	-								Challan
RELINQUISHED BY	ED BY:			RECEIVED BY:	, - -		RELINQUISHED BY:		RECEIVED BY.	0
Simature V	nichil.	& Rely	mon S	Signature:	2 Cini	, , , ,	Signature:		Signature	
Date/Line	79/4/8	07:1	ن ا	Date/Time://	5:5:57	0.45	Date/Time:		Date/Time:	
Affiliation	nehucht	in the sine	A Bur	Affiliation:	An. 75	.5.2	Affiliation:		Affiliation:	
	<i>(1</i>	4-1-1-1-1-1	Contract In Orig	a bottoon to Origination Union Beneficit of Samulas	int of Samples	Canary, Lab Retains:	: • Pink Lab Returns to Project Manager with Final Report.	ter with Final Report.	 Goldenrod, Retained by Sampler 	· _

· _					SAIC		orage Facility	ility		
		18706 Nori	18706 North Creek Parkway, Suite 110	vay. Suite 110			Analyses)	Sample Containers/ Preservatives	Shipment No
	Ĵ	Bolneil, Wi 425/485-51	Botnell, washington 98011 425/485-5800 • FAX: 485-5566	85-5566					2 2 2 2 2 2	Shipping Container No
25	MASTER SAMPLE LOG AND CHAIN OF CUSTODY RECORD	SAMPLE	LOG A				برج ح		81- 81- .81- .81- 	Custody Seal No. Date
Project No. 01-0440-04-2357-000 Project Mgr. John Lun	1958-40	-CCD Project	Mgr. Jo	hnlun	2	• 6 +	- 1		7 72a 7200 55 0 h	Shipped:
Project Name Hanno Creek Restantion hoject	Hamm Creek Restantion	K Res	official	N Kaje	2cF NiAn Racia	ס ס-	0 0	······································	5	Shinner
Client Name: USACE		ואאו		n N	allo WA	איק:	ለיע:			Shipper Bill No
Sampling Sample Location Number	Sample Depth	Sample Matrix	Sampling Date	Sampling Time	Sample Collector(s)	NA	₽J₽ 		77 77 77 77 77 70 70 71	Comments
Hammark CI	44-0	- Ig	6/10/17	0838	HE USAC	×				Note: matricel
L C2	749			0350		X				stared at 4°C
74	1511-01			0115			~			of SAIC States
イズーク	12-13Fr	^	→	1158	->		X			is that remaining
Car Inkt Carry		maring	L'HUNK	العدا	SAIC SAIC	X				after hoas such
			-							conducted J
							·			
										Mataial stored
										at -18°C or C
										CI, CZ. Chemistry
										archive samples
									· · · · · · · · · · · · · · · · · · ·	plus two
										Z Samples
										-
RELINQUISHED BY:			RECEIVED BY:				RELINQUISHED BY:		RECEIVED BY:	
Signature:		is line	Signature:				Signature:		Signature:	-
Date/Time		Da	Date/Time:	-			Date/Time:		Date/Time:	
Affiliation:		At	Affiliation:				Affiliation:		Affiliation:	-
	· While Lab	White Lab Returns to Originator Upon Receipt of Samples	iator Upon Recei	pt of Samples	Canary: Lab Retains:	Sui	Lab Returns to Project Manager with Final Report	r with Final Report:	Goldenrod Retained by Sampler	

APPENDIX E

CHEMISTRY LABORATORY RESULTS AND QA/QC MEMORANDUM

An Employee-Owned Company

CHEMISTRY DATA QUALITY SUMMARY AND QA/QC MEMORANDUM

AR 023306

An Employee-Owned Company

HAMM CREEK RESTORATION PROJECT DATA QUALITY SUMMARY FOR CONVENTIONAL AND CONTAMINANT CHEMISTRY

A Quality Assurance/Quality Control (QA/QC) review was conducted for conventional and contaminant chemistry results using the most recent guidelines available in PSDDA/PSEP documentation (PSDDA 1989, 1990, 1991a,b; PSEP 1986, 1997a,b). The QA/QC review included an evaluation of the precision. accuracy, representativeness, and completeness of the analytical results. QA1 checklists, which supplemented the QA/QC review were completed, and are presented following this summary. The checklists (based on PTI 1989) include an evaluation of the sample holding times, QC sample results (i.e., matrix spikes, laboratory replicates, standard reference materials, method blanks, and surrogate recoveries), analytical methodology, and data format.

AmTest, Inc. of Redmond, WA performed all PSDDA conventional chemistry, metals, and organics analyses. Overall, results of the QC analyses for conventionals, metals, and organics were within procedural control limits recommended by PSDDA. Those which did not meet PSDDA criteria met control limits recommended by EPA SW-846 methods, or the laboratory. These will be described in more detail below. Samples were tracked following appropriate chain-of-custody procedures, and analytical results were reported in the proper format. All samples submitted were analyzed within appropriate holding times. All analytes were below detection limits in the method blanks. Similarly, all sample detection limits were equal to or below PSDDA screening levels (SL) for all analytes.

The QA/QC sample results with respect to precision, accuracy, representativeness, and completeness are discussed below.

Precision

Conventionals

A triplicate analysis was performed for conventional parameters for each batch of samples submitted to the laboratories. Relative standard deviations (RSDs) or coefficients of variation calculated for TS, TVS,

TOC. ammonia, and sulfides were all less than 10%. Therefore, all replicate data were considered acceptable.

For grain size triplicates, precision was assessed using RSDs calculated from the gravel, sand, silt, and clay fractions determined for each triplicate. As with the other conventional analyses, the RSDs for the various sand, silt, and clay size fractions were within acceptable ranges, with values less than 10% RSD. The gravel fractions had a 90% and 156% RSD for the first and second batches, respectively. However, values only ranged from 0.1% to 1.0% gravel in Batch 1, and from 0.0 to 1.4% gravel in Batch 2. The high RSD was primarily an artifact of the small gravel fraction, so that any small variation could result in a relatively high standard deviation. Therefore, grain size results were determined to be acceptable.

Metals

A duplicate metals analysis was performed for the batch of samples submitted. The relative percent difference (RPD) between duplicate (and triplicate) analytical measurements for metals was used to evaluate the precision of the analyses. With the exception of cadmium (22% RPD), the analytical RPDs were within the PSDDA/PSEP recommended control limits (i.e., results were <20% RPD). According to CLP requirements, RPDs are used for sample values greater than 5 times the contract required detection limits. An alternate limit, the detection limit (± 0.02 for Cd) was used as the control limit for sample values less than 5 times the reporting limit. The difference between the sample and duplicate cadmium measurements was 0.01 mg/kg, within the alternate limit of ± 0.02 mg/kg. Precision for the metals analyses was considered acceptable.

Organics

The relative percent difference between matrix spikes (MS) and matrix spike duplicates (MSD) was used to assess the precision of semivolatile, pesticide/PCB, and volatile analytical results. All RPDs were within the PSDDA/PSEP recommended control limit of <35% RPD. Therefore, the overall precision of the results was considered acceptable.

E-2

Accuracy

Conventionals

The standard reference material NBS 2704 was analyzed for TOC in order to assess the accuracy of the analytical results. Measured values for the TOC reference material were 3.32 mg/kg and 3.0 mg/kg, while the true value was 3.35 mg/kg (99% and 89% recovery, respectively). All recoveries were within recommended ranges. In addition to the standard reference material, matrix spikes were performed for TOC in the second batch of analyses, and for ammonia and sulfides in the third batch. Percent recoveries for ammonia, sulfides, and TOC were 100%, 107%, and 89%, respectively. Target recoveries are generally between 75 and 125 percent recovery. Matrix spikes were not performed for TOC in the first batch.

<u>Metals</u>

Accuracy of the metals measurements was assessed by the use of matrix spikes and a standard reference material (SRM NBS 2704), and the resulting percent recoveries calculated. One matrix spike was analyzed for the batch of samples submitted. All recoveries fell within the recommended range of 75-125%. For the standard reference material, the recovery for chromium was 63%, outside the recommended range of 80-120%. The laboratory indicated that because chromium is a matrix component, strong acid digestion (SAD) is inadequate to extract all of the chromium from the sample. However, the measured value for chromium (85 mg/kg) was within acceptable laboratory control limits (81-104 mg/kg). In addition, the matrix spike recovery for chromium was excellent (101%). Recoveries of all other analytes in the SRM were within PSDDA recommended ranges.

<u>Organics</u>

Matrix and surrogate spikes were used to evaluate the accuracy of the volatile organics analyses, and matrix spikes, surrogate spikes, and standard reference materials analyses were performed for the semivolatile organics and pesticide/PCBs. Matrix spike recoveries were within PSDDA recommended ranges for all organics. Surrogate recoveries were within recommended ranges for the pesticides/PCBs. Recoveries for 4-bromofluorobenzene (C1 = 76%, C2 = 73%, blank = 80%) and d4-1,2-dichloroethane

(blank = 82%) were below the PSDDA recommended range of <85% for volatile organic surrogates. However, with the exception of C2, values were within SW846 quality control limits (70-121% recovery for d4-1.2-dichloroethane, and 74-121% for 4-bromofluorobenzene). Although the recovery of 4bromofluorobenzene for C2 was below both PSDDA and SW846 recommended ranges, the other two volatile organic surrogates spiked in C2 had good recoveries (87% for d4-1.2-dichloroethane and 93% for d8-toluene). Therefore, data qualification was not necessary.

In addition, for the semivolatile organics analyses, the surrogate spike recovery for d5-nitrobenzene (C1 = 42%) was outside PSDDA recommended ranges of >50%. This value, however, was within SW846 QC limits. All results for the standard reference materials (HS-3, ERA Lot 340, and ERA Lot 87001) were within laboratory control limits and performance acceptance limits set by the manufacturer (Environmental Resource Associates - ERA - Arvada, CO). All data results for matrix spikes, surrogates, and reference materials were considered acceptable.

Representativeness

Representativeness, which is a measure of how closely results reflect the actual concentration of chemical compounds in the sample, is assessed using the matrix spike and surrogate recoveries in metals and organics analyses. All percent recoveries were considered acceptable.

Completeness

Completeness, which is based on the amount of valid data obtained from each analytical method, was acceptable for conventionals, metals, and organics. Data was 100 percent useable.

E-4

References

- EPA. 1988. Laboratory Data Validation: Functional Guidelines for Evaluating Organics Analyses. U.S. Environmental Protection Agency, Hazardous Site Evaluation Division.
- PSDDA. 1989. Management Plan Report Unconfined Open-Water Disposal of Dredged Material, Phase II (North and South Puget Sound). Puget Sound Dredged Disposal Analysis Reports Series. Cooperatively published by (in alphabetical order) U.S. Army Corps of Engineers, Seattle District; U.S. Environmental Protection Agency, Region X: Washington State Department of Ecology; and Washington State Department of Natural Resources. September 1989.
- PSDDA. 1990. "Changes to the: Management Plan Report. Unconfined Open-Water Disposal of Dredged Material, Phase II." Puget Sound Dredged Disposal Analysis Reports Series. February 1990.
- PSDDA. 1991a. Summary and Conclusions of the Puget Sound Dredged Disposal Analysis (PSDDA) Chemistry Quality Assurance/Quality Control (QA/QC) and PSDDA Streamlining Workshop held on January 24, 1991 at Seattle District U.S. Army Corps of Engineers.
- PSDDA. 1991b. "Changes to PSDDA Screening and Maximum Level Values for Dredged Material Management Year 1990." Puget Sound Dredged Disposal Analysis Reports Series. May 1991.
- PSEP. 1986. Puget Sound Estuary Program. Recommended protocols for measuring selected environmental variables in Puget Sound. Final Report. Prepared for the U.S. Environmental Protection Agency Region X. Office of Puget Sound, and the U.S. Army Corps of Engineers. Tetra Tech Inc., Bellevue, Washington.
- PSEP. 1997a. Puget Sound Estuary Program. Recommended guidelines for measuring organic compounds in Puget sound sediment and tissue samples. Prepared for the U.S. Environmental Protection Agency Region X. Office of Puget Sound and the Puget Sound Water Quality
- PSEP. 1997b. Puget Sound Estuary Program. Recommended guidelines for measuring metals in Puget sound sediment and tissue samples. Prepared for the U.S. Environmental Protection Agency Region X. Office of Puget Sound, and the Puget Sound Water Quality Action Team. Olympia.WA.
- PTI. 1989. Puget Sound Dredged Disposal Analysis Guidance Manual: Data quality evaluation for proposed dredged material disposal projects. Prepared for the Washington Department of Ecology, Olympia, Washington. PTI, Environmental Services, Bellevue, Washington.

CHECKLIST FOR CONVENTIONAL VARIABLES IN SEDIMENT

Project Name Hamm Creek Restoration Project	
SAIC Project No:01-0440-04-8357	
Lab <u>AmTest, Inc.</u>	Lab # 96-A008101 to A008102
Responsible Technician <u>Mark Fugiel</u> , General	Manager
Reviewed by Lisa Roach	Date checklist prepared July 24, 1997
Date: Sampled June 16 and 17, 1997	
Received by lab <u>June 18, 1997</u>	
Analysis began <u>TOC, TS, TVS</u> June	19. 1997
Problems noted (e.g., deviations from prescribed	i methods. analytical problems)

COMPLETENESS AND HOLDING CONDITIONS

	TOC	TVS	Total Sulfides	Ammonia	Total Solids	Grain Size Distribution	AVS
Method (identify)	SM5310B	PSEP			PSEP	PSEP	
# Samples submitted	2	2			2	2	
# Samples analyzed	2	2			2	2	
Holding conditions acceptable? ^a (Y/N) <u>Yes</u> If no. identify samples <u>None</u>							

FORMAT

Standard data report sheet

Concentrations in proper units and significant figures <u>Yes</u>

Sample detection limit provided, when applicable (total sulfides, ammonia) <u>Not applicable</u>

Qualifiers defined (e.g., U = undetected)

< = below the detection limit

- Checklists adopted from PSDDA guidance manual: PTI, 1989. -

CHECKLIST FOR CONVENTIONAL VARIABLES IN SEDIMENT (cont.)

QA/QC SAMPLES

Method Blank

TOC Total # _]

Frequency <u>1 for the batch of 2 samples (50%)</u> (minimum 1 per 20 samples)^b

Amount detected in blank <u>Undetected (0.05 U)</u> (not a PSEP control limit)

Certified Reference Materials

TOC Total # 1

Frequency ______ for the batch of 2 samples (50%)

(minimum 1 per survey)

CRM used NBS 2704

Within 95% confidence interval? Yes. NBS-2704 measured value = 3.32 mg/kg;

true value = 3.35 mg/kg; laboratory control limits 2.5 - 4.2 mg/kg. (not a PSEP control limit)

Analytical Replicates

	TOC	TVS	Total Sulfides	Ammonia	Total Solids	Grain Size Distribution	AVS
Total # of samples			****		2	2	
Frequency (minimum triplicate per 2() samples) ^b	<u>1 Trip</u> (C1)	<u> Trip</u> (C2)			<u> Trip</u> (C2)	<u>l Trip</u> (C2)	
Relative standard deviation (RSD)	8.2%	9.1%			0.0%		

* PSDDA recommended holding times for sediment conventionals

Variable	Refrigerated at 4°C	Frozen at -18°C
Grain Size	6 months	not recommended
Total Solids, Total Volatile Solids, and Total Organic Carbon	14 days	6 months
Total Sulfides	7 days	not applicable
Ammonia	7 days	not applicable
Acid Volatile Sulfides ²	no guidance	no guidance

¹ Samples most not be frozen or dried before analysis

² Allen. et al. (1991) recommend 14-day holding time at 4°C

^b Recommended by PSEP (1986)

AR 023313

- Checklists adopted from PSDDA guidance manual: PTI, 1989. -

CHECKLIST FOR CONVENTIONAL VARIABLES IN SEDIMENT

Project Name Hamm Creek Restoration Proje	
SAIC Project No:01-0440-04-8357	
Lab AmTest, Inc.	Lab #96-A009723
Responsible Technician <u>Mark Fugiel. Gener</u>	al Manager
Reviewed by Lisa Roach	Date checklist prepared <u>September 5, 1997</u>
Date: Sampled July 17, 1997	
Received by lab July 21, 1997	
Analysis began <u>TOC, TS, grain size</u>	e: July 22, 1997 and TOC: July 24, 1997
Problems noted (e.g., deviations from prescrib	ed methods. analytical problems)

COMPLETENESS AND HOLDING CONDITIONS

	TOC	TVS	Total Sulfides	Ammonia	Total Solids	Grain Size Distribution	AVS
Method (identify)	<u>SM5310B</u>	PSEP	<u> </u>	*****	PSEP	PSEP	
# Samples submitted						1	
# Samples analyzed	1				<u> </u>	<u> </u>	
Holding conditions ac	ceptable?" ((Y/N) <u>Y</u>	2S				
If no. identify samples <u>None</u>							

FORMAT

Standard data report sheet

Concentrations in proper units and significant figures <u>Yes</u>

Sample detection limit provided, when applicable (total sulfides, ammonia) <u>Not applicable</u>

Qualifiers defined (e.g., U = undetected)

< = below the detection limit

- Checklists adopted from PSDDA guidance manual: PTI, 1989. -

CHECKLIST FOR CONVENTIONAL VARIABLES IN SEDIMENT (cont.)

QA/QC SAMPLES

Method Blank

TOC Total # _ I

Frequency <u>I for the batch of 1 sample (100%)</u> (minimum 1 per 20 samples)^b

Amount detected in blank <u>Undetected (0.05 U)</u> (not a PSEP control limit)

Certified Reference Materials

TOC Total # _ 1

Frequency 1 for the batch of 1 sample (100%)

(minimum 1 per survey)

CRM used NBS 2704

Within 95% confidence interval? Yes. NBS-2704 measured value = 3.0 mg/kg;

true value = 3.35 mg/kg; laboratory control limits 2.5 - 4.2 mg/kg. (not a PSEP control limit)

Analytical Replicates

	TOC	TVS	Total Sulfides	Ammonia	Total Solids	Grain Size Distribution	۸VS
Total # of samples				*****		<u> </u>	
Frequency (minimum triplicate per 20 samples) ^b	<u> Trip</u> (Carт 4)	<u> Tnp</u> (Carr 4)			<u>1 Тгір</u> (Салт 4)	1 Trip (Carr 4)	
Relative standard deviation (RSD)	5.0%	2.6%			0.1%		

* PSDDA recommended holding times for sediment conventionals

Variable	Refrigerated at 4°C	Frozen at -18°C
Grain Size	6 months	not recommended ¹
Total Solids, Total Volatile Solids, and Total Organic Carbon	14 days	6 months
Total Sulfides	7 days	not applicable
Ammonia	7 days	not applicable
Acid Volatile Sulfides ²	no guidance	no guidance

¹ Samples most not be frozen or dried before analysis

² Allen, et al. (1991) recommend 14-day holding time at 4°C

^b Recommended by PSEP (1986)

- Checklists adopted from PSDDA guidance manual: PTI, 1989. -

CHECKLIST FOR CONVENTIONAL VARIABLES IN SEDIMENT

Project Name Hamm Creek Restoration Project	
SAIC Project No: 01-0440-04-8357	-
Lab #96-A010379 to 96-A010381	
Responsible Technician <u>Mark Fugiel, General Manager</u>	
Reviewed by Lisa Roach Date checklist prepared September 5, 1997	
Date: Sampled July 31, 1997 (date subsamples collected during bioassay test preparation)	
Received by lab <u>August 5, 1997</u>	
Analysis began Total solids, ammonia, total sulfides: August 6, 1997	
Problems noted (e.g., deviations from prescribed methods, analytical problems)	

COMPLETENESS AND HOLDING CONDITIONS

	TOC	TVS	Total Sulfides	Ammonia	Total Solids	Grain Size Distribution	AVS
Method (identify)			PSEP	Plumb 1981	PSEP		
# Samples submitted			3	3	3		
# Samples analyzed			3				
Holding conditions a	cceptable?*	(Y/N) <u>)</u>	es				
If no. identify sample	es <u>None</u>						

FORMAT

Standard data report sheet

Concentrations in proper units and significant figures <u>Yes</u>

Sample detection limit provided, when applicable (total sulfides, ammonia) <u>Not applicable</u>

Qualifiers defined (e.g., U = undetected)

< = below the detection limit

- Checklists adopted from PSDDA guidance manual: PTI, 1989. -

CHECKLIST FOR CONVENTIONAL VARIABLES IN SEDIMENT (cont.)

QA/QC SAMPLES

Method Blank

TOC Total # <u>1 (ammonia, total sulfides)</u>

Frequency <u>1 for the batch of 3 samples (33%)</u>

(minimum 1 per 20 samples)^b

Amount detected in blank <u>Undetected (ammonia = 1.0 U; total sulfides = 10 U)</u> (not a PSEP control limit)

Certified Reference Materials

TOC Total # Not applicable

Frequency____

(minimum 1 per survey)

CRM used _____

Within 95% confidence interval?_____

(not a PSEP control limit)

Analytical Replicates

	TOC	TVS	Total Sulfides	Ammonia	Total Solids	Grain Size Distribution	AVS
Total # of samples				3	3		
Frequency (minimum 1 triplicate per 20 samples) ^b			<u> Trip</u> (C1)	<u> Trip</u> (C1)	<u> Trip</u> (C1)		
Relative standard deviation (RSD)			0.0%	6.2%	0.8%	-	

* PSDDA recommended holding times for sediment conventionals

Variable	Refrigerated at 4°C	Frozen at -18°C
Grain Size	6 months	not recommended ¹
Total Solids, Total	14 days	6 months
Volatile Solids, and	•	× .
Total Organic Carbon		
Total Sulfides	7 days	not applicable
Ammonia	7 days	not applicable
Acid Volatile Sulfides ²	no guidance	no guidance

Samples most not be frozen or dried before analysis

² Allen, et al. (1991) recommend 14-day holding time at 4°C

^b Recommended by PSEP (1986)

- Checklists adopted from PSDDA guidance manual: PTI, 1989. -

CHECKLIST FOR METALS IN SEDIMENT

- Checklists adopted from PSDDA guidance manual: PTI, 1989. -

CHECKLIST FOR METALS IN SEDIMENT (cont.)

QA/QC SAMPLES

Preparation Blank

Total # <u>1</u>

Frequency^b <u>l per batch (50%)</u>

(minimum 5% or 1 per batch, whichever is more frequent)^c

Chemicals observed above detection limits in one or more blanks^c

None

Certified Reference Materials

Total # 1

Frequency^b <u>1 per batch (50%)</u>

(minimum 5% or 1 per batch, whichever is more frequent)^c

CRM used SRM NBS-2704

Chemicals outside 80-120% recovery^c

<u>Chromium = 63% recovery</u>. The laboratory indicated that because chromium is a matrix component, SAD digestion is inadequate in terms of extracting all of the chromium from the sample. However, the measured chromium value (85 mg/kg) was within laboratory control limits of 81-104 mg/kg.

(for chemicals without certified values, use matrix spike results)

Analytical Replicates

Total # 1 (C1)

Frequency^b <u>1 per batch (50%)</u>

(minimum 5% or 1 per batch, whichever is more frequent)^c

Samples/chemicals with >20% relative percent difference (RPD) or coefficient of variation (CV)^c Cadmium = 22% RPD. According to CLP requirements, RPDs are used for sample values greater than 5 times the contract required detection limit. An alternate limit, the detection limit (\pm 0.02), was used as the control limit for sample values less than 5 times the reporting limit. Therefore, quality control limits were met.

- Checklists adopted from PSDDA guidance manual: PTI, 1989. -

CHECKLIST FOR METALS IN SEDIMENT (cont.)

Matrix Spikes

Total # <u>1 (C2)</u>		·	
Frequency ^b <u>1 per batch (50</u> (minimum 5% or 1 per batch.		.) ^c	
Chemicals with recovery outs	ide 75-125% <u>None</u>		·
Did any DL exceed SL? (Y/N	I) <u>No</u>	<u></u>	
If yes, detection limits exceed	ing SL (identify samples)		
Antimony	Arsenic	Cadmium	
Copper	Lead	Mercury	
Nickel	Silver	Zinc	

Preparation Blanks (Relative blank contamination)

Are sample results <5 times blank values in any samples? (Y/N) No

If yes identify elements and samples

Metals:

For metals, the data report package for analyses of each sample should include the following:

- Tabulated results in units as specified for each matrix in the analytical protocols, validated and signed in original by the laboratory manager
- Any data qualifications and explanation for any variance from the analytical protocols
- Results for all of the QA/QC checks initiated by the laboratory
- Tabulation of instrument and method detection limits.

All contract laboratories are required to submit metals results that are supported by sufficient backup data and quality assurance results to enable independent QA reviewers to conclusively determine the quality of the data. The laboratories should be able to supply legible photocopies of original data sheets with sufficient information to unequivocally identify:

- Calibration results
- Calibration and preparation blanks
- Samples and dilutions
- Duplicates and spikes
- Any anomalies in instrument performance or unusual instrumental adjustments.

For batches of 5 samples or less, the minimum QA checks should be a blank and the analysis of a CRM (and matrix spikes for any analytes not certified in the CRM). In general, the priority of QA checks for batches of ≤ 5 samples should be as follows: CRM > analytical replicate > matrix spikes.

PSEP control limit.

- Checklists adopted from PSDDA guidance manual: PTI, 1989. -

CHECKLIST FOR VOLATILE ORGANIC COMPOUNDS IN SEDIMENT

Project Name <u>Hamm Creek Restoration Project</u> SAIC Project No: <u>01-0440-04-8357</u>
Lab <u>AmTest. Inc.</u> Lab <u># 97-A008101 and 97-A008102</u>
Responsible Technician <u>Mark Fugiel</u> , General Manager ————————————————————————————————————
Reviewed by Lisa Roach Date checklist prepared July 24, 1997
Date: Sampled June 16, 1997
Received by lab June 18, 1997
Analysis began June 30, 1997
Problems noted (e.g., deviations from prescribed methods, analytical problems)
Some of the surrogate recoveries were less than the specified 85% recovery. All were within SW846
method recovery ranges, with the exception of 4-bromofluorobenzene in C2 (see next page). However, the
other two spiked surrogates were greater than 85% recovery for C2 volatiles. Therefore, data qualification
was not required
All required documents submitted? [*] (Y/N) <u>Yes</u>
Analytical method <u>SW8260</u>
COMPLETENESS AND HOLDING CONDITIONS
Samples Submitted2 # Samples Analyzed2
Holding conditions acceptable? (Y/N) (14 days at 4°C) Yes
If no, identify samples
FORMAT
Standard data report sheet
Concentrations in proper units and significant figures <u>Reported to one significant figure</u>

Qualifiers defined (e.g., U = undetected)

< = below detection limit

Sample detection limits (DL) provided for each analyte? (Y/N) Yes

- Checklists adopted from PSDDA guidance manual: PTI, 1989. -

CHECKLIST FOR VOLATILE ORGANIC COMPOUNDS IN SEDIMENT (cont.)

QA/QC SAMPLES

Method Blank

Total # ____

Frequency | per batch (50%)

(minimum 1 per batch or 1 per 12-hour shift, whichever is more frequent)^b

Chemicals detected above 2.5 µg total in one or more blanks^b

None

Analytical Replicates

Total # 1 matrix spike duplicate (C1)

Frequency | per batch (50%)

(<20 samples - 1 per set of samples submitted to lab: \geq 20 samples - 1 triplicate and additional duplicate for minimum of 5% total replication overall)^b

Samples/chemicals with >35% RPD or CV^c None

Matrix Spikes (not required if isotope dilution used)

Total # <u>| (C1)</u>

Frequency 1 per batch (50%)

(<20 samples - 1 per set of samples submitted to lab: \geq 20 samples - 5% overall)^b

Chemicals outside 70 - 150% recovery^c

None

Detection Limits

Did any DL exceed SL? (Y/N) No

If yes, detection limits exceeding SL (identify samples)

Volatiles

- Checklists adopted from PSDDA guidance manual: PTI, 1989. -

Surrogate Recovery

Were surrogates added to all samples?^c (Y/N) Yes

Identify compounds with < 85 percent recovery^c (also identify samples)

4-bromofluorobenzene: $C_1 = 76.0\%$, $C_2 = 73\%$, and blank = 80%; SW846 QA = 74-121%

D4-1,2-dichloroethane: blank = 82%; SW846 QA recovery = 70-121%

Method Blanks (Relative blank contamination)

Were any sample concentrations less than 5 times the blank concentrations?^b (Y/N) Nonc

If yes, identify compounds and samples

Organic Compounds

The following documentation is needed for organic compounds:

- A cover letter referencing or describing the procedure used and discussing any analytical problems
- Reconstructed ion chromatograms for GC/MS analyses for each sample
- Mass spectra of detected target compounds (GC/MS) for each sample and associated library spectra
- GC/ECD and/or GC/flame ionization detection chromatograms for each sample
- Raw data quantification reports for each sample
- A calibration data summary reporting calibration range used [and decafluorotriphenylphosphine (DFTPP) and bromofluorobenzene (BFB) spectra and quantification report for GC/MS analyses]
- Final dilution volumes, sample size, wet-to-dry ratios, and instrument detection limit
- Analyte concentrations with reporting units identified (to two significant figures unless otherwise justified)
- Ouantification of all analytes in method blanks (ng/sample)
- Method blanks associated with each sample
- Recovery assessments and a replicate sample summary (laboratories should report all surrogate spike recovery data for each sample, a statement of the range of recoveries should be included in reports using these data)
- Data qualification codes and their definitions.

PSEP control limit.

Control limits determined at the PSDDA Chemistry QA/QC and PSDDA Streamlining Workshop held 24 January 1991, U.S. Army Corps of Engineers, Scattle District.

- Checklists adopted from PSDDA guidance manual: PTI, 1989. -

CHECKLIST FOR SEMIVOLATILE ORGANIC COMPOUNDS IN SEDIMENT

Project Name <u>Hamm Creek Restoration Projec</u>	SAIC Project No01-0440-04-8357
Lab <u>AmTest, Inc.</u>	Lab # 97-A008101 and 97-A008102
Responsible Technician <u>Mark Fugiel, General</u>	Manager
Reviewed by Lisa Roach	Date checklist prepared <u>July 24, 1997</u>
Date: Sampled June 16 and 17, 1997	
Received by lab <u>June 18, 1997</u>	
Analysis began <u>Semivolatiles: extraction</u>	on on June 30, 1997; analysis on July 10, 1997
Pesticides/PCBs: extra	ction June 27, 1997; pesticide analysis on July 3, 1997 and
PCB analysis on July 8	3, 1997
Problems noted (e.g., deviations from prescribed	d methods, analytical problems)

All required documents submitted?* (Y/N) <u>Yes</u>

Analytical method Semivolatiles: SW3550/8270; Pest/PCB: SW3540/8081

COMPLETENESS AND HOLDING CONDITIONS

	# Samples	# Samples
	Submitted	Analyzed
A/B/N	2	2
Pesticides/PCB	2	2

Holding conditions acceptable? (Y/N) (1 year for frozen sediment or 14 days at 4°C until extraction: extracts must be processed within 40 days)^b <u>Yes</u>

If no. identify samples _

Extract conditions acceptable? (Y/N) (1 year for frozen sediment or 14 days at 4° C)^b Yes

If no, identify samples

- Checklists adopted from PSDDA guidance manual: PTI, 1989. -

AR 023324

FORMAT

Standard data report sheet

Concentrations in proper units and significant figures <u>Yes</u>

Qualifiers defined (e.g., U = undetected)

< = below detection	limit	

QA/QC SAMPLES

Method Blank

Total # 1

Frequency <u>1 per batch (50%)</u> (minimum 1 per extraction batch)^c

(minimum i per extraction baten)

Chemicals detected above 5 ug total (for phthalates) and 25 ug total^d (for other organic compounds: lower levels may be appropriate for pesticides and PCBs)

None

Certified Reference Materials

Total # 1

Frequency 1 per batch

(<50 samples - 1 per set of samples submitted to lab: >50 samples - 1 per 50 samples analyzed)°

CRM used Semivolatiles - SRM HS-3: Pesticides - Environmental Resource Associates (ERA)

Lot 340; PCBs = ERA 87001

Chemicals outside 95% confidence interval (for certified values)^{de}

Recoveries were within laboratory control limits and advisory ranges set by the manufacturer.

Analytical Replicates

Total # 1 matrix spike duplicate (C2)

Frequency _ 1 per batch (50%)

(<20 samples - 1 per set of samples submitted to lab: ≥ 20 samples - 1 triplicate and additional duplicate for minimum of 5% total replication)^c

Samples/chemicals with >35% RPD or CV^{ϵ}

None

- Checklists adopted from PSDDA guidance manual: PTI, 1989. -

CHECKLIST FOR SEMIVOLATILE ORGANIC COMPOUNDS IN SEDIMENT (cont.)

Total #1 matrix spike/matrix spike duplicate (C2) Frequency1 per batch (50%) (<20 samples - 1 per set of samples submitted to lab: ≥20 samples - 5% of total samples)" Chemicals outside 50-150% recovery ^c None Detection Limits Did any DL exceed SL? (Y/N)No	Matrix Spikes (not required for A/B/N if isotope dilution used)
(<20 samples - 1 per set of samples submitted to lab; ≥20 samples - 5% of total samples)* Chemicals outside 50-150% recovery* <u>None</u> Detection Limits Did any DL exceed SL? (Y/N) <u>No</u> If yes, detection limits exceeding SL (identify samples) A/B/N (PAH)	Total # <u>1 matrix spike/matrix spike duplicate (C2)</u>
Chemicals outside 50-150% recovery ^e None Detection Limits Did any DL exceed SL? (Y/N) No If yes, detection limits exceeding SL (identify samples) A/B/N (PAH)	
Detection Limits Did any DL exceed SL? (Y/N) _No	
Did any DL exceed SL? (Y/N) _No	Chemicals outside 50-150% recovery ^c None
Did any DL exceed SL? (Y/N) _No	
If yes, detection limits exceeding SL (identify samples) A/B/N (PAH) A/B/N (phenols, benzoic acid, benzyl alcohol) A/B/N (other) PCB Pesticides Surrogate Recovery (A/B/N) Were surrogates added to all samples? ^c (Y/N) Yes Identify compounds with <50 percent recovery ^{det} (also identify samples) D-5-Nitrobenzene: C2 = 42%; SW846 QA/QC recovery = 23-120% Surrogate Recovery (Pesticides/PCBs) Were surrogates added to all samples? ^c (Y/N) Yes Identify samples with <60 percent surrogate recovery ^c None Method Blanks (Relative blank contamination) For target compounds other than phthalates, were sample concentrations less than 5 times blank concentrations? (Y/N) No If yes, identify compounds and samples 	Detection Limits
A/B/N (PAH) A/B/N (phenols. benzoic acid, benzyl alcohol) A/B/N (other) PCB Pesticides Surrogate Recovery (A/B/N) Were surrogates added to all samples? ^c (Y/N) Yes Identify compounds with <50 percent recovery ^{de} (also identify samples)	Did any DL exceed SL? (Y/N) <u>No</u>
A/B/N (other) PCB Pesticides Surrogate Recovery (A/B/N) Were surrogates added to all samples? ^c (Y/N) Yes Identify compounds with <50 percent recovery ^{de} (also identify samples)	If yes, detection limits exceeding SL (identify samples)
Surrogate Recovery (A/B/N) Were surrogates added to all samples? ^c (Y/N) Yes Identify compounds with <50 percent recovery ^{de} (also identify samples) D-5-Nitrobenzene: C2 = 42%; SW846 OA/QC recovery = 23-120% Surrogate Recovery (Pesticides/PCBs) Were surrogates added to all samples? ^c (Y/N) Yes Identify samples with <60 percent surrogate recovery ^e None Method Blanks (Relative blank contamination) For target compounds other than phthalates, were sample concentrations less than 5 times blank concentrations? (Y/N) No If yes, identify compounds and samples For phthalates, were sample concentrations less than 10 times blank concentrations? ^d (Y/N) No	A/B/N (PAH) A/B/N (phenols. benzoic acid, benzyl alcohol)
Were surrogates added to all samples? ^c (Y/N) Yes Identify compounds with <50 percent recovery ^{de} (also identify samples)	A/B/N (other) PCB Pesticides
Were surrogates added to all samples? ^c (Y/N) Yes Identify compounds with <50 percent recovery ^{de} (also identify samples)	
Identify compounds with <50 percent recovery ^{de} (also identify samples)	Surrogate Recovery (A/B/N)
<u>D-5-Nitrobenzene: C2 = 42%; SW846 QA/QC recovery = 23-120%</u> Surrogate Recovery (Pesticides/PCBs) Were surrogates added to all samples? ^c (Y/N) <u>Yes</u> Identify samples with <60 percent surrogate recovery ^c <u>None</u> Method Blanks (Relative blank contamination) For target compounds other than phthalates, were sample concentrations less than 5 times blank concentrations? (Y/N) <u>No</u> If yes, identify compounds and samples <u>For phthalates, were sample concentrations less than 10 times</u> blank concentrations? ^d (Y/N) <u>No</u>	Were surrogates added to all samples? ^c (Y/N) Yes
Surrogate Recovery (Pesticides/PCBs) Were surrogates added to all samples? ^c (Y/N) <u>Yes</u> Identify samples with <60 percent surrogate recovery ^c None Method Blanks (Relative blank contamination) For target compounds other than phthalates, were sample concentrations less than 5 times blank concentrations? (Y/N) <u>No</u> If yes, identify compounds and samples For phthalates, were sample concentrations less than 10 times blank concentrations? ^d (Y/N) <u>No</u>	Identify compounds with <50 percent recovery ^{de} (also identify samples)
Surrogate Recovery (Pesticides/PCBs) Were surrogates added to all samples? ^c (Y/N) <u>Yes</u> Identify samples with <60 percent surrogate recovery ^c None Method Blanks (Relative blank contamination) For target compounds other than phthalates, were sample concentrations less than 5 times blank concentrations? (Y/N) <u>No</u> If yes, identify compounds and samples For phthalates, were sample concentrations less than 10 times blank concentrations? ^d (Y/N) <u>No</u>	D-5-Nitrobenzene: $C2 = 42\%$; SW846 OA/OC recovery = 23-120%
Were surrogates added to all samples? ^c (Y/N) _Yes Identify samples with <60 percent surrogate recovery ^c	
Were surrogates added to all samples? ^c (Y/N) _Yes Identify samples with <60 percent surrogate recovery ^c	Surrogate Recovery (Pesticides/PCBs)
Identify samples with <60 percent surrogate recovery ^c None Method Blanks (Relative blank contamination) For target compounds other than phthalates, were sample concentrations less than 5 times blank concentrations? (Y/N)No If yes, identify compounds and samples	
None Method Blanks (Relative blank contamination) For target compounds other than phthalates, were sample concentrations less than 5 times blank concentrations? (Y/N)No	
Method Blanks (Relative blank contamination) For target compounds other than phthalates, were sample concentrations less than 5 times blank concentrations? (Y/N)No If yes, identify compounds and samples For phthalates, were sample concentrations less than 10 times blank concentrations? ⁴ (Y/N)No	
For target compounds other than phthalates, were sample concentrations less than 5 times blank concentrations? (Y/N) <u>No</u> If yes, identify compounds and samples For phthalates, were sample concentrations less than 10 times blank concentrations? ⁴ (Y/N) <u>No</u>	TYORE
For target compounds other than phthalates, were sample concentrations less than 5 times blank concentrations? (Y/N) <u>No</u> If yes, identify compounds and samples For phthalates, were sample concentrations less than 10 times blank concentrations? ⁴ (Y/N) <u>No</u>	Method Blanks (Pelotive blank contamination)
If yes, identify compounds and samples For phthalates, were sample concentrations less than 10 times blank concentrations? ^d (Y/N) <u>No</u>	For target compounds other than phthalates, were sample concentrations less than 5 times
For phthalates, were sample concentrations less than 10 times blank concentrations? ⁴ (Y/N) <u>No</u>	
blank concentrations? ⁴ (Y/N) <u>No</u>	
If yes, identify compounds and samples	For phthalates, were sample concentrations less than 10 times blank concentrations? ^d (Y/N) <u>No</u>
2	If ves, identify compounds and samples

- Checklists adopted from PSDDA guidance manual: PTI, 1989. -

APPENDIX F

BIOASSAY LABORATORY RESULTS AND QA/QC CHECKLISTS

An Employee-Owned Company

BIOASSAY QA/QC CHECKLISTS

An Employee-Owned Company

CHECKLIST FOR AMPHIPOD MORTALITY BIOASSAY

Project Name: Hamm Creek Restoration Project SAIC Project No 01-0440-04-8357-000 Laboratory: Northwestern Aquatic Sciences Lab Number <u>S34-6</u> Batch						
Caloratory, retinined and control of the section of the secterion of the sectin the section of the section of the section of	Project Name:	Hamm Creek Restoration Project	SAIC Project No:	01-0440-04-	8357-000	
Amphipod species Rhepoxynius abronius Amphipod species Rhepoxynius abronius June 16, 1997; July 17, 1997 Received by Lab July 22, 1997 Date Sampled June 16, 1997; July 17, 1997 Received by Lab July 22, 1997 Date Analysis Begun August 1, 1997 Received by Lab July 22, 1997 Problems noted (e.g., deviations from prescribed methods, analytical problems) Seawater was filtered to <10 um rather than the specified <0.45 um. Test animals were held for only 1 day rather than the specified 2 days	Laboratory:	Northwestern Aquatic Sciences	Lab Number	534-6	Batch 1	
(check one) Ampeisor abdria X Echaustorius estuarius X Date Sampled June 16, 1997; July 17, 1997 Received by Lab July 22, 1997 Date Analysis Begun August 1, 1997 Problems noted (e.g., deviations from prescribed methods, analytical problems) Seavater was filtered to <1.0 um rather than the specified <0.45 um. Test animals were hold for only 1 day rather than the specified 2 days	Responsible Technician	Michele Redmond, Project Manage	er Reviewed By:	Lisa Roach		<u></u>
Eoneustonus estuentus X Date Sampled June 16, 1997: July 17, 1997 Received by Lab July 22, 1997 Date Analysis Begun August 1, 1997 Received by Lab July 22, 1997 Problems noted (e.g., deviations from prescribed methods, analytical problems) Seavater was filtered to 1:0 um raiter than the specified 40.45 um. Test animals were held for only 1 day rather than the specified 2 days Before testing, Netther of these deviations is likely to have affected the test results. In addition, pH and temperature were slightly outside specified ranges (see end of checklist). However, this had no apparent effect on the outcome of the tests. COMPLETENESS AND HOLDING CONDITIONS # Samples Submitted 2 test, 1 reference # Samples Analyzed 2 test, 1 reference Holding conditions acceptable (YN) PSEP : 4* C under nitrogen < 2 weeks	Amphipod species	Rhepoxynius abronius				
Date Sampled June 16, 1997. July 17, 1997 Received by Lab July 22, 1997 Date Analysis Begun August 1, 1997 Received by Lab July 22, 1997 Problems noted (e.g., deviations from prescribed methods, analytical problems) Seawater was filtered to <10 um rather than the specified <0.45 um. Test animals were held for only 1 day rather than the specified 2 days	(check one)	· · · · · · · · · · · · · · · · · · ·			-	-
Date Analysis Begun August 1, 1997 Problems noted (e.g., deviations from prescribed methods, analytical problems) Seawater was filtered to <1.0 um rather than the specified <0.45 um. Test animals were held for only 1 day rather than the specified 2 days		Eohaustonus estuanus	<u>*</u>			
Problems noted (e.g., deviations from prescribed methods, analytical problems) Seawater was filtered to <1.0 um rather than the specified 20.45 um. Test animais were held for only 1 day rather than the specified 2 days	Date Sampled	June 16, 1997; July 17, 1997	Received by Lab	July 22, 199	7	
Seawater was filtered to <1.0 um rather than the specified <0.45 um. Test animals were held for only 1 day rather than the specified 2 days	Date Analysis Begun	August 1, 1997				
# Samples Submitted 2 test, 1 reference # Samples Analyzed 2 test, 1 reference Holding conditions acceptable (Y/N) PSEP : 4* C under nitrogen < 2 weeks PSDDA : 4* C under nitrogen < 8 weeks See below If no, identify samples Samples were packed with no headspace; therefore, storage under nitrogen was not required. However, the reference sediment was purged with nitrogen within 24 hours of sample collection. FORMAT Standard data report sheet (check off) Number of amphipods reported for each replicate X Percent mortality reported for each replicate X Number of amphipods reported for each replicate X Number of amphipods reported for each replicate X Number of amphipods reported for each replicate X Number per Sample 1 Individual replicate, plus sample mean and standard deviations for mortality? X Analytical Replicates 5 Number per Sample 5 Any < 5 replicates? No Dissolved Oxygen (daily) X Temperature (daily) X Sulfide (initiation and termination) Y X Sulfide (initiation and termination)	before testing Neither of the	se deviations is likely to have affected th	e test results. In addtion, pH and temp	perature were	slightly outside specifi	ied
Holding conditions acceptable (Y/N) PSEP : 4* C under nitrogen < 2 weeks PSDDA : 4* C under nitrogen < 8 weeks	COMPLETENESS AND HO	LDING CONDITIONS				
PSDDA : 4* C under nitrogen < 8 weeks See below If no, identify samples Samples were packed with no headspace; therefore, storage under nitrogen was not required. However, the reference sediment was purged with nitrogen within 24 hours of sample collection. FORMAT Standard data report sheet (check off) Number of amphipods reported for each replicate X Percent mortality reported for each replicate X Daily emergence taken for each replicate X Number of sample collectes 1 Number of amphipods reported for each replicate X Percent mortality reported for each replicate X Negative controls 1 Individual replicate, plus sample mean and standard deviations for mortality? X Analytical Replicates No Number per Sample 5 Any < 5 replicates?	# Samples Submitted	2 test, 1 reference	# Samples Analyzed	2 test, 1 refe	erence	
the reference sediment was purged with nitrogen within 24 hours of sample collection. FORMAT Standard data report sheet (check off) Number of amphipods reported for each replicate X Field samples 2 Percent mortality reported for each replicate X Positive controls 1 Daily emergence taken for each replicate X Negative controls 1 Individual replicate, plus sample mean and standard deviations for mortality? Reference samples 1 Analytical Replicates Number per Sample 5 Number per Sample 5 No Water Quality Variable Reported for each Replicate (check) Interstitial salinity for each sample (initiation) X Salinity (daily) X Dissolved Oxygen (daily) X pH (daily) X X Temperature (daily) X Sulfide (initiation and termination) X	Holding conditions acceptab			See below		
FORMAT Standard data report sheet (check off) Number of amphipods reported for each replicate X Field samples 2 Percent mortality reported for each replicate X Positive controls 1 Daily emergence taken for each replicate X Negative controls 1 Individual replicate, plus sample mean and standard deviations for mortality? Reference samples 1 Analytical Replicates No X X Number per Sample 5 X X Any < 5 replicates?	If no, identify samples	Samples were packed with no hea	adspace; therefore, storage under nitrog	gen was not re	equired. However,	
Standard data report sheet (check off) X Field samples 2 Number of amphipods reported for each replicate X Positive controls 1 Percent mortality reported for each replicate X Positive controls 1 Daily emergence taken for each replicate X Negative controls 1 Individual replicate, plus sample mean and standard deviations for mortality? Reference samples 1 Analytical Replicates X No X Number per Sample 5 X X Any < 5 replicates?		the reference sediment was purge	ed with nitrogen within 24 hours of sam	ple collection.		
Number of amphipods reported for each replicate X Field samples 2 Percent mortality reported for each replicate X Positive controls 1 Daily emergence taken for each replicate X Negative controls 1 Daily emergence taken for each replicate X Negative controls 1 Individual replicate, plus sample mean and standard deviations for mortality? X Reference samples 1 Analytical Replicates Number per Sample 5 X X X Number per Sample 5 No X X X X Water Quality Variable Reported for each Replicate (check) Interstitial salinity for each sample (initiation) X Salinity (daily) X Dissolved Oxygen (daily) X Y Sulfide (initiation and termination) X Temperature (daily) X Sulfide (initiation and termination) X	FORMAT					
Number of amphipods reported for each replicate X Field samples 2 Percent mortality reported for each replicate X Positive controls 1 Daily emergence taken for each replicate X Negative controls 1 Daily emergence taken for each replicate X Negative controls 1 Individual replicate, plus sample mean and standard deviations for mortality? X Reference samples 1 Analytical Replicates Number per Sample 5 X X X Number per Sample 5 No X X X X Water Quality Variable Reported for each Replicate (check) Interstitial salinity for each sample (initiation) X Salinity (daily) X Dissolved Oxygen (daily) X Y Sulfide (initiation and termination) X Temperature (daily) X Sulfide (initiation and termination) X	Standard data report she	et (check off)				
Percent mortality reported for each replicate X Negative controls 1 Daily emergence taken for each replicate X Negative controls 1 Individual replicate, plus sample mean and standard deviations for mortality? Reference samples 1 Analytical Replicates X No X Analytical Replicates No X X Number per Sample 5 X X Any < 5 replicates?	Number of amphipods rep	orted for each replicate				
Daily emergence taken for each replicate						
Individual replicate, plus sample mean and standard deviations for mortality? X Analytical Replicates 5 Number per Sample 5 Any < 5 replicates?	Daily emergence taken for	r each replicate				
Number per Sample 5 Any < 5 replicates?	Individual replicate, plus s	ample mean and standard deviations for			X	
Number per Sample 5 Any < 5 replicates?	Analytical Replicates					
Water Quality Variable Reported for each Replicate (check) Interstitial salinity for each sample (initiation) X Salinity (daily) X Dissolved Oxygen (daily) X pH (daily) X Temperature (daily) X Sulfide (initiation and termination) X	• •	5				
Interstitial salinity for each sample (initiation) X Salinity (daily) X Dissolved Oxygen (daily) X pH (daily) X Temperature (daily) X Sulfide (initiation and termination) X		No				
Interstitial salinity for each sample (initiation) X Salinity (daily) X Dissolved Oxygen (daily) X pH (daily) X Temperature (daily) X Sulfide (initiation and termination) X	Water Quality Variable D	ported for each Replicate (check)				
Dissolved Oxygen (daily) X pH (daily) X Temperature (daily) X Sulfide (initiation and termination) X			X Salinity (daily)		X	
Temperature (daily) X Sulfide (initiation and termination) X	•		X pH (daily)		a second de la companya de la compa	
N N				nination)	<u> </u>	
		rmination)	<u>x</u>			

QA/QC SAMPLES

Negative Control

Control Sediment Collection Site Water Source Current priority pollutant scan available? Mean Control Mortality (%) Exceed PSEP QA Limit of 10%? (Y/N) Exceed PSEP QA limit of < 20% individual replicate mortality (Y/N)

Reference Sediment

Collection Site Total Number of Analyses Reference grain size appropriate for test species? Mean Mortality Mean mortality exceed PSEP QA limit of > 20% over control? (Y/N)

Positive Controls

Reference Toxicant Exposure Concentrations % mortality/exposure concentration Organism Response (LC50) Laboratory Performance Standards for Reference Toxicant Did the test LC50 fall within lab standards (Y/N)?

WATER QUALITY

Rhepoxynius abronius

Samples with temperature < 14 or > 16° C Samples with salinity < 27 or > 29 ppt Samples with pH < 7 or > 9 Samples with DO < 6 mg/L

Ampelisca abdita

Samples with temperature < 19 or > 21° C Samples with salinity < 27 or > 29 ppt Samples with pH < 7 or > 9 Samples with DO < 6 mg/L

Eohaustorius estuarius

Samples with temperature < 14 or > 16° C Samples with salinity other than ambient interstitial salinity of test sediment Samples with pH < 7 or > 9 Samples with DO < 6 mg/L

Beaver Creek, Oregon	
Yaquina Bay, Oregon	
Not provided with report	
1%	
No	
No	

Carr Inlet, Washington

1 reference: Ca	arr 4		•
Yes		<u> </u>	
4%			
No			

Cadmium chloride	,
0.0, 0.1, 0.3, 1.0, 3.0, 10.0 mg/L	
0%, 0%, 0%, 0%, 25%, 85%	
4.91 mg/L Cd	
0.67 to 7.89 mg/L	
Yes	· · · · · · · · · · · · · · · · · · ·

Day 5: Carr 4 = 16.3, C1 = 16.1, C2 = 16.2

None; Salinity	for this test	was set bet	ween 14 and	16 ppt
See below				
None				

Sample	Day	pН	
C1		3	6.9
		6	6.7
		8	6.4
		9	6.2

CHECKLIST FOR SEDIMENT LARVAL BIOASSAY (SOLID PHASE)

Project Name:	Hamm Creek Restoration Project	SAIC Project No: 01-0440-04-8357-0	000
Laboratory	Northwestern Aquatic Sciences	Lab Number 534-5	<u> </u>
Responsible Technician	Michele Redmond, Project Manager	Batch 1	
Date Sampled	June 16, 1997 and July 17, 1997	Reviewed By: Lisa Roach	
Date Analysis Begun	July 31,1997	Received by Lab July 22, 1997	
Problems noted (e.g., deviations from prescr	ibed methods, analytical problems)		
None			
COMPLETENESS AND HOLDING CONDI	TIONS 2 test, 1 reference	# Samples Analyzed 2 test, 1 reference	
Holding conditions acceptable (Y/N)	PSEP ; 4* C under nitrogen < 2 weeks PSDDA ; 4* C under nitrogen < 8 weeks		
If no, identify samples		e; therefore, storage under nitrogen was not required urged with nitrogen within 24 hours of sample collection	
FORMAT			
Standard data report sheet (check off)			-
Number of larvae evaluated Percent mortality/abnormality reported for ear Percent abnormality reported for each replica		Field samples2Positive controls1Negative controls1Reference samples1	
Individual replicate, and sample mean and st	andard deviations for mortality and abnorn	nality?	<u> </u>
Water quality variable reported for each replic Dissolved Oxygen (daily) Temperature (daily) Ammonia (initiation and termination)	cateX	Salinity (daily) >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	<
QA/QC SAMPLES			
Negative Control (seawater) Water Source Current priority pollutant scan available? Mean Control Mortality (%) Mean Control Abnormality (%) Exceed PSDDA/PSEP QA Limit of 30%?	Yaquina Bay, Oregon Not provided with report 23.3% 14.1% No		

CHECKLIST FOR SEDIMENT LARVAL BIOASSAY (SOLID PHASE)

Analytical Replicates	
Number per Sample	5
Any < 5 replicates?	No
Reference Sediment	-
Collection Site	Carr Inlet, Washington
Total Number of Analyses	1 reference: Carr 4
Mean Mortality/Abnormality	-10.2% (normalized to seawater control); 15.5% CMA
Mean Abnormality	7.8%
Mean mortality and abnormality > 35% over control? (Y/N)	No
Standard deviation of reference sediment >20%? (Y/N)	No
If yes to above, is power of reference vs. control > 0.6? (Y/N)	
Test Sediment	
Standard deviation of test sediment >20%? (Y/N)	No
If yes to above, is power of test vs. reference > 0.6? (Y/N)	
Positive Controls	
Reference Toxicant	Cadmium chloride
Exposure Concentrations	0.0, 1.0, 2.0, 4.0, 8.0, 15.0, 30.0 mg/L
% mortality/exposure concentration	2.2%, 9.7%, 2.2%, 6.1%, 50.3%, 97.4%, 100%
Organism Response (LC50)	8.13 mg/L
Laboratory Performance Standards for Reference Toxicant	5.15 to 12.3 mg/L
Did the test LC50 fall within lab standards (Y/N)?	Yes

WATER QUALITY

Dendraster excentricus Samples with temperature < 14 or > 16° C Samples with salinity < 27 or > 29 ppt Samples with pH < 7 or > 9 Samples with DO < 6 mg/L

Crassostrea gigas

Samples with temperature < 19 or > 21° C Samples with salinity < 27 or > 29 ppt Samples with pH < 7 or > 9 Samples with DO < 6 mg/L

Mytilus spp.

Samples with temperature < 15 or > 17° C Samples with salinity < 27 or > 29 ppt Samples with pH < 7 or > 9 Samples with DO < 6 mg/L

Stronglyocentrotus purpuratus

Samples with temperature < 14 or > 16° C Samples with salinity < 27 or > 29 ppt Samples with pH < 7 or > 9 Samples with DO ≈6 mg/L

None	
None	
None	
None	

CHECKLIST FOR 20-DAY NEANTHES BIOASSAY

Project Name:	Hamm Creek Restoration Project	SAIC Project No: 01-0440-04-8357-000
_aboratory:	Parametrix, Inc.	Lab Number 55-1738-6 Batch 1
Responsible Technician	Nathaniel Merrill, Project Manager	Reviewed By: Lisa Roach
Date Sampled	June 16, 1997; July 17, 1997 (Carr 4)	Received by Lab July 21, 1997
Date Analysis Begun	July 24, 1997	

Problems noted (e.g., deviations from prescribed methods, analytical problems)

The reported water quality measurement for C1 on Day 3 was taken from a different replicate beaker than the previous and subsequent measurements. This was because air had stopped overnight in the beaker from which water quality measurements had been made (DO in this beaker was 2.5 mg/L). This had no apparent effect on the survival of the test organisms. In addition, during the water quality change, Neanthes were observed on the sides of two replicate beakers for the control. Dissolved oxygen and pH were slightly outside control limits in in some of the samples on Days 0, 3, and 20 (see end of this checklist). This did not appear to have an effect on the survival and growth rate of the organisms.

COMPLETENESS AND HOLDING CONDITIONS

# Samples Submitted	2 test, 1 reference		# Samples Analyzed	2 test, 1 reference	
Holding conditions acceptable (Y/N	۷).	PSEP ; 4" C under ni	-	One balance	
- !		PSDDA ; 4° C under	nitrogen < 8 weeks	See below	
If no, identify samples	Samples were packe	ed with no headspace; I	herefore, storage under nitro	gen was not required.	However,
	samples were purge	d with nitrogen upon ar	rival at the laboratory.		
FORMAT					
Standard data report sheet (ch	eck off)			2	
Initial Biomass for 3 groups of 5	worms each	<u> </u>	Field samples		. ,
Number of worms reported for e		X	Positive controls		-
Percent Mortality reported for ea		X	Negative controls	<u> </u>	-
Final Biomass reported for each		X	Reference samples	· · · · ·	-
Final Mean Growth Rate reporte	d for each replicate	<u> </u>			
Individual replicate, plus sample	mean and standard	deviations for mortality,	biomass, and growth rate?	<u> </u>	-
Analytical Replicates					
Number per Sample		5			
, , ,		No			

Water Quality Variable Reported for each Replicate (che CK)

Interstitial salinity for each sample (initiation)	X
Dissolved Oxygen (every third day)	X
Temperature (every third day)	— x
Ammonia (initiation and termination)	— X
Worms fed every second day	

Seawater change every three days? Salinity (every third day) pH (every third day) Sulfide (initiation and termination)

CHECKLIST FOR 20-DAY NEANTHES BIOASSAY

QA/QC SAMPLES

Negative Control

Control Sediment Collection Site Water Source Current priority pollutant scan available?

Mean Control Mortality (%) Exceed PSEP QA Limit of 10%? Mean Control Biomass (mg/individual) Mean Control Growth Rate (mg/individual/day)

West Beach, Whidbey Island, WA	
Natural seawater collected from NMFS, Mukilteo, WA	
Data follows the Neanthes bioassay report	
8%	-
No	
19.1 mg	
0.92 mg/indiv/day	

Note: the mean control growth rate met the target growth rate of 0.72 mg/individual/day. In addition, the initial weight target of 0.5 mg/indiv. was also met.

Cadmium chloride

11.16 mg/L Cd 3.54 to 12.42 mg/L Cd

Yes

0.0, 1.8, 3.0, 5.0, 8.4, 14.0 mg/L

0%, 0%, 0%, 0%, 0%, 90%

Positive Controls

Reference Toxicant Exposure Concentrations Percent mortality/exposure concentration Organism Response (LC50) Laboratory Performance Standards for Reference Toxicant Did the test LC50 fall within lab standards (Y/N)?

Reference Sediment

 Collection Site
 Carr Inlet, WA

 Total Number of Analyses
 1 reference, Carr 4

 Mean Mortality
 4%

 Mean mortality > 20% over control? (Y/N)
 No

 Mean Biomass (mg/individual)
 17.5 mg

 Mean Growth Rate (mg/individual/day)
 0.84 mg/indiv/day

 Mean growth rate less than PSDDA QA limit of >80% of the control (Y/N)?
 No (91% of control)

WATER QUALITY

Samples with temperature < 19 or > 21° C	None
Samples with salinity < 26 or > 30 ppt	None
Samples with pH < 7.0 or > 9.0	See below
Samples with DO < 6 mg/L	See below

Sample	Day	pН	DO
C1	0	6.8	
	3	6.4	
	20	6.6	
C2	20	6.7	
Control	3		5.2
	20	6.8	

NORTHWESTERN AQUATIC SCIENCES

Toxicity Test Report Amphipod Bioassay

An Employee-Owned Company

TOXICITY TEST REPORT

TEST IDENTIFICATION

Test No.: 534-6

Title: Echaustorius estuarius 10-day sediment toxicity test.

<u>Protocol</u>: Recommended Guidelines for Conducting Laboratory Bioassays on Puget Sound Sediments (PSEP 1995), with modifications as specified by the Puget Sound Dredged Disposal Analysis Program, the Sampling and Analysis Plan for the Hamm Creek Restoration Project, and the SAIC statement of work.

STUDY MANAGEMENT

Study Sponsor: SAIC, 18706 N. Creek Parkway, Suite 110, Bothell, Washington 98011.

Sponsor's Study Monitor: Ms. Lisa Roach

<u>Testing Laboratory</u>: Northwestern Aquatic Sciences, P.O. Box 1437, Newport, Oregon 97365.

Test Location: Newport Laboratory.

Laboratory's Study Personnel: M.S. Redmond, M.S., Proj. Mngr./Study Dir.; L.K. Nemeth, B.A., QA Officer; G.A. Buhler, B.S., Aq. Toxicol.; G.J. Irissarri, B.S., Aq. Toxicol.; B.D. Crowe, B.S., Sr. Tech; E. Coffey, B.S., Tech.

Study Schedule:

Test Beginning: 8-1-97, 3:00 p.m.

Test Ending: 8-11-97, 2:00 p.m.

Disposition of Study Records: All specimens, raw data, reports and other study records are stored according to Good Laboratory Practice regulations at Northwestern Aquatic Sciences, 334 S.W. 7th Street, Suite B, Newport, OR 97365.

<u>Good Laboratory Practices</u>: The test was conducted following the principles of Good Laboratory Practices (GLP) as defined in the EPA/TSCA Good Laboratory Practice regulations revised August 17, 1989. (40 CFR Part 792).

<u>Statement of Quality Assurance</u>: The test data were reviewed by the Quality Assurance Unit to assure that the study was performed in accordance with the protocol and standard operating procedures. This report is an accurate reflection of the raw data.

TEST MATERIAL

<u>Control Sediment</u>: The control sediment was collected from Beaver Creek, OR on 7-31-97. It was sieved through a 1.0 mm screen, stored at 4°C in the dark, and then homogenized before use in the test.

<u>Test Sediments</u>: Sediment samples from Hamm Creek, Duwamish Waterway, Washington. Details are as follows:

NAS Sample No.	8670E	8671E	8672E	
Description	C1	C2	CARR4	
Collection Date	6-16-97	6-16-97	7-17-97	
Receipt Date	7-22-97	7-22-97	7-22-97	
Interstitial Salinity (ppt)		2.0	29.0	

Test No 534-6

- 1 -

Storage: Stored at 4°C in the dark in a capped container until used. 8672E was stored under nitrogen; 8670E and 8671E were packed with no headspace.

<u>Treatments</u>: Each sample was thoroughly homogenized and aliquots distributed to the appropriate beakers. Additional aliquots were weighed for use in test 534-5, and samples taken for ammonia and sulfide analyses. The ammonia and sulfide subsamples were refrigerated, and then shipped cold under chain-of-custody to AmTest, Inc. Each beaker containing sediment for use in test 534-6 was filled to the 950 mL mark with salinity-adjusted seawater calculated to achieve a final salinity of 15 ppt, and gently stirred. Sediments were allowed to settle in test beakers for 4 hours. Overlying water salinity after settling was 15.0 ± 1.5 ppt. 600 mL of overlying water was decanted from each beaker, and then each beaker filled to the 750 mL mark with 15.0 ppt seawater.

TEST WATER

Source: Yaquina Bay, Oregon

Date of Collection: 7-31-97

Water Quality: Salinity 15.0 ppt; pH 7.7.

<u>Pretreatment</u>: Filtered to $\leq 1.0 \ \mu m$, aerated, salinity adjusted using Milli-Q[®] deionized water.

TEST ORGANISMS

Species: Eohaustorius estuarius, amphipod

Size/Weight: adults

Source: Field collected on 7-31-97 from Beaver Creek, Oregon.

Acclimation: Mean conditions during acclimation were: temperature 13.2°C; salinity 14.0 ppt; dissolved oxygen 10.2 mg/L; pH 7.7.

TEST PROCEDURES AND CONDITIONS

The following is an abbreviated statement of the test procedures and a statement of the test conditions actually employed. Refer to the test protocols cited above for a more detailed description of the test procedures used in this study.

Test Chambers: 1 L borosilicate glass beakers.

Test Volumes: 175 ml of test or control sediment; 950 ml total volume.

Replicates/Treatment: 6 (5 plus one water quality replicate)

Sediment Salinity Adjustment: see sample treatment discussion above.

Organisms/Treatment: 120 (20/replicate).

Water Volume Changes per 24 hr: None

Aeration: Yes, at least 2 cm above the sediment surface.

Feeding: None.

Acceptance Criteria: Results are valid if mean control mortality does not exceed 10%, and does not exceed 20% in any one replicate.

<u>Effects Criteria</u>: 1) survival after 10 days, 2) daily emergence of amphipods from the test sediments, and 3) percentage of surviving amphipods reburying at the end of the exposure period. Death is defined as no visible appendage movement or response to tactile stimulation.

Water Quality and Other Test Conditions: The temperature, dissolved oxygen, salinity, and pH were measured in one replicate beaker on all test days. Ammonia and sulfides in overlying water were measured, using Hach test kits, in one replicate beaker on days 0 and 10 only. Sulfide and ammonia-N analyses were by the methylene blue (EPA Method 376.2) and salicylate (Clin. Chim. Acta 14: 403, 1966) colorimetric methods, respectively. Samples were not distilled prior to analysis. The photoperiod was constant light.

DATA ANALYSIS METHODS

Percent survival and percent reburial at the end of the test were determined from the final observations according to the formulas:

Percent survival = 100(no. of surviving amphipods/initial number of amphipods) Percent reburial = 100(no. of surviving amphipods reburying/no. of surviving amphipods)

Another endpoint was the sum of observed daily sediment emergence events in a test beaker throughout the test.

Means and standard deviations for the biological endpoints described above and for water quality data were computed using Microsoft Excel Ver.5.0.

PROTOCOL DEVIATIONS

1. Seawater was filtered to $\leq 1.0 \ \mu m$ rather than the specified $\leq 0.45 \ \mu m$.

2. Test animals were held for only 1 day rather than the specified 2 days before testing.

Neither of these deviations is likely to have affected the test results.

REFERENCE TOXICANT TEST

The reference toxicant test is a standard multi-concentration toxicity test using cadmium as $CdCl_2-2\frac{1}{2}H_2O$, to evaluate the performance of the test organisms used in the sediment toxicity test. The performance is evaluated by comparing the results of this test with historical results obtained at the laboratory.

<u>Test No.</u>: 999-783 <u>Reference Toxicant and Source</u>: CdCl₂-2.5H₂O, Mallinckrodt, Lot No. TNZ. <u>Test Date</u>: 8-1-97 <u>Dilution Water Used</u>: Yaquina Bay, Oregon seawater, salinity: 12.0 ppt. <u>Result</u>: 96-hr LC50, 4.91 mg/L Cd. This result is within the laboratory's control chart warning limits (0.67 to 7.89 mg/L).

RESULTS

Water quality data are summarized in Table 1. A detailed tabulation of the water quality results can be found in Appendix II. The means and standard deviations of the biological responses for each sediment are summarized in Table 2. Detailed data organized by sample and replicate, including the observations on emergence, survival and reburial and the

Test No 534-6

summary statistics for these observations, are given in Appendix II. Table 3 gives the final interstitial salinities in the sediments of each test container.

All water quality measurements of temperature, dissolved oxygen, salinity, and pH were within the protocol specified ranges. Sulfides were not detected (detection limit, 0.01 mg/L) either at the beginning or end of the test. Total ammonia-N in the overlying water ranged from <0.2 (detection limit) to 2.5 mg/L.

The test met the acceptability criterion for control survival (≥90% and ≥80% in any one replicate); mean survival in controls was 99.0%. In addition, the results of the reference toxicant test were acceptable compared with the laboratory's historical data for this species.

Percent survival in all samples was 96.0%. The percent of surviving amphipods which reburied was 100% in all treatments except for C2 (8671E), where the percent reburied was 98.9%. Mean total emergence ranged from 0 (control, CARR4[8672E]) to 4.2 (C2).

STUDY APPROVAL

8/27/97 Proj. Manager/Study Director Date

aldred 8

Toxicology Manager

Ouality Assurance Unit Date

Test No 534-6

Parameter	Mean ± SD	Minimum	Maximum	N
Temperature (°C)	15.5 ± 0.4	15.0	16.3	44
Dissolved Oxygen (mg/L)	9.1 ± 0.2	8.6	9.4	44
Salinity (ppt)	15.0 ± 0.4	14.0	16.0	44
pH	7.6 ± 0.5	6.2	8.3	44
Total Sulfide (mg/L)		<0.01	<0.01	8
Total Ammonia-N (mg/L)		<0.2	2.5	8

Table 1. Summary of water quality conditions prevailing during the <u>Eohaustorius estuarius</u> 10-day test.

Table 2. Means and standard deviations (n=5) of sediment emergence, 10-day percent survival, and percent reburial of *Eohaustorius estuarius* exposed to sediments.

Sample Description	Emergence ¹ (no./replicate)	Percent Survival (10-days)	Percent Reburial ²
Control sediment	0.0 ± 0.0	99.0 ± 2.2	100.0 ± 0.0
CARR4 (NAS # 8672E)	0.0 ± 0.0	96.0 ± 4.2	100.0 ± 0.0
C1 (NAS # 8670E)	3.0 ± 2.5	96.0 ± 5.5	100.0 ± 0.0
C2 (NAS # 8671E)	4.2 ± 4.2	96.0 ± 4.2	98.9 ± 2.4

¹ Total number of amphipods observed daily over a 10-day period to have emerged from the sediment per test beaker.

² Percentage of surviving amphipods able to rebury in clean sediment within 1 hr after a 10-day exposure.

Test No 534-6

Sample Description	Replicate 1	Replicate 2	Replicate 3	Replicate 4	Replicate 5
Control sediment	14.5	15.0	14.0	14.0	15.0
CARR4 (NAS # 8672E)	15.0	15.0	15.5	15.5	15.5
C1 (NAS # 8670E)	14.5	14.0	15.0	14.5	15.0
C2 (NAS # 8671E)	15.0	14.5	15.0	14.0	14.0

Table 3. Interstitial salinity of test sediments at the conclusion of the 10-day test exposure.

Test No 534-6

APPENDIX I

TEST PROTOCOL (Included by Reference)

AR 023341.01

APPENDIX II

RAW DATA

North	WESTERN AQUATÍC SCIENC Marine Amphip	ES DD 10-DAY SOLID PHAS	/	Remained
Test	No.534-6 Client SF	HC	Investigator	pgs. 1-26 MLR 3/2497
STUDY	QA Officer <u>L.K.</u> I. <u>G.J. 11255</u> 3. <u>30 Crove</u>	: <u>Ms. Lisa Roac</u> rthwestern Aquatic S <u>art Laboratory</u> sonnel: Dir. <u>M.S. Red</u> <u>Nemeth</u> <u>2RI 6.57</u> 2. <u>6</u> 3 <u>6</u> 4. Eric	mond MLR	
TEST	MATERIAL General description (s	ee sample logbook/ch	nain-of-custody for (ietails):
	MAS Sample No.: Description: Collection Date: Receipt Date: Inters Salinity (ppm):	\$670E \$671E 61 C2 6-16-97 6-16-97 7-22-97 7-22-97 - 4 2.0	8672E CARR4 CONTROL 7-17-97 7-31-97 7-22-97 7-31-97 29.0	
	* Asmoleor completity with NAS Sample No.: Description: Collection Date: Receipt Date: Inters.Salinity (ppm):			
	NAS Sample No.: Description: Collection Date: Receipt Date: Inters.Salinity (ppm):			
,	MAS Sample No.: Description: Collection Date: Receipt Date: Inters.Salinity (ppm):			
	NAS Sample No.: Description: Collection Date: Receipt Date: Inters.Salinity (ppm)			

- / -

Revised 12-30-92

-NORTHWESTERN AQUATIC SCIENCES PROTOCOL MARINE AMPHIPOD 10-DAY SOLID PHASE SEDIMENT TEST PROTOCOL NO. NAS-XXX-RA4

Test No. 534-6 Client SAIC

Investigator

Sample ÷ . <u>No.</u> Description A aunces - oncu sandu and will - so tak 8672E I 8670E . alart not mate 8671E acould a race and ~- ** crewind tur auch in nan O man schedar Que conct. 22 (=-31-97) Each samai: 11-27-40 ought oncen 1. Taiku ±. Firs C sor en co nlis 1 vera · un' Taken alse maliper And the al 950 mL ma 17x . - ody istral siguria) 0 . nit' salurity of <u>15 R</u> a 1 diment sittle in that a lalled to 10 Junino 207 acro. ad i st. O overliger water palinet neach riter set this dut before decontine: beaks pri U Ŭ Beaker = sot Becker # M.S í3.5 1 23 14.5 2 14 14.0 16.0 ى 15 14.0 16.0 16 13.5 14.0 17 15,5 5 14.0 18 1 15,0 7 15.5 15.0 19 8 14.0 ہے 14.0 9 15.0 14.0 21 10 14:0 22 16.0 11 0.40 23 15.5 12 14.2 24 16.0 ilter. 6CO mL And sali 1 ad 4 w.u $\frac{1}{\tau}$ was ung a à 1 with the 7511 in alau To. mas ken then_ placed consta water hoppeding_ anation vina to 1:5 nern to a Tim n MIR 7.31-97 monia with watch glasses

SEDIMENT DESCRIPTIONS--SUPLEMENTAL NOTES

AR 023344

Revised 12-30-92

NORTHWESTERN AQUATIC SCIENCES

Test No. 534-6 Client SAIC

Investigator

TEST ORGANISMS

species: Echaustorius estuarius Date Collected: 7-31-97 Source: Beauer Creek Oregon Field Conditions (interstitial) When Collected: Temp 20,2. Salinity 0.0 Acclimation Data: Temp (°C) DO (mg/L) Date Sal (ppt) ЪĦ Comments 7-31-97 ! 13.4 10.2 13.0 8-1-97 13.0 10. <u>7.7</u> <u>15,0</u> 1 t 1 1 . Mean 13 14.0 <u>7.7</u> 10,3 S.D. (\mathbf{X}) 2 2

TEST PROCEDURES AND CONDITIONS

Test chambers: 1 L glass beakers 950 -7⁴ Test volumes: 175 ml of test sediment: 1960 ml total volume Replicates/treatment: (5) _____ Organisms/treatment: 1907 _____ Aeration: Yes, 3 cm below water surface Test water changes: None Feeding: None Beaker placement: Total randomization

MISCELLANEOUS NOTES

7

* 5 replicates plus one replicate for water quality measurements.

Revised 12-30-92

NORTHWESTERN AQUATIC SCIENCES

	Control	ed H	nc:	h 1.0	mm	SCreer	<u>~/ </u>	DIECK	<u>u 7</u>	<u>);-</u> /_
			\cup							
<u>. F</u>	andomiz:	1						0.1	1	
	3	6	9	12	15	18	21	24	i 	1
	2	5	8	11	14	17	20	23	i !	!
	1	4	7	10	/3	16	19	22	 	-
		i		1 : ·	•	· · · ·	ι ; [1 2 1 1		;
-				:	:	:		· · · · · · · · · · · · · · · · · · ·	· · ·	!
5[_		,,		<u> </u>					<u></u>	
F	Randomiz	<u>ation c</u>	hart:			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		:	
1	1	1		 !	1			•		1 1
2	· · · ·			t + 1	1	1	• • •	:) 1	:
	· · · ·			•	· ·	•		4	1	
З_	t f i t i			1	 	• • •				1
4	i . 1 I		<u>-</u> -	•		<u>.</u>			;	i .
5				1	1		: 		1	!
-	Randomiz	ation								
1		ation (<u></u>	1				1	 	
1 _	<u>!</u> !			<u> </u>	1	! 	 	!	((
2		·····			1		<u>t</u>	1		!
3			1	1	•				1	i
						1		!	 	
4		······		• •			- 			1
5	1		, 1	1	i	i	i	i		1

Date of Collection: <u>7-31-97</u> Salinity (ppt) <u>15.0</u> pH <u>7.7</u> Treatments: <u>1. Etzical to =10 um salinity - adjusted w/</u> Milli & water, account.

NORTHWESTERN AQUATIC BOIENCES PROTOCOM MARINE AMPHIPOD 10-DAY SOLID PHASE SEDIMENT TEST

PROTOCOL LOU NAS-XXX-RA4

Test No. 534-6 client SAIC

Investigator_____

······	1 4	No. #*	H3 :	S	ЪН	Sal.		Temp	Béaker
Comment		merged						(°C)	No.
	1 !	/	<u>, , , , , , , , , , , , , , , , , , , </u>	· · · · · ·					
· · · · · · · · · · · · · · · · · · ·	AKI		!	1 !				· · · · · · · · · · · · · · · · · · ·	
	UKII	Ø	1 !	1	··		·		<u> </u>
	<u> </u>	<u> </u>	· · ·	r 1					
				•			·		<u>+</u>
				<u> </u>		;			
			, ,	,		· · ·			- <u>6</u> 7
								- 1	
			1.1						
			I					• •	
	1				····		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·	10
	1 1 1			;				· ,	11
			1	40.01	3-0	22 65	9.2	15-1	13
<u> //</u>			3	40.01		10.20	9.2	15-1	19
			<u>a</u>	-0.0/	-J. /-		<u> </u>		15
	7.1			· · · ·					
			1.1	· · ·			· · · · ·	· · · · · · · · · · · · · · · · · · ·	. 16
									15
	· · · · · · · · · · · · · · · · · · ·			10.01	15	15-0			
			· <u></u>	40.01		<u> </u>	91	<u></u>	19
				27.01		15-0	611	15-12	20
<u></u>			: 1			1)~		15-0	
	- F I			1 1					
		¥ '		1					
		1		, ,					<u> </u>
	: !		11	1 ;				: 1	
				1 :	<u> </u>	<u>64-</u> 1		- Amm	
	1 1	<u>m)</u>		ind th	neas	210-0	10000		
	i	<u> </u>		<u>11 M 11</u>	negi	<u></u>	n (som	idand co	<u></u>
				10-0					
			3 1	3.0				3	
				1.0			i ,		
						·;		<u> </u>	
<u> </u>	• •			. ,		:			
	· · · ·		1.1		<u> </u>			· •	
			• 1						
				•			<u></u> ,		
<u> </u>									<u>.</u>
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	1.5					1	•
·····	· •		1						
								1	
								······	
		·					·		
									······

* water quality beakers ** number not buried after 15 min; these where replaced with others from the same sieved population. -5- Revised 12-30-92

NORTHWESTERN AQUATID SCIENCES PROTOCO MARINE AMPHIPOD 10-DAY SOLID PHASE SEDIMENT TEST

PROTOCOL NO. MAS-MMM-RA4

Temperature beaker_

11

+1

Comments

°С

1

Test No. 537-6 Client SAIC

Investigator

1 1 1 (S 12 197) mir/602

<u>''("C) |(pom)|(pot)|</u>

Beaker ||Temp.| DO

No

j Sal.; pH

No.

1 1		<u>.</u>				10001			<u></u>					11		Comments
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<i>i</i>	1		1	ł.		•	:	2.1	Ф		21	1	1.1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			+	1	1	1		,	1	11	0			24	1.1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u> </u>	_											<u>~~</u>		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	!	:	1	1	!	1	1	11	Ø	Ŧ	!	1	11	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	1	1				E				1	11	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	·													+		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5			•	!			'		ϕ					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1			1				•	1	Ø				· .	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u>~</u>														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,									1	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ç	•		1						Ø			1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						· · · · · · · · · · · · · · · · · · ·	,	,	<u> </u>	·····		Ŧ		<u> </u>	the second s	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		<u> </u>						••		<u></u>	Q	Г		<u> </u>		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10				:				I	Ch				1.1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$;					• •	~^			1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		//							···		<u> </u>					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12		•	:		•			I	3	Ŧ	•	1	1.1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u>, ,</u>			<i>c i</i>	·				• •				Ī		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.2		19.7	7.1	15.0	Tic				<u> </u>			4		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		14		15.3	9.1	15.0	7.5				Ø	+				
16 0 17 1 17 1 17 150 29 20 60 1 21 150 23 0 1 22 60 1 100 100 22 60 100 100 100 23 100 350 25 60 100 23 100 350 350 350 100 100 24 100 100 100 100 100 100 24 00° $\sqrt{100}$ $\sqrt{100}$ $\sqrt{100}$ $\sqrt{100}$ $\sqrt{100}$ 24 00° $\sqrt{100}$ <		15			•		;			,				1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u></u>									<u> </u>					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		16			•					· · ·	Q					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, 7			•			r						1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		15									_	F		<u></u>		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		18			·						φ			1		·····
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	15		15-4	91	150	29				ch	7			4.3	
		<u> </u>		15/7		100					11			1		
		ھتى									<u></u>					
	£	21		15.3	41	15.0	= = 5	÷	•	1.1	ð		'	1		
	-			1010				1						1	4.1.1	
		<u></u>									<u></u>			<u></u>		
		23	1		1					1 1	1	Ŧ	1	}		
		24		:	1	1			;	<u>! </u> !	õ	Ŧ	1	\mathbf{V}	1.1	
		27				and the second se				·····	<u>-</u> 41_					
			_		1			1	;							
			1	1	:	,		•	•	1						
								1	1				;			······································
		·														
				•	1	,	:		:	t i					11	
				1	1	1	,			1 1			,		<u>(</u>]	
	-							· · · · · · · · · · · · · · · · · · ·								
									· · · · · · · · · · · · · · · · · · ·						_	
										,					: 1	
			· · ·									<u> </u>				
			,					1		1.1					11	
							:								0.1	
																······································
			:	:	t			•		1 D R						
			,	1		1	:	1					:		1	
				·	1		•								: :	
													1			
					·											
				,						1 I T					1.1	
	<u> </u>										···				; ;	
					:	·										
				;			1	;		• •			'		1.1	
							:						:		1 1	
								: 								
										•						
													•			
	_								· · · · · · · · · · · · · · · · · · ·							

DAILY RECORD SHEET

NH3

4.4

(pom) (pom) | Emerged | Air

S

* water quality beakers Finurky-hard to see Athraigh water column

- 60 -

Revised 12-30-92

Test No. 537-6 Client SAIC

Investigator

		0			,	DAIL	/ RECOR	D SHEET				beaker
					R/GSI					perst	ure	beaker
36	eaker	Temp	.; D	0	Sal.	рĤ	S i	NH3	No.			0
	10.	1 (°C)	ם) ו	<u>(mg</u>	(<u>opt</u>)		(תסס)	(DDm)!!	Emerged	<u> </u>		Comments
	<i>i</i>	1	1 .		1		•	۱ —	0	all		
	2	1	;		1		i ;		Ø	: OK		· · · · · · · · · · · · · · · · · · ·
-	3		1		1		:	· · ·		<u> </u>	!!	
	4	1			1		1		/		- 1	
-	<u></u>		!		1				Ø	·	1	
-					•		1		Ø		1.1	
	67		•				!		Ø		• !	
	5	• •					•		Ø		: :	
	<u>-</u>	:							3	1	1	
							-		Ø		. •	
_	10	· •							Ø		•	
	//								4	1		
	12					20			Ø	1		
		<u></u> ,	3 9	0	15.0	<u></u>			2			
	14	15.	<u> </u>	0_	15.0	7.5			- Z		• •	
	15								Ø	<u>i</u>		
	16								<u> </u>	<u> </u>		
	17								2		• 1	
	18		1		·							
÷	19	15.	3 8	,9	15.0	7.2	<u> </u>		<u> </u>	<u> </u>		
	2.0	· · ·	•						<u> </u>			
ĸ	21	15.	3 9.	0	15.0	7.8			0		1 1	
	22	(1 	<u> </u>			
	23							: 		<u> </u>		<u></u>
	24		!		;	!		!		V	<u>' !</u>	
		1.1	1			t .	•	:			_ : !	
-		· !			:	•	1			. <u> </u>		
			1				:	1			1.1	
			1			1		1 :				
					,	:	!	1 :	:	1	1 !	
			;		,	ļ		1	!	•	• !	
		· · ·	,				4		•	:	11	
		+ +				1			;		11	
					•			1	1	:	1.1	
											• •	
_		1 1					1		1			·
		· · · · · · · · · · · · · · · · · · ·			2	1	:	· 1	!	:	1	
	··				· · · · · · · · · · · · · · · · · · ·	:	······································		1	,	1.1	
							1		;		1	
									· · · · · · · · · · · · · · · · · · ·		× 1	
	· =·_· · · · · · ·				<u> </u>			,			· 1	
							· · · · · · · · · · · · · · · · · · ·		¢	'	11	
	·	<u>. 1 f</u>) 		!		1			
						·			· ·	1		
_	·	· ·	1									
									•			

* water quality beakers

- 7 -

Revised 12-30-92

AR 023349

NORTHWESTERN AQUATIC SCIENCES PROTOCOL NO. NAS-MIM-RA4 MARINE AMPHIPOD 10-DAY SOLID PHASE SEDIMENT TEST

Test No. <u>537-6</u> Client <u>SAIC</u>

Investigator

. y 3 (8/4/97) mile

DAILY RECORD SHEET

Temperature beaker 15.6 °C

:

		Tem	p.; D	00	Sal.	рH	S	NH3	No.		
	No.	11(°C) ((mag	(ppt)	1	(חסם)	ו (תכככ) ו	Emerged	Air	Comments
	i	1.1	1			:			Ø	all	
	2	11	ţ		!	1	1		I Ø	OK	
_	2 3	1.1	1			1	the second s		1 4 7		and the second sec
	4	• 1			·						,
	<u>्र</u>	1.1				3	-				
_		A							<u>(l'</u>		
	67	1.2	- <u> </u>						<u>q</u> r		-
										<u> </u>	
	\$ \$					·			C		· · ·
			:						Z	· .	
	10		·						<u> </u>	· · ·	
	11								Ø	1	
	12	1	•						Ø		
<u> </u>	13	15,	7 9	. /	16.0	3.0	·		\oslash	1	
1	14		2 9.		15.0	7.3			2 F	-	1
	15			· • • • • •					Ø		на на селото на селот Р
	16								0	·i	·
	17	1.1	· · ·			· · · · · · · · · · · · · · · · · · ·			<u> </u>	<u> </u>	<u> </u>
	18						•		27		
×									<u> </u>		:
<u>~</u>		5.5	7	<u>, 2</u>	13,0	6.7			ØF		
	<u>صح</u>								Ø		1
₩.	<u>- 21</u>	15,0	2 9	3	15.5	7.8			Ø		
	22		-								
	23						·		<u> </u>		
	24	11	!			-	: ;				!
		11	1	ı I			· ·			1 ;	<u>.</u>
		1.4		;			: 1				!
		1.1	1				!	:	1	·	1
		2.1	1	1			1	:	-	i !	1
		1.1	:	ļ		1	! 1		1	1	· · · · · · · · · · · · · · · · · · ·
		1.1	1			:			1	•	
		1.1					•			:	
		: :	,	:				•	1	•	
		1.1	· · ·				· · ·			· · · ·	
		· · · · · · · · · · · · · · · · · · ·		•			· · ·			+	
							· · · · ·				
		- I 	:							:	
									5		
							·				
		:									
		· · ·	1	1					I		
		! !						!		· · · · ·	1
		. ,							1	· · · · · · · · · · · · · · · · · · ·	
-		1				<u></u>					
											· · · · · · · · · · · · · · · · · · ·
									•		

. water quality beakers Tmurky-hard to see emergence

- 8 -

Revised 12-30-92

AR 023350

... .

Test No. 537-6 Client SAIC

___Investigator_

DAILY RECORD SHEET

Temperature beaker 155.c

	Temț	D. D0	5al.	рн	5	NH3	No.			
No.		<u>(תכם) וּ (</u>	ן (זפכ) ו		(תמכ)					Comments
i	1.1	!	· · · · · · · · · · · · · · · · · · ·				<u> </u>		121_	!
२ मु	; ;	:	1		· · · · · · · · · ·		1 0		OK :	
3	1.1				! .		<u>: ſ</u>		1 '	
4 5	1	1			<u> </u>		<u> </u>			the second s
	1.1.1		:				<u>'</u> 0		·	
6			•				· 0			
7	Г. Ч.	• .				•	· 0			•
5							0			
÷							C			
10	. 1						· C			1 · · · ·
11							· C		1	
12	1				· · · · · · · · · · · · · · · · · · ·		3			:
/2	15.	7-8-6	15.0	8.0			0		1	
14		756	150			······	1		1	
15									1	•
							· C		1	1
<u></u> . 7	<u> </u>				•		- 0		+	•
7							2		1	:
18	12-	8 01	15.0	1.0			· 0		1 .	· · · · · · · · · · · · · · · · · · ·
4 19	15.	0 5.0	13.0				- <u>c</u>			,
<u>صد</u>		787	150	1.1	1		: C			
* 21	12.	<u>r o t</u>	0.0	<u> </u>			- 0			
22							· C			· · · · · · · · · · · · · · · · · · ·
23							1 0			
24	, , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·					<u> </u>			and the second
		1								the second s
	. ,		· · · · · · · · · · · · · · · · · · ·	,	1	•	1			1
					: 		: :			· · · · · · · · · · · · · · · · · · ·
	1		5	!	8		:			·
		! !	· · · · · · · · · · · · ·	1	!	· · ·	:		· ·	•
	: :	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·		! !	· · · · · · · · · · · · · · · · · · ·	:	4		· •
·····	: 1 : .	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·		! !		:		: : :	!
			· · · · · · · · · · · · ·		! !		1 1	•		· ! ! !
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·		! !					· · · ·
			· · · · · · · · · · · · ·		! ! ! ! !			•	- - - - - - - - - - - - - - -	· · · · ·
					! !				· · · · · · · · · · · · · · · · · · ·	· · · · ·
					! !					

* water quality beakers

- 9 -

Revised 12-30-92

AR 023351

MARINE AMPHIPOD 10-DAY SOLID PHASE SEDIMENT TEST

Test No. 534-6011ent_ 5,4/C

____lnvestigator_

v_5 (816,97) m/

DAILY RECORD SHEET

Temperature beaker 16.0 °C

Beaker	Temp.	; DO	Sal.	рн	S	NH3	NO.			
<u>No.</u>	::(°C)	(המסס)'	1 (DDT)	· · · · · · · · · · · · · · · · · · ·	(תמם)	(ppm)	Emerged	' Air	Comments	
! /	11	1	1	•	+ .		0	ALL		
7		1	1	!	ţ		1 0	DL		
- 7 3		:	1				0	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
and the second design of the s		·						÷		
- 			·							
5		э. -	• •		•		0	-	1 A	
<u> </u>	1.4	,	· · ·	1		• •	0		f t - +	
							0		1.4	
		·						·	· · ·	
2										_
									1 F	
10			• · · ·				0			
/							· 0		· · ·	
12	·						2	1	· · · · · · · · · · · · · · · · · · ·	
	16.3	6.7	15.0	8.1			0			
¥ 13	<u> </u>					·· · · · · ·	0		• • •	
* 14	16.7	<u></u>	15.0	7.5				<u> </u>	·	
15				: 			0			
/6	1						· O			
·77	1						0	. 1		
		:			:	•	· 0			
			15.0	10	1		Ö			
* 19	16.1	1.04	12.0	$+ \cdot 0$		1		, 	· · ·	
20					- <u>-</u>		0	<u> </u>		
_ ★_ 2/	16.0	9.4	15.0				: O		· ·	
- 22			•	I	•	1	: 0	· 1		
23	•		:		•	4	0	: 1	: }	
24	1.5					!	0	V	1 F	
	1.4									
		·							and the second	
		1					§	:		
!	1	1		!	1			!	1 f	
•				1	1		1	1	1.1	
	- E - F	1	I		!	1. 1	•	:	11	
			1	1	,		1	1	· · ·	
,					τ,		4	1		
							:	•	•	
		·							and the second secon	<u> </u>
,							L.		1 <u>1</u>	
		1	·		:				•	
	. 1	;		÷	1	r ·	t		N 8	
1		1	· · · · · · · · · · · · · · · · · · ·				2	1	! !	
1					1		<u>;</u>	:		
			•				1	:	I	
1	4.1	1	,			1	:		· · ·	
1	1.1	2	:		:		!	1	11	
			1)	•		1			
			·				·	;	: : *	
							·			
		·			······································					
						· · · ·	•		: 	
									::	

- 10 -

ewater quality beakers

Revised 12-30-92

Test No. 537-6 Ment SAIC

___Investigator_

	~ -	() ()		1	
6	X/T	17	In 1	/	
U	U / 1	1111		~ ~	

			DAILY	RECORD SHE	ET	• •	i .=
Dav 6	(8/7/	97; 4n/B.			Ter	mperature	beaker 14.7.
Beaker	Temp	.; D0 _ S	al.; pH	S NH3			
No.	(°C)	ם) (חסם)!	יו(סס	(mag) (mag)		: 4ir	Comments
1	1		·	•	· 0	AL	
2	: 1	ļ l	::		0	OF	
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	' !				C	1 1 1	
.4		. !		· · · · ·	0		
: <u>5</u>	: •				U U		
· 6 · 7	•••				0		
- 7	• •	<u> </u>			0	1	
57					0		
Ŷ		· · · · · · · · · · · · · · · · · · ·			· 0		
10				· · · · · · · · · · · · · · · · · · ·	· 0	,	
11					C	· · · ·	
12		· · · · · · · · · · · · · · · · · · ·			<u> </u>		
¥ 13	12.0		5 8.1		0		
* 14	15-	<u>1:4-2 15</u>	170		Ö		· · · · · · · · · · · · · · · · · · ·
15					<u> </u>		
/6					0		
17	1				<u>0</u>	1	
	•				0		
* 19	15.0	1 9-2 15	.0 6.7		0		
20					. 0		
* 21	15.8	9-2-13	5.0.7.8	• . 	0		
22	1				<u> </u>		
		· · · · · · · · · · · · · · · · · · ·	:	· · · · · · · · · · · · · · · · · · ·	Ú ·		
24	· · ·	1 .	a second s	• •	0 0	· · · · ·	
	• •	1, F			11		and the second
·	· !					· · · · · · · · · · · · · · · · · · ·	
	; 	· · ·					and the second
•	:	1 · · · · ·		ı '	· · ·		
:	• }	1 1		· · · · · · · · · · · · · · · · · · ·			the second s
•	•	· · ·		· · · · · · · · · · · · · · · · · · ·	· · ·		
,		•		· · · · · · · · · · · · · · · · · · ·	- 1		
				· · ·	· · · · · · · · · · · · · · · · · · ·		
				·			
. <u></u>				· · · · · · · · · · · · · · · · · · ·	• 1		
·						1	and the second
		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		
·			<u>+</u>				
				······································			
		·····				F	and the second
÷	·			· · ·			and the second
						·	
- <u></u>					·		And the owner water w
	·					-	
<u> </u>					<u> </u>		
	, 					<u></u>	

* water quality beakers

- // -

Revised 12-30-92

AR 023353

WARTER STREETERS

Test No. 537-6011ent 5AIC

Investigator

and the second second

DAILY RECORD SHEET 24 F (818,97) La/B Temperature beaker 15-2°C Sal. pH S NH3 No. Beaker | Temp. DO 1: !(ppm)!(ppm)!!Emerged : Air !! No. '!(°C) [(ppm)](ppt)]' Comments 11 1.1 1 1 Э 1 3 'h(0 2 ٠ 1 11 1.1 11 ¢ 1 . Or 1 E 1.1 : . ÷ 11 1 1 0 ł 0 11 1 4 ł 1 ł 3 ; • , o L . . 0 6 1 . . I 7 3 1) \mathfrak{O} , , 1 Õ 5 1 Û Ŷ 1 Ů 10 0 11 12 С 15.4 9.0 15.0 8.2 ¥ 13 . . С 9.014.0 8.1 0 * 14 15.5 ١ 1 15 \mathcal{O} 1 ð 16 ! 17 11 0 . . 18 0 Į 0 15.5 9.0 14.0 7.7 1 19 ¥ 000 1.1 <u> صو</u> 15.6 9.1 14.0 7.7 1.1 1 ₩ 21 27 23 C ! i. 1 Ο 1 1 11 24 1 . . : 0 1 T 1 : : 11 Τ 11 1 t • ! 11 1 ł 1.1 ! ! • : ŧ 1.1 I 1 : ; 1 1 1 . 1 1 1 1.1 11 : 1 I 1.1 1 ٠ 2 J 1 1 1 ! . · 1 1 1 1 4.1 • • . . 1 1 1.1 1 1 1 ł . . 1.1 3. 1 1 1 ł 4 5 1 ; 1.1 + 4 ŧ 1 1 1 1 1. i t 1.1 1 ł Ŀ 1 . .

-/2-

K water quality beakers

Revised 12-30-92

Ţ

Test No. 537-601/ent 5/2/C

__Investigator_

Day 8 8.9 977 645

DAILY RECORD SHEET

Temperature beaker 14.8 °C

Beak	er ¦	Temp.	1 00	Sal.	j pił	, S	NH3	No.		· · · · · · · · · · · · · · · · · · ·
No.	1	(20)	(התכם)	<u></u> . (σοτ)	1	י. (ממס)	ן שו ון (תוכים)	Emerged		Comments
1	1				•			0	· · · · · · · · · · · · · · · · · · ·	COMMETICS
2	:		1		:	1			ALL	
3			ł ł			1			OL !!	
					-			0		
				· ·		, 1 ,			1	
						· · · · · ·				
7										
					·		· · · ·			
9										
10					·			<u> </u>	·	
								<u> </u>		
12			1					6		
13		15-1	9.1	150	8-1			·		
14		150	90	15-0	71			6	: •	
14 15				•		· · · · · · · · · · · · · · · · · · ·				
16	· · ·					·		- 8		·····
17	; ,							6		
<u> </u>	•				- #. .					
= 19		1-5-3	9.0	145	6-4	- <u></u>	· · · · · ·			
20	. ·	<u></u>				• .	•			
			9.2	.60	:7.7			<u> </u>		
		150	10	**	<u>- 7 7</u>	;;	· · · · · · · · · · · · · · · · · · ·		· · · · ·	
	·		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				
23							•		_	
24						:			· • • • •	
	• •		! 1			! : • •			1	
	i (—			1	
						;			4.1	
			1		·	i .			· · · ·	
·····	÷ ;					t <u>;</u>			! !!	
	'					:		the second s	: 4	
	•				•				· · · · ·	
	• •						• •	,	8	
					•			· · · · · · · · · · · · · · · · · · ·	- 1	
	: •		:			!			1.1	
	1						. 1		• <u>i</u> •	
	:				,) 1			
	,						1			
		·;	,						· · ·	
								· · · · · · · · · · · · · · · · · · ·		
	: :		·····;		s					
		•			· · · · · · · · · · · · · · · · · · ·		: 			
· · · · · · · · · · · · · · · · · · ·										
							, 			
							·			
									•	
						•				

* water quality beakers

- 13 -

Revised 12-30-92

AR 023355

MARINE AMPHIPOD 10-DAY SOLID PHASE SEDIMENT TEST

Test No. 537-6011ent 5710

Investigator

-74 9 (8/10/97) GTS

DAILY RECORD SHEET

Temperature beaker 150 °C

Beaker	Temp	.; D0	Sal.	рH	S	NH3	No.		1
No.	(2°)	(mag)	(001)	•	(nnm)	(nnm))	Emerged	1 31- 1	Comments
		:	1		'			<u> </u>	Unments
2	: !		1 1		i -			AU:	
उ	1	*	, 1		· {				
			;					OX	
<u> </u>			·						
<u> </u>	······		·					· · · ·	
6	· · · · · · · · · · · · · · · · · · ·		: I		•				
7			· ·		•		O		
5					· · ·		0		
?	· ·		·		•		0		
10									
11		1					Ó		
12	1								
13	15.0	1 4,7 -	11. 7	8.2			<u> </u>		
14	<u></u>	9-2	150	30					
15	()=0	7.1	()	20					
			······································		:		C		
	- <u>· · · · · · · · · · · · · · · · · · ·</u>		· <u>·</u> ··································						
17						1		1	
18	·····								
4 19			150	6-2				N	and the second
20	100		· · · · · · · · · · · · · · · · · · ·			1			
K 21	15-1	9,1	5-0:	78		ŧ.	0		
22			1		· · ·	· !	0	· · · ·	,
_ 23		····		!		1.1			
24	• •		; i			: 1	C		
	1	:	· · · · ·	3				· · · · · · · · · · · · · · · · · · ·	
			:			: 1		: 1	
					:		······································		
		1	· · · ·	!		. !	1	·	
<u> </u>		· ·	: :					·····	
			·	! !					
· · · · ·						• •		: 1	
							·		
		·	:		· · · · · · · · · · · · · · · · · · ·		·		
		· .	, ,			· ,		·	
		:							
	- 19 A			•			:		
	1	:	:	1	:	: !		· · · ·	
		,	· · ·	,		: !	1		
						1 ;			······································
	· · · · · · · · · · · · · · · · · · ·								
								• •	
	: : :					· ·			······································
	:				· · · · · ·			· · ·	
	1 1 2 1 1				•	r • • • •	······································	1 1	
	:					· · ·			
	· · · · · · · · · · · · · · · · · · ·					r • • • •	······································	1 1	
	1 1 2 1 1					· · ·	······································		
	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	······································		

· water quality beakers

- 14 -

Revised 12-30-92

AR 023356

Test No. 534-6011ent 5210

Day 10 (8/11/97) BC/6JT

-1

Temperature beaker 15.7°C

	asiar	;)		<u>' DO</u>	Sal.	- 1		I NUO	·			
0	No.	11	remp.		l (sag) l	pn	; 3	- Ano				
	<u>. 10 .</u> i			<u> mqc </u>			. noom		Emerged	411	11	Comments
	2	· • †		:	1					- CK		· · · · · · · · · · · · · · · · · · ·
	<u>-र्</u> च	1		,	· · · · ·			<u> </u>	·		11	
-					·	·	.					
	4	· ·		•								·
	5			!				•			1.1	
_	_6				·		: <u></u>				0.1	
	7	: •		•		-			0		11	· ·
	5	• •							C			
	<u> </u>			:					0		1.1	
	10				1				0			
	11								0		•	······
	12								0			
E	13		15 1-	9,0	150	4.2	<0.01	2.5'				
	14		15.7	9.0	15.0			2.5				
	15		1217		13.0	9.4	-0.01	<u> </u>	0			
									0			
	/6											
	17								0			
	18			·		···· _··		·	0		. '	
٤_	19		15.7	9.0	16.0	7.8	10.01		0			
	20				<u>.</u>			. :	0		; ;	
ĸ	21	· :	15.8	9.0	16.0	7.7	120.01	<0.2	0		11	
_	22				·		:	•	0		1.1	
	23				•		•		0			
	24		į		: :		:	• • • •	0	_	11	
		t 1	1				1		!		1:	
		. :			1		1	• •			- 1 - 1	
		11	!		1		:	! ! !	!		i!	<u> </u>
			1		• •		1	:			11	
		1.1	:		' i		:				11	
		· ·			· · · ·		:	: : ! !				
					· • · · · · · · · · · · · · · · · · · ·							
								··			• !	
		r .										
					· · · · · · · · · · · · · · · · · · ·					···	: :	
		1 -					<u> </u>				<u>; </u>	
											· · · ·	
			!					• • •				
		4 A					• •		•		1 1	
								1 :	r		1	-
		:	·								• •	
		•			1 T			1			1	
		. •			,		, ,	: 1			1	· · · · · ·
		• •	,		•		(I	• •			1.1	
			· · · ·							<u></u>	1.1	
	····						· · · · · ·					
						<u>.</u>					<u></u>	
	·····	· · · · · ·	·····					· · ·				

* water quality beakers

- 15-

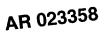
Revised 12-30-92

AR 023357

NORTHWESTERN AQUATIC SCIENCES MARINE AMPHIPOD 10-DAY SOLID PHASE SEDIMENT TEST

PROTOCOL NO. NAS-MXX-RA4

Test No. <u>534-6</u> Client SAIC


Investigator

	D.	AY 10 7	TEST TERMINA	TION	SHEET		
Beaker	Interstit	ial !!	Number of				
No.	<u>''salinity (</u>	- 1 μ - π τ 1	survivors		Number		
/	15.0		20		Reburied		itial
2	15.5	· 1	20		<u>20</u> 20		SJI II
	145		18	<u> </u>	18		<u>GJI </u>
	15.0		19		13		6JI 11
<u> </u>	15.5		15		18		
6	15.5	F 4	19		19	1 1	<u>sc</u> []
7	15.0	1.1	20	1 1	20		6.17
and an	15.0		19		19		$\frac{3C}{6JF}$
	14_0	1	18		18		11 <u>16</u>
	14.0	• •	20		20		
	14.0	::	19	1	14	BC	
12	14.0	÷ :	19	1.4	í 4	<u> </u>	
* 13	·					O(
* 14	·	·····					- !!
15	14.5		20		20	11 6	
	15.0		20	1.1	20		1
	14.5	1.1	20		20		501
/0	14,5	11	13	1.1	18		212 11
	·					C	
	15.0	11	20	11	20	11 B	C 11
		· · · ·					- !!
- 22	15.0	11	20		20	1 8	C
	14.0	۱ <u>۱</u>	20	1	20		è c
	15-0		20		20		
				11		1	11
							i l
; 1		· ·		11		! !	
A REAL PROPERTY AND ADDRESS OF A DESCRIPTION OF A DESCRIP			·	!			
!	- 			1		11	
		<u> </u> 		11			11
1	4	1		* *			
· <u> </u>			·······				<u> </u>
. 1	i					· · ·	
1	1	• •				·	
1	1		·····	[!			
! .	<u> </u>	1	·····	<u> </u>		·	
1		1 1		1.1		!	
		• • •				;	<u> </u>
1	· · · · · · · · · · · · · · · · · · ·	11	······································	1.1			· · · · · · · · · · · · · · · · · · ·
1	_	1		2.1		?	
		· !		1.1		<u>.</u> !	<u> </u>
		11		11		:	
						•	<u> </u>
		н н н н					<u> </u>
		: :	·····	a			
4. A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A		: •		. ,	· · · · · · · · · · · · · · · · · · ·	r	
		+ I	**************************************	• 1			
						·	!

* water quality beakers

-16-

Revised 12-30-92

Marine Amphipod Test Randomization Key

NAS CLIENT	
BKR SMPL DESCRIP	REPL
15 icontrol Icontrol	1
20 control icontrol	1 2 3 4
11 control control	3
10 control control	4
16 control control	5
21 control control	6
318670E 1C1	1
2318670E C1	2
2418670E C1	1 2 3 4 5 6
1818670E IC1	4
2218670E C1	5
* 1918670E C1	6
718671E C2	1
1718671E C2	· 2
418671E C2	3
12 8671E C2	4
9 8671E C2	5
¥ 1418671E C2	1 2 3 4 5 6
8 8672E CARR4	1
1 8672E CARR4	1 2 3 4
618672E CARR4	3
518672E CARR4	4
2 8672E CARR4	5
* 1318672E CARR4	.6

* water quality beakers.

- 17-

7/25/97

urnoer 534-e

Ampilipod Teel

Ì														<u>n</u> :		1	1 1	55	ŝ.		T			. .		İ				.	;
														7	<u> </u>	╀		0	ŝ		╀							.		<u>,</u>	:
											,	e ·	0				0	0				-		•			. (.		
	• •		i	•	1 ,		ı :						0,	0		T	100 0	00		1	1			10	(: ;). u r	2	
		į	•	;		:	1	į					2.2	<u>.</u>		$\frac{1}{1}$		5	1 0 1		\dagger						1				
ł			 ! 	:			:	 !				0 66		1	1			- <u></u>	-0-	1	+					+			 	 	
			!	; 	<u>:</u>	•	1	:				0.0		0	:	+-		0.0			+		10	20		+				 	
		Ì	į	i	i 	į	: †				;		• •		:				;	:			÷	;	ļ		-	1	-		
	:	:	!	!			•	I		_				:			0	, , , ;	•				0	•	,		· 4) 	ļ	
		:		•			:						7:4 31				10	-		:			10	2							
			•	i	ę				FILM	-		1	0:4 5:	n.			14 6	•	νΩ.				0.5	ю.						1	
こ [•										2:	:			Méan	<u>os</u> :	<u>c</u>			Maan	so_	c	:			SD	c	i i	ļ
Calculations				:		URV		į	DTELL	12		5.0 5.0	5.0	510				0.0						0				0.9	10.01	00	1
Calc	≿ı	Ning				BURYAS	1)											010			0.0	00	5	0	0.0	00		00	0.0	0.0	
and		e reburying				10N)00	EMAN	 					:					0,0			-	:		i 01	01		:		10		
	ORT +h	hipode	C IZ	(LINV)	VSURV	nied=10	= 100(T		VCII IBD				315		:		•	8		· ·	18	18	9	2	<u></u>	100	15	18	18	5	
uata Entry	effective monality=MORT number of amphipods	RV=number of surviving emphypode BUR=number of surviving emphypode	SURVA	AORT = % mortality= 100(MORT // //T)	=%reburiel=100(REBUR/SURV)	OBURY=%survivors not reburied=100(NOBURY/SU	effective mortality= 100(TEM/NIT)		PSURVPMORT									0.9						2.0				2.0			
Endpoints	Ne mor	of surviv	al=100	ality=10	al=100	Nivore	eclive r		Valuso							00.00	100.0	100 0			l≘	100.0	05.0	92.0	0.00	95.0	100.0	95.0	0.00	100.0	
	I allactive	unber o	Xaurviv	%morts	Kreburi	lıs%,≃Υ	A=%total ef	_	TEM 5	ľ	1	•		, c	2	7	•					·	2	-	177	┢	0			0	
	EM=total	REBUR-IN	SURV=	MORT=	BURY=	NOBUR	TEM=%		NOBURY	e		510		1		0	0		510		0	0	-	0	0	6		0	0	0	
ľ	<u>- z</u> :	<u>(0:02</u>	ЦR Р	<u>a</u> . 1	<u>م</u> :		ι.	1	MORT		510				1		0	<u>.</u>	410		0	0	 .		7	╞		-	2	•	
ľ		1 -	/-REBU					,	REBURIN		2.5	ç	212	18			50				20	2	18	<u>919</u>	- 8:	100	20	10	8	8	
		ęq	d=SUR	•alinity			1	!	SURVR	ľ			20	20	1	₽.	20	2,\$		1	20	20	6	<u>e i</u>		5	20	19	8	50	
			reburie	i water	:		:		FINAL W PP1	-				20		115		0 · v 2 : 7	15.0		15.0		15.0		5 1	15.0	15.0		15.5	15.5	
		T-SUR	ors not	erstitio				1		_	10	2	22	2	20	20	20		202	2	2	2	2			12	50	20	2	2	ຊ
	MVOL		BUIVIN	<u>γ</u> 10 ini				:	ISEPI	Ľ		1. 67	• •	<u>م</u>	.00	-	210	<u>م</u> ارد			-	7	.	.	0	Ī	3	5	-	5	6
	SURV=number sur	MORT = number dead=INIT-SURV	=number	FINAL NV PPT=day 10 interstitial water ealinity		,			CLIENT DESCRIP		ontrol	ontrol	control	ontrol	ontrol						5	2	5:0		3:5	CARR4	CARR4	ARR4	CARRI	CARR4	CARRI
		DRT=m	DBURY	MAL IW	<u> </u>				NAS C	Ť.						-				_				~	0671E C	T	tu				
	<u>_</u> .0.1	<u>r r</u>	ž	.					EKR SW						21 60		00 67			19 86	7 86	17 86				198 8		0 86720	98.5		13 88/
									IDEX	1																1				- 1	

Data entry verified against dench sheets - Milk 8-19-97.

8/18/97

Emergence Data

	Emerge	ence L	ata	riie				
NAS	CLIENT	i 1	i		TOTAL			
NDEXIBKR SMPL	DESCRIP	IREPL D	AY IE	EMERG	EMERG			
11 15 control	control	1	11	01				· · ·
11 15icontrol	control	1	2!	· 0				Dataen reifie againe bench shuts -MSR 5-20-
1 15icontrol	icontrol	1	31	01		1		verfield
11 15 control	control	1	4	0				againe
11 15 control	control	1	51	0				linch
11 15 control	'control	11	6	0				sent + a
1 15icontrol	'control	11	71	0				shure
11 15icontrol	control	11	81	0				-mil
11 15icontrol	control	11	91	0				5-21-
11 15icontrol	control	1	101	0	0			
21 20 icontrol	control	21	11	0				
2! 201control	the second s	21	21	0	1			
21 201control	control	21	3	0	1			
21 201control	control	21	41	0				
21 201control	control	2!	51	0	1			
2! 20 control	control	2	61	0				
21 201control	control	21	71	0	1	1		
21 201control	control	2	81	0	1			
2 201control	control	2	91	0				
21 201control	control	21	101	0				
3 11 control	control	31	11	0				
3 11 control	control	3	2	0				
3 11 control	control	31	31	0				
3 11 control	control	3	4	0				
3 11 control	control	31	51	0				
3 11 control	control	3	6	0	<u>. </u>			
3 11 control	control	31	71	0				· ·
3 11 control	control	3	8	0	<u></u>			
and the second	control	3	91	0				
	control	31	101	0		1		
	control	4	11	0			i1	
41 10/control		4	21	0		1	;	
4 10 control		4	3	0	<u> </u>	<u>.</u>		
4 10 control						<u> </u>		
4 10/control		4	4	0	and the second se	1		1
4 10 control		41	61	0	and the second se			
4 10'control	control	4	71			<u> </u>		
41 10 centrol			8	C		1	1	
4 10 control	control	4	_		the second s	<u> </u>		
4 101control	control	4	91					
4 101control	control	4	101			<u>' </u>	+	
5 16 Icontrol	control	51				<u>!</u>	<u> </u>	
5i 161control	control	5	2)	1	00	ł
5 161control	control	5	31)	Mean	0.0	
5i 16icontrol	control	: 51	4)	SD	0.0	
5i 161control	control	· 5i	5)	<u> n</u>	5	1
5i 161control	-controi	51	51)		ļ	4
5 16 control	control	51	71		01		 	ł
5i 16icontrol	control	5	18)	1	1	

tuy D it

- ,9 -

Test number 534-6

Emergence Data

8/20/97_

	NAS	<u>OCIENT</u>	1	1		TOTAL	1	<u> </u>
INDEXI	BKR SMPL	DESCRIP	REPL	DAY	EMERG	EMERG	1	1
51	16!control	control	1 5	1 9	0		1	1
51	16 control	control	5	i 10	0	0	1	Ì
71	318670E	;C1	1 1	1	0		1	1
71	318670E	C1	1					
71	3!8670E	C1	<u>i 1</u>	3	4			1
71	3:8670E	C1	<u> </u> 1				1	
71	318670E	C1	<u> 1</u>					1
71	318670E	C1	1		01		i	
7	3:8670E	.C1	1		01			
7.1	318670E		1		01			
71	318670E		1		01			
71	31867CE		1		01	5	1	
81	2318670E		2		1			
81	2318670E	where a second is a set of second second	2		2			1
18	2318670E	'C1	2		01			
81	2318670E	C1	2		01			
81	2318670E	C1	2	51	01			l
81	2318670E	C1	2	6	01			
8!	2318670E	C1	2		0			
81	2318670E	C1	21	8	01			1
81	2318670E	C1	21	91	01			
81	2318670E	C1	2	101	01	31		
91	2418670E	C1	3	1!	0			
91	2418670E	<u>iC1 i</u>		21	0			
91	2418670E	<u> C1 </u>	31	3	11			
91	2418670E	C1	3	4	01			
91	2418670E	<u>C1</u>	31	5	0			
91	2418670E	<u>C1</u>	31	61	01			
91	2418670E	<u>C1</u>	31	71	01			
<u>- 9i</u>	2418670E	C1	31	81	01			
	2418670E 2418670E	C1 + C1	31	91	01			
			31	101	01	11		
<u> </u>	1318670E	.C1	41	1!	01			
101	18:8670E	C1	4	21	2			
101	1818670E	C1	4	3	21			
101	1818670E 1818670E	C1	4	41	2			ļ
101	1818670E	C1 I	41	5	01		· · · · · ·	
10/	1818670E	·C1	4	61				
101	1818670E	C1	41	71 81	01			┼───┤
101	1818670E	101	41		01			
101	18/8670E	C1	41	101				
111	22:3670E	C1 1	51		01	61	<u> </u>	
11	22.857CE	01		1:	01			
111	22:8570E	C1	5	2!	01			$\left - \right $
11!	22.5670E	C1 i	51 5i	31	01		Mean	3.0
111	22:8670E	C1 :		4 51	01		SD	2.5
11	22:0070E	C1	51		01		n	5
	22:8876E		51	<u>- 8!</u> 7:	01			<u> </u>
	22.2570E	C1	51			i		
· · · ·	<u></u>	<u> </u>		81	01	. <u> </u>		<u> </u>

-- 20 ---

Emergence Data

8/20/97_ .

	NAS	CLIENT	1	i		TOTAL		<u> </u>
INDEXI	BKR SMPL	DESCRIP					l	+
·	22!8670E	1C1					1	1
111	22!8670E		<u> · 5</u>				1	
			5				1	<u> </u>
131	7 8671E	C2	1					1
131	718671E	C2	1		0			
13!	718671E	C2	1	_	0			
13	7 8671E	C2	1	4	0	1		
13	718671E	1 C2	1	5	0	1		1
131	7'8671E	C2	i 1	6	0	1		
13	7'8671E	C2	1	7	0	1		· ·
131	7:8671E	C2	1	8	0	1		1
131	7 8671E	C2	1 1	91				1
131	718671E	°C2	1 1	101				1
14	1718671E	C2	2		1			<u>i</u>
14:	17:8671E	1C2	2					1
14	17 8671E	C2	2		_		<u> </u>	<u> </u>
141	17:8671E		2			·	1	<u> </u>
								1
14	17:8671E	C2	2					<u> </u>
141	17:8671E	<u> C2</u>	2	6	0			ļ
141	17:8671E	C2	2	7				
141	1718671E	C2	2	8	0			ļ
141	17!8671E	C2	2	9	0			
14	17:8671E	C2	2!	101	0	2		
15i	4:8671E	C2	31	1	0			
151	418671E	C2	31	21	1			
15	418671E	C2	3	31	0			
151	418671E	C2	31	41	2	x		
15	418671E	C2	3	51	. 0			
· 15i	418671E	C2	31	6	0			
151	4:8671E	C2	3	71	0			
15	418671E	C2	31	81	0			
151	418671E	C2	31		0			1
15	418671E	C2	31	101	0		<u> </u>	
161	12!8671E	.C2	4	11	3			
		C2						<u> </u>
161	12:8671E	iC2	4	2! 31	4			
161	12:8671E		4		0			
161	12:8671E	C2	4	4	2			<u> </u>
16!	12:8671E	C2	4	5	2			1
161	1218671E	C2	4	61	0			
161	1218671E	C2	4		0			
161	1218671E	C2	41	. 81	0			
161	1218671E	C2	4	91	0			
161	12:8671E	C2	41	10	0	111		
171	918671E	C2	51	11	01	1		
17!	9 2671E	C2	51	2!	31			
171	918671E	C2	51	3!	2		Mean	4.2
171	9:2671E	C2 1	51	41	01		SD	4.2
17:	9-8671E	C2	51	51	01		n	5
171	918671E	C2	51		01			
17:	2+2671E	C2	51	71				,
171	9:8671E				01			[
	5:5D: E	C2	51	81	C	•		· •

- 21 -

8/20/97

	NAS	CLIENT	.		1	TOTAL	1	1 .
the second s	BKRSSMPL	DESCRIP	IREPL	DAY	EMERG	EMERG	†	<u> </u>
171	918671E	C2	1 51	9		_		
171	918671E	·C2	1 51	10			 51	
191	318672E	CARR4	1 1	1		_		
191	318672E	CARR4	1	2				
19	318672E	CARR4	1	31				
191	318672E	CARR4	1	4				
191	318672E	CARR4	1	51				
191	3/8672E	CARR4	11	61			<u> </u>	
191	318672E		11	71		· •		
191	818672E		· 11		01		1	
191	318672E		1	91	. 01			_
191	9:8672E	CARR4		_	0		<u> </u>	
201	1:8672E	CARR4		101	01	0	1	
201	1;8672E	CARR4	2!	11	Oi		<u> </u>	
201	1'8572E	CARR4 CARR4	21	21	01			1
201	1-8672E	CARR4	2!	31	01			1
201	1:3672E	CARR4	21	41	01		ļ	
201	1/8672E	CARR4	2!	51	01			1
201	1/8672E	CARR4	21	61	01			
201	118672E	CARR4	2	71	01			
201	1!86725	CARR4	21	81	0			
20!	1/8672E	CARR4	21	91	01			
211	618672E	CARR4	21	101	01	01		_ <u></u>
21	618672E	CARR4	31	11	01			
211	618672E	CARR4	31	2!	01			
211	618672E	CARR4	31	31	01			
211	6/8672E	CARR4	31	4	0			
211	618672E		31	5	0			1
211	6!8672E	CARR4	31	6	0			
211	618672E	CARR4	31	7	0			
211	618672E	CARR4	31	81	0			
211	- 518672E	CARR4	31	91	01			
221	518672E		31	101	01	01		
221	518672E	CARR4	· 41		01			
22	518672E	CARR4	41	2!	01			
221	518672E	CARR4	4	31	01			
221	516672E	CARR4	4	4	01			
22!	5:8672E	CARR4	4	51	01	1		1
22	5;8672E	CARR4	41	61	01			
22	5:8672E	CARR4	41	71	01			
221	5:8672E		4	91	01			ļ
221		CARR4		91	01			
	5:8672E	CARR4	41	101	01	01		
231	2:8672E		51	11	01	i		
23	218672E	CARR4	5i	21	01	!		
231	2 3672E	CARR4	51	31	01	1	Mean	0.0
23:	2-3672E	CARR4	51	4!	01		SD	0.0
23	2'8672E	CARR4	51	51	01	Ir		5
22:	2.38725	CARR4	5;	61	01	1		
23:	218872E	CARR4	51	71	01	i		
23	C 9672E	CARR4	51	81	01			

-- 22 --

			NAS	CLIENT					TOTAL	1
INDEX	BK	२	SMPL	DESCRIP	REPL	DAY		EMERG	EMERG	 <u> </u>
23		2	8672E	CARR4	5		91	0	1	 <u> </u>
23		2	8672E	CARR4	5	1(o	0	i o	

- 23 -

Test No. 534-6

Marine Amphiood Test

8/20/97-

	Wat	er Qu	ality	Data					
NAS	CLIENT	1			;			- 1	
BKR SMPL	DESCRIP	REPL I	DAY	TEMP	DO	SAL	cH !	S	NH
1318672E	CARR4	61	01	15.1			· · · · ·	<0.01	
1418671E	C2	1 61	01					<0.01	
1918670E	:C1	61	01					< 0.01	
21 Icontrol	control	61	01	the second s				< 0.01	_
13/8672E	CARR4	61	11						<0
1419671E	1C2	51	11						·
1918670E	C1	61	11	15.4					
21 control	control	61	1	15.3					
13 8672E	CARR4	61	2!	15.3					
1418671E	C2	1 61	21	15.31					
1918670E	- <u></u>	61	21	15.31	<u>9.01</u> 8.91				
21 control		51	21	15.31		15.01			
1318672E	CARR4		3!	15.4		15.01	.7.81	!	
1418671E	C2	51	31		9.11	16.01	10.6		
1918670E	·C1	6	16	15.2	_	15.01	7 31		
21'control					9.2!	15.01	6.91		
1318672E		61	31	15.2	9.3!	15.51	7.81		
	CARR4	61	41	15.71	8.61	15.01	8.01		
1418671E	C2	61	41	15.71	8.61	15.01	7.41		
1918670E	<u>C1</u>	6	41	15.8	8.61	15.01	7.01		
	control	61	4	15.71	3.71	15.0	7.71	i	
13 8672E	CARR4	61	51	16.31	9.21	15.01	8.11		
1418671E	C2	61	51	16.2	9.3	15.0	7.51		
1918670E	:C1	61	5	16.11	9.2	15.01	7.0		
21 control	control	61	51	16.01	9.41	15.01	7.71		
1318672E	CARR4	6	6	15.91	9.2!	15.5	3.1	1	
1418671E	C2	5	61	15.91	9.21	15.01	7.21		
1918670E	<u> C1</u>	6	6	15.91	9.21	15.01	6.71		
21 control	control	61	61	15.81	9.21	15.0	7.81	·i	
1318672E	CARR4	6!	71	15.4	9.01	15.01	8.2		
1418671E	(C2	6	71	15.51	9.01	14.01	8.11		
1918670E	iC1	6	71	15.51	9.01	14 0	7.71		
21 control	controi	61	71	15.61	9.11	14.01	7.71		
13:8672E	CARR4	61	3!	15.11	9.11	15.01	8.11		
14:8671E	C2	61	3!	15.01	9.01	15.0	7.11	i	
1918670E	C1	61	-16	15.31	9.01	14.5	6.4		
21 control	control	61	81	15.01	9.21	15.0	7.7		
1318672E	CARR4	61	91	15.0	9.21	16.01			
1418671E	C2	61	91	15.01	9,11	15.01	8.21		
19:8670E	C1	61	91	15.0			7.01		
21 icontrol	control	61		15.11	9.01	15.01	6.21		,
13:8672E	CARR4	61			9.11	15.01	7.81		
14:8671E	CARR4		101	15.6	9.01	15.01		<0.011	2.
19:8670E	C1	61	101	15.7	9.01	15.01		<0.011	2.
		<u>6i</u>	10!	15.71	9.01	16.01		<0.011	0.
	control	<u> </u>	10	15.8	<u> </u>	16.01		<0.01	<0.
				15.5			!	<u> </u>	
			ean :	15.5	9.1	15.01	7.61	<u> </u>	
		SE		<u> </u>	0.2!	0.41	0.51	i	
		<u> </u>		141	441	441	441	81	{
	· · · · · · · · · · · · · · · · · · ·	Ma		16.3	9.4	16.01		<0.011	2.:
		Mi	n	15.01	3.6	14 0)	2 71	<0.011	<0.1

st. Entry nfi-d against 26 benci sheet 8/22/97 JRF

-24-

CUSTODY SEAL 02 Person Collecting Sample Sample No. Date Collected _ Time Collected CUSTODY SEAL Person Collecting Sample _ Sample No. Date Collected __ Time Collected _ SAIC Received 7.22-97 11:30 Z

-26-

SEDIMENT CHARACTERIZATION FOR THE HAMM CREEK RESTORATION PROJECT

DUWAMISH TURNING BASIN SEATTLE, WASHINGTON

VOL. 2/2

September 12, 1997

Prepared for:

U.S. Army Corps of Engineers Seattle District 4735 East Marginal Way South Seattle, Washington 98124-2255

Prepared by

Science Applications International Corporation Environmental Sciences Division 18706 North Creek Parkway, Suite 110 Bothell, Washington 98011

Reference Toxicant Test

-27-

Start Date:	3/1/97 15	-70	Test ID:	Acute 96-hr Toxicity Tes 999-783		<u>)</u>
End Date: Tiple Date: Timerits:	8/5/97 16		Lab ID:	CRNAS-Northwestern Aquation EPAA 91-EPA Acute	Sample : <u>D:</u> Sample Type: Test Species:	REF-Ref Toxicant CDCL-Cadmium chloride EE-Eohaustorius estuanus
Jone-ma/L	1	2				
D-Control	1.0000	1.0000				
0.1	1.0000	1.0000		·		
0.3	1.0000	1.0000				
1	1.0000	1.0000				
3	0.7000	0.8000				
10	0.2000	0.1000				

Cara		-	ī	ansíom:	Arcsin So	uare Roo	t		
<u>Conc-ma/L</u>	Mean	N-Mean	Mean	Min	Max	CV%	N	 Number	Totai
D-Control	1.0000	1.0000	1,4120	1.4120	1.4120	the second s		 Resp	Number
0.1	1.0000	1.0000	1.4120			0.000	2	0	20
0.3	1.0000	- +		1.4120	1.4120	0.000	2	Ō	20
0.0	_	1.0000	1.4120	1.4120	1.4120	0.000	2		
	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	U	20
3	0.7500	0.7500	1.0492	0.9912	1,1071	7.818	2	0	20
10	0.1500	0.1500	0.3927	0.3218			4	5	20
			0.0027	0.0210	0.4636	25.550	2	17	20

•		Statistic	Critical	<u></u>
	ormality of the data set cannot be confirmed		Cinical	Skew Kurt
-				
	Equatity of variance cannot be confirmed			

noto-				M	aximum Likeliho	od-Probit					·
neter	Value	SE		icial Limits		Chi-Sq		P-value	Mu	51	
3	3.50738	0.74292			0	0.23705		0.97		Sigma	Iter
Intercept	2.57534	0.5437	1.50969	3.641			11.0443	0.97	0.6913	0.28511	3
TACR						10					
int	Probits	ma/L	95% Fidu	cial Limits		1.0 -			17	\sim	
EC01	2.574	1.06667		1.75318		0.9 -					
EC05	3.355	1.66852	0.73759			1			14 /		
1.10	3.718	2.11794	1.08491	2.98342		0.8 -			/		
15	3,964	2.48771	1.39898	3.41331		0.7 -			/	·	
EC20		2.32712	1.70333					1	///		-
EC25		-		3.81864		0.6		/	17	4	
E 40			2.00662	4.22554		2 0.5			[]		
EU50	5,000	101210	2.94431	5.61737		19		/ /			
:C30	<u> </u>	4 91248		6.84505		₽ ^{0,4} -			/		
75			4.33678	8.5202		0.3		- ///		- N	
20		7.64903	5.6595	12.7349				/			
_			6.23203	15.0763		0.2 -		- 1/ T/			
C35	5.036	9.70066	6.94184	18.4362		0.1					
01)	6.282	11.3943	7.91116	23.8664		0.1]		/ //			
< 35	6.645			35.2351		0.0 🖕		L			
<u> </u>		22.5242		74.1145		0.1		1	10	100	
				14.1140				Dose mg		100	
									سد دو		

ToxCalc v5.0.15N

-28-

			-hr Toxicity Test				Test ID: 9		
			ustonus estuanu	s			Protocol:	EPAA 91-EP	A Acute
Sample ID: REF-Ref Toxicant							Sample T	ype: CDCL-C	admium chloride
Start Date: 8/1/97 15:20 End Date: 8/5/97 16:50								western Aquatic Sciences	
Pos	ID	Rep	Group	Start	24 Hr	48 Hr	72 Hr	96 Hr	Notes
	1	111	D-Controll	10			1	10	
	2	2	D-Control	10				10	·······
	3	1	0.100	10		1	1	101	
	4	2	0.100	101				10	
	5	11	0.3001	101			1	101	······································
	6	21	0.3001	101				10	
	7	11	1.000	10	_			10	
.	8	2	1.000	10				10	······································
	9	1	3.0001	10				71	
	10	21	3.000	101			}	81	
	11		10.000	10				21	
	12	2	10.0001	101				1	

Comments:

ToxCalc 5.0.15N

-29-

AR 023371

NORTHWESTERN AQUATIC SCIENCES

Toxicity Test Report Sediment Larval Bioassay

An Employee-Owned Company

TOXICITY TEST REPORT

TEST IDENTIFICATION

<u>Test No.</u>: 534-5

<u>Title</u>: Toxicity of estuarine sediments using sand dollar, *Dendraster excentricus*, larval sediment bioassay.

<u>Protocol</u>: Recommended Guidelines for Conducting Laboratory Bioassays on Puget Sound Sediments (PSEP 1995), with modifications as specified by the Puget Sound Dredged Disposal Analysis Program, the Sampling and Analysis Plan for the Hamm Creek Restoration Project, and the SAIC statement of work.

STUDY MANAGEMENT

Study Sponsor: SAIC, 18706 N. Creek Parkway, Suite 110, Bothell, Washington 98011.

Sponsor's Study Monitor: Ms. Lisa Roach

Testing Laboratory: Northwestern Aquatic Sciences, P.O. Box 1437, Newport, Oregon 97365.

Test Location: Newport Laboratory.

Laboratory's Study Personnel: M.S. Redmond, M.S., Proj. Mngr./Study Dir.; L.K. Nemeth, B.A., QA Officer; R.S. Caldwell, Ph.D., Tox. Mngr.; G.A. Buhler, B.S., Aq. Toxicol.; G.J. Irissarri, B.S., Aq. Toxicol.

Study Schedule:

Test Beginning: 7-31-97, 8:00 p.m.

Test Ending: 8-3-97, 11:00 a.m.

- Disposition of Study Records: All specimens, raw data, reports and other study records are stored according to Good Laboratory Practice regulations at Northwestern Aquatic Sciences, 334 S.W. 7th Street, Suite B, Newport, OR 97365.
- <u>Good Laboratory Practices</u>: The test was conducted following the principles of Good Laboratory Practices (GLP) as defined in the EPA/TSCA Good Laboratory Practice regulations revised August 17, 1989. (40 CFR Part 792).
- Statement of Quality Assurance: The test data were reviewed by the Quality Assurance Unit to assure that the study was performed in accordance with the protocol and standard operating procedures. This report is an accurate reflection of the raw data.

TEST MATERIAL

<u>Test Sediments</u>: Sediment samples from Hamm Creek, Duwamish Waterway, Washington. Details are as follows:

NAS Sample No.	8670E	8671E	8672E
Description	C1	C2	CARR4
Collection Date	6-16-97	6-16-97	7-17-97
Receipt Date	7-22-97	7-22-97	7-22-97
Interstitial Salinity (ppt)		2.0	29.0

Test No 534-5

- 1 -

Storage: Stored at 4°C in the dark in a capped container until used. 8672E was stored under nitrogen; 8670E and 8671E were packed with no headspace.

<u>Treatments</u>: Each sample was thoroughly homogenized and aliquots were weighed for use in this test. Additional aliquots were distributed to the appropriate beakers

for test 534-6. Samples were taken for ammonia and sulfide analyses. The ammonia and sulfide subsamples were refrigerated, and then shipped cold under chain-of-custody to AmTest, Inc.

TEST WATER

Source: Yaquina Bay, Oregon

Date of Collection: 7-31-97

Water Ouality: Salinity 28.0 ppt; pH 7.9.

<u>Pretreatment</u>: Filtered to ≤0.40 µm, aerated, salinity adjusted using Milli-Q[®] deionized water.

TEST ORGANISMS

Species: Sand dollars, Dendraster excentricus

Age: 2.0 hr post-fertilization

<u>Source</u>: Purchased from Marinus, Inc., Long Beach, California, received 7-30-97. <u>Acclimation</u>: Adults were held overnight in the shipping carton, then used directly

from the box for spawning.

Source of Gametes: 29 females and 5 males.

TEST PROCEDURES AND CONDITIONS

The following is an abbreviated statement of the test procedures and a statement of the test conditions actually employed. Refer to the test protocols cited above for a more detailed description of the test procedures used in this study.

Test Chambers: 1 L borosilicate glass beakers.

<u>Test Volumes</u>: 18 g of test sediment brought up to a final volume of 900 ml with test water.

<u>Replicates/Treatment</u>: 5 (plus a 6th water quality replicate).

Sediment Salinity Adjustment: None required.

Initial Concentration of Test Organisms: 25.8/ml

Water Volume Changes per 24 hr: None (non-renewal static test).

Volume of Subsamples Taken for Counting: 10 ml

Aeration: Yes

Feeding: None.

<u>Acceptance Criteria</u>: The percent normal in the seawater control must be \geq 70%.

Effects Criteria: The effects criteria used were: 1) mortality; 2) abnormal development; and 3) the combined mortality/abnormality endpoint. Data collected were: 1) the initial embryo density; 2) the number of abnormal larvae observed; and 3) the number of normal pluteus larvae observed. The results were expressed as percent combined mortality/abnormality and percent mortality, both normalized against the seawater control. The raw data also include the following endpoints not normalized to the seawater control, which are not summarized in this report: 1) percent abnormal, 2) percent combined mortality and abnormality, and 3) percent mortality. Water Quality and Other Test Conditions: The temperature, dissolved oxygen, salinity, and pH were measured in seperate water quality replicates on days 0, 1, 2 and 3 of the test. Total sulfide and ammonia-N were measured, using Hach test kits, at the beginning and end of the test, also in the overlying water of the water quality replicate. Sulfide and ammonia-N analyses were by the methylene blue (EPA Method 376.2) and salicylate (Clin. Chim. Acta 14:403, 1966) colorimetric methods, respectively. Samples were not distilled prior to analysis. The photoperiod was 14:10 hr, L:D.

DATA ANALYSIS METHODS

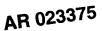
Prior to issuance of the July 1995 revision of the PSEP recommended guidelines for conducting laboratory bioassays, no specific guidance was given for the computation of endpoints. All three standard endpoints - percent abnormal, percent combined mortality/abnormality, and percent mortality - have occasionally been computed both with, and without, normalization for the seawater control. All endpoints given in this report are normalized for the seawater control. However, in order to be consistent with what we assume to be the historical format, the non-normalized endpoints were computed and are included in the raw data computer printouts (Appendix II). The formulas employed for each of these computations are as follows:

PABN (percent abnormality) = 100 (A/T) PABND (combined percent mortality/abnormality) = 100 ((I-N)/I) PMORT (percent mortality) = 100 ((I-T)/I) NPM (normalized percent mortality) = 100 (1-(T-TS)) NCMA (normalized combined percent mortality/abnormality) = 100 (1-(N/NS))

where the following are counts per 10 mL subsample:

N = normal larvae counted
A = abnormal larvae counted
T = N+A = total larvae counted
I = number of inoculated embryos (from average of zero time counts)
TS = average of total larvae counted in seawater controls
NS = average of normal larvae counted in seawater controls

Means and standard deviations for the biological endpoints described above and for water quality data were computed using Microsoft Excel Ver.5.0. No statistical comparisons between samples were performed.


PROTOCOL DEVIATIONS None.

REFERENCE TOXICANT TEST

The reference toxicant test is a standard multi-concentration toxicity test using cadmium, as $CdCl_2-2.5H_20$, to evaluate the performance of the test organisms used in the sediment toxicity test. The performance is evaluated by comparing the results of this test with historical results obtained at the laboratory.

Test No 534-5

- 3 -

Test No.: 999-782

Reference Toxicant and Source: CdCl₂-2.5H₂0 (Mallinckrodt Lot #TNZ), 1.0 mg/mL stock solution prepared 7-16-97.

- Test Date: 7-31-97
- Dilution Water Used: Filtered (0.4 μ M) Yaquina Bay, Oregon seawater, salinity: 28.0 ppt; pH 7.9.

Result: 48-hr EC50, 8.13 mg/L Cd. This result is within the laboratory's control chart warning limits (5.15 to 12.3 mg/L).

RESULTS

The water quality data are summarized in Table 1. A detailed tabulation of the water quality results by sample and date can be found in Appendix II. All water quality measurements of temperature, dissolved oxygen, salinity, and pH were within the protocol specified ranges. Sulfides were not detected in any of the test vessels (detection limit, 0.01 mg/L) either at the beginning or end of the test. Ammonia-N ranged from <0.1 mg/L to a maximum of 0.3 mg/L.

A total of 10 test replicate subsamples were recounted (QC counts) by a second investigator as a check on the acceptability of the initial counts (Appendix II). In all instances the QC counts were close (coefficients of variance from 0 to 6 for counts of normal larvae) to the initial counts and were considered acceptable.

The test was considered to be acceptable because 76.7% of the innoculated embryos (25.8/ml based on average counts of zero time samples) produced normal pluteus larvae in the seawater controls. This exceeds the test acceptance criterion of \geq 70% as specified in the protocol. In addition, the results of the reference toxicant test were acceptable compared with the laboratory's historical data for this species.

The means and standard deviations of the biological endpoint responses for each test sediment are summarized in Table 2. Detailed data, including the initial counts and the computed endpoint values for individual replicates are given in Appendix II. Since no statistical comparisons were performed between treatments and the control, no conclusions are given regarding toxicity of test sediments.

STUDY APPROVAL

8/27/97 Date

10. Manager/Study Director

.2697 Quality Assurance Unit Date

8/27/9

Toxicology Manager

Date

Test No 534-5

Parameter	Mean ± SD	Minimum	Maximum	N
Temperature (*C)	15.6 ± 0.3	15.1	16.0	16
Dissolved Oxygen (mg/L)	8.2 ± 0.2	8.0	8.4	16
Salinity (ppt)	28.1 ± 0.5	27.5	29.0	16
pH	7.9 ± 0.1	7.7	8.0	16
Total Sulfide (mg/L)		<0.01	<0.01	8
Total Ammonia-N (mg/L)		<0.1	0.3	8

Table 1. Summary of water quality conditions during the tests of sand dollar, *Dendraster excentricus*, larvae exposed to estuarine sediments.

Table 2. Means and standard deviations (n=5) of responses of sand dollar, *Dendraster excentricus*, larvae exposed to estuarine sediments. Endpoints are normalized to the seawater control.

Sample Description	Percent Mortality	Percent Combined Abnormal & Dead
Seawater Control	0.0 ± 4.9	0.0 ± 7.4
CARR4 (NAS # 8672E)	-2.8 ± 4.7	-10.2 ± 7.0
C1 (NAS # 8670E)	22.5 ± 3.7	43.5 ± 8.3
C2 (NAS # 8671E)	30.0 ± 8.7	33.8 ± 9.2

Test No 534-5

Organic Compounds

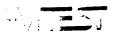
The following documentation is needed for organic compounds:

- A cover letter referencing or describing the procedure used and discussing any analytical problems
- Reconstructed ion chromatograms for GC/MS analyses for each sample
- Mass spectra of detected target compounds (GC/MS) for each sample and associated library spectra
- GC/ECD and/or GC/flame ionization detection chromatograms for each sample
- Raw data quantification reports for each sample
- A calibration data summary reporting calibration range used [and decafluorotriphenylphosphine (DFTPP) and bromofluorobenzene (BFB) spectra and quantification report for GC/MS analyses]
- Final dilution volumes, sample size, wet-to-dry ratios, and instrument detection limit
- Analyte concentrations with reporting units identified (to two significant figures unless otherwise justified)
- Quantification of all analytes in method blanks (ng/sample)
- Method blanks associated with each sample
- Recovery assessments and a replicate sample summary (laboratorics should report all surrogate spike recovery data for each sample: a statement of the range of recoveries should be included in reports using these data)
- Data gualification codes and their definitions
- Prototype sampling and analysis plan provided by David Fox. U.S. Army Corps of Engineers on 7 August 1991.
- For batches of 5 samples or less, the minimum QA checks should be a blank and the analysis of a CRM (and matrix spikes for any analytes not certified in the CRM). In general, the priority of QA checks for batches of \leq 5 samples should be as follows: CRM > analytical replicate > matrix spikes.
- ^d PSEP control limit.

ħ

c

Control limits based on PSDDA Chemistry QA/QC and Streamlining Workshop held 24 January 1991. U.S. Army Corps of Engineers. Seattle District


- Checklists adopted from PSDDA guidance manual: PTI, 1989. -

SEDIMENT CHEMISTRY DATA

An Employee-Owned Company

AR 023379

July 14, 1997

SAIC 18706 North Creek Parkway, Suite 110 Bothell, WA 98011 attn. John Lunz

Dear John,

Enclosed you will find the analytical data for the Corps of Engineers Hamm Creek Restoration project (contract DACW67-95-D-1020, delivery order #7).

On the 18th of June 1997, Am Test Inc. received a total of two (2) sediment samples from SAIC for chemical analysis (collected 6/16/97). A total of four sample containers were received for each sample. Please refer to the chain of custody form for additional information relative to sample submittal.

At the time of receipt, the samples were logged-in, stored, and handled in accordance with EPA protocols. The samples were prepared and analyzed for the following groups of parameters:

PSDDA COC's Total Solids Total Volatile Solids Total Organic Carbon Grain Size Metals Phenols Polyaromatic Hydrocarbons Chlorinated Aromatics and Aliphatics Phthalate Esters Volatile Organic Compounds Miscellaneous Compounds Pesticides and PCB's

The methods, holding times, QA/QC documentation, and the data report package reflect the analytical protocols described in "Recommended Protocols for Measuring Selected Environmental Variables in Puget Sound", Puget Sound Estuary Program (PSEP), 1986.

AVIESI

Protocols for Conventional Sediment Variables 3/86 Protocols for Organic Compounds in Sediment and Tissue Samples 12/89 Protocols for Metals in Sediment and Tissue Samples 12/89

Although these documents specifically address environmental analyses in Puget Sound, the majority of the methods are derived from two notable EPA documents:

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods", SW-846, June 1988

"Methods for Chemical Analysis of Water and Wastes", EPA 600/4-82-055, December 1982

The detection limits reported are in accordance with the PSDDA SL values defined in Phase II PSDDA Management Plan Report, September 1989.

The specific information relative to the chemical analyses for the Chemicals of Concern are summarized in the attached table. This table provides a detailed listing of the parameters, the reported units, method references, nominal detection limits, and the PSDDA SL's and ML's. A second table addresses the instrument detection limits.

The sediment samples were analyzed for metals using the Strong Acid Digestion (SAD) described in the PSEP documentation. Following the digestion with Nitric Acid, Hydrochloric Acid, and Hydrogen Peroxide, the subsequent solutions were analyzed by Graphite Furnace Atomic Absorption (GFAA) for Arsenic, Antimony, Cadmium, Silver. With the exception of Mercury (Cold Vapor), the remaining metals (Copper, Chromium, Lead, Nickel and Zinc) were analyzed by Inductively Coupled Plasma Emission Spectroscopy (ICP). In order to obtain the lower limits of detection that were required for the analysis of the Semi-Volatile Organic compounds, two separate 35 gram subsamples were extracted (EPA 3550) and combined prior to the instrumental analysis (8270, 1ml final extract volume). All of the samples were subjected to GPC clean-up.

AVITEST

The Dichlorobenzenes were analyzed with the other Volatile Organic Compounds (8260), in order to obtain detection limits that were below PSDDA SL values.

Separate 35 gram subsamples were extracted (EPA 3540) and analyzed for the Pesticides and PCB's (method 8081, final extract volume 5ml). The clean-up techniques documented in the respective analytical procedures (florisil, alumina etc.) were employed in order to reduce any matrix problems. Dual column confirmation was utilized in the samples where target compounds were detected.

There were no major problems with any of the analyses. As a result of the relatively high total solids content of the samples (range 77-82%), there was a favorable relationship between the Method Detection Limits (MDL's) and the PSDDA Screening Levels (SL's). None of the MDL's exceeded any of the PSDDA SL's.

Following the analytical data you will find the quality control summary. Information in this section includes the dates of analyses, the sample weights, and the results of standard reference materials, blanks, duplicates (or MSD's), triplicates and matrix spikes.

For the organic parameters (8260, 8270, 8081), the surrogate spike recoveries, the matrix spike recoveries, and the method blanks were within the acceptable limits defined by the analytical procedures, as well as those of the laboratory.

The results of both the Pesticide and the PCB reference materials, certified using EPA methods, were well within the control limits established by the respective manufacturers.

Since the Standard Reference Material (HS-3) for the PAH's is not

certified using the extraction (sonication) and instrumental methods (GC/MS) of PSEP, data quality assessment is somewhat difficult. For your assistance I have included the laboratory control limits so that you may compare the data with past laboratory performances using this material.

Where the metals results were significantly above detection (i.e. Cadmium duplicate), the matrix spikes (% recovery), duplicates (RPD) and SRM's were within the nominal EPA limits, with the exception of Chromium in the Standard Reference Material (NBS 2704). As this is a matrix component, the SAD digestion is inadequate in terms of extracting all of the Chromium from the sample. However, the values obtained for the SRM using this procedure, were within the acceptable laboratory control limits.

For the organic parameters, all of the detection limits are listed in terms of the specific sample detection limits. This is calculated as a function of the original sample weight, the final volume of the extract, the moisture content of the sample, and the instrument detection limit.

If you should have any questions pertaining to the data package, please feel free to contact me.

Sincerely,

me c. R.

Mark A. Fugiel [/] General Manager Am Test Inc.

AVITEST

	PSDDA				
METALS (PPM) Antimony Arsenic Cadmium Copper Lead Mercury Nickel Silver Zinc	D.L. 2.5 2.5 0.3 15.0 0.5 0.02 2.5 0.2 15.0	S.L. 20 57 0.96 81 66 0.21 140 1.2 160	700 10 810 660 2 5	METHODS PSEP/GFAA/SAD PSEP/GFAA/SAD PSEP/ICP/SAD PSEP/GFAA/SAD EPA/7471/CV PSEP/ICP/SAD PSEP/GFAA/SAD PSEP/ICP/SAD	
ORGANICS (PPB)					
LPAH Acenaphthalene Acenaphthene Anthracene Fluorene 2-Methylnaphthalene Naphthalene Phenanthrene	20 20 20 20 20 20 20	64 63 130 64 67 210 320	640 630 1,300 640 670 2,100 3,200	3550/8270 3550/8270 3550/8270 3550/8270 3550/8270 3550/8270 3550/8270	
HPAH Benzo(a) anthracene Benzo(a) pyrene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(ghi) perylene Chrysene Dibenzo(a,h) anthracene Fluoranthene Indeno(1,2,3-cd) pyrene Pyrene	20 20 20 20 20 20 20 20 20 20 20	450 680 800 540 670 120 630 69 430	4,500 6,800 8,000 5,400 6,700 1,200 6,300 5,200 7,300	3550/8270 3550/8270 3550/8270 3550/8270 3550/8270 3550/8270 3550/8270 3550/8270 3550/8270 3550/8270	
CHLORINATED HYDROCARBONS 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Hexachlorobenzene 1,2,4-Trichlorobenzene	3.2 3.2 3.2 12 6.0	19 170 26 23 13	350 260 230 64	8260 8260 3550/8270	
PHTHALATES Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate Diethyl phthalate Dimethyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate	20 20 20 20 20 20 20	3,100 470 97 160 1,400 6,200		3550/8270 3550/8270 3550/8270 3550/8270 3550/8270 3550/8270 3550/8270	
PHENOLS 2,4-Dimethylphenol 2 Methylphenol 4 Methylphenol	10 10 20	29 20 120	50 72 1,200	3550/8270	

Pentachlorophenol Phenol	61 20	100 120	690 1,200	3550/8270 3550/8270
MISCELLANEOUS COMPOUNDS Benzoic acid Benzyl alcohol Dibenzofuran Hexachloroethane Hexachlorobutadiene N-Nitrosodiphenylamine	100 10 20 20 20 15	400 25 54 1,400 29 28	690 73 540 14,000 290 220	3550/8270 3550/8270 3550/8270 3550/8270 3550/8270 3550/8270
VOLATILE ORGANICS Ethylbenzene Tetrachloroethene Trichloroethene Xylene	3.2 3.2 3.2 3.2 3.2	10 14 160 12	50 210 1,600 160	8260 8260 8260 8260
PESTICIDES DDD DDE DDT Aldrin Chlordane Dieldrin Heptachlor Lindane Total PCB's	3.3 2.3 6.7 1.7 1.7 2.3 1.7 1.7 67	6.9 10 10 10 10 10 130	69 2,500	3540/8081 3540/8081 3540/8081 3540/8081 3540/8081 3540/8081 3540/8081 3540/8081 3540/8081

All values are on a dry weight basis * 8270 Compounds MDL's based on two 35g extracts (70% solids)

CONVENTIONALS Total Solids Total Volatile Solids Total Organic Carbon Grain Size Distribution

PSEP p17 PSEP p20 SM 5310B PSEP p9

AMEST

INSTRUMENT DETECTION LIMITS

METALS (PPM) Antimony Arsenic Cadmium Copper Lead Mercury Nickel Silver Zinc Chromium ORGANICS (PPB)	0.001 0.0003 0.002 0.020 0.0002 0.010 0.0003 0.002 0.002 0.006
LPAH Naphthalene Acenaphthalene Acenaphthene Fluorene Phenanthrene Anthracene 2-Methylnaphthalene	2 2 2 2 2 2 2 2 2 2
HPAH Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(ghi)perylene	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
CHLORINATED HYDROCARBONS 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene Hexachlorobenzene	0.5 0.5 0.3 1.5
PHTHALATES Dimethyl phthalate Diethyl phthalate Di-n-butyl phthalate Butyl benzyl phthalate Bis(2-ethylhexyl)phthalate Di-n-octyl phthalate	2 2 2 2 2 2 2
PHENOLS Phenol 2 Methylphenol 4 Methylphenol 2,4-Dimethylphenol	2 1 2 1

AVITEST

•

Pentachlorophenol	5
MISCELLANEOUS COMPOUNDS Benzyl alcohol Benzoic acid Dibenzofuran Hexachloroethane Hexachlorobutadiene N-Nitrosodiphenylamine	1 5 2 2 2 1
VOLATILE ORGANICS Trichloroethene Tetrachloroethene Ethylbenzene Xylene	0.5 0.5 0.5 0.5
PESTICIDES DDE DDD DDT Aldrin Dieldrin Chlordane Heptachlor Lindane Total PCB's	$\begin{array}{c} 0.06 \\ 0.08 \\ 0.16 \\ 0.04 \\ 0.06 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 2 \end{array}$

Ĩ

SAIC 18706 North Creek Pkwy suite 110 Bothell, WA 98011 Attention: John Lunz Date Received: 6/18/97 Date Reported: 7/14/97

Project Name: Hamm Crk Restoration

Project #: 01-0440

PSDDA CHEMICALS OF CONCERN

AM TEST I CLIENT II DATE SAME	0	97-A008101 C1 6/16/97		
		RESULT Q	S.L.	M.L.
	ONALS (DRY WEIGHT)			
	olids (%)	82.2		
	platile Solids (%)	4.60		
Total O	rganic Carbon (%)	1.9		
GRAIN SI	ZE DISTRIBUTION			
PHI	OPENING (MM)	% RETENTION		
	4.75	0.10		
-2,	4.00	< 0.1		
-1,	2.00	0.40		
Ο,	1.00	1.30		
+1,	0.50	6.20		
+2,	0.25	23.8		
+3,	0.125	21.5		
+4,	0.063	15.9		
+5,	0.032	9.30		
+6,	0.016	6.80	•	-
+7,	0.008	4.80		
+8,	0.004	3.40		
+9,	0.002	2.10		
+10,	0.001	1.20		
>+10,	<0.001	3.10		
METALS (MG/KG DRY WEIGHT)			
	Antimony	< 1.1	20	200
	Arsenic	8.8	57	700
	Cadmium	0.04	0.96	10
	Copper	22	81	810
	Lead	32	66	660
	Mercury	0.074	0.21	2 tátel *
	Nickel	20	140	
	Silver	0.23	1.2	5 1% 1417
	Zinc	66	160	1,600
	Chromium	23		

AMTES

•

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

97-A008101 C1 6/16/97

	RESULT	Q	S.L.	M.L.
ORGANICS (UG/KG DRY WEIGHT)				
LPAH				
Acenaphthylene	< 17		64	640
Acenaphthene	< 17		63	630
Anthracene	< 17		130	1,300
Fluorene	< 17.		64	640
Naphthalene	< 17		210	2,100
Phenanthrene	< 17		320	3,200
2-Methylnaphthalene	< 17		67	670
нран				
Benzo(a)anthracene	< 17		450	4,500
Benzo(a)pyrene	< 17.		680	6,800
Benzo(b)fluoranthene	< 17		800	8,000
Benzo(k)fluoranthene	< 17			
Benzo(ghi)perylene	< 17		540	5,400
Chrysene	< 17		670	6,700
Dibenzo(a,h)anthracene	< 17		120	5,400
Fluoranthene	< 17		630	6,300
Indeno(1,2,3-cd)pyrene	< 17	e.	69	5,200
Pyrene	< 17		430	7,300
CHLORINATED HYDROCARBONS				
Hexachlorobenzene	< 10		23	230
1,2-Dichlorobenzene	< 3		19	350
1,3-Dichlorobenzene	< 3		170	
1,4-Dichlorobenzene	< 3		26	260
1,2,4-Trichlorobenzene	< 5		13	64
PHTHALATES				
Diethyl phthalate	< 17		97	····
Dimethyl phthalate	< 17		160	
Di-n-butyl phthalate	< 17		1,400	a secondaria de la companya de la companya
Di-n-octyl phthalate	< 17		6,200	
Bis(2-ethylhexyl)phthalate	< 17		3,100	
Butyl benzyl phthalate	< 17		470	
PHENOLS				
Pentachlorophenol	< 43		100	690
Phenol	< 17		120	1,200
2 Methylphenol	< 9		20	72
4 Methylphenol	< 17.		120	1,200
2,4-Dimethylphenol	< 9		29	50

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID	97-A008101 C1		
DATE SAMPLED	6/16/97	,	
	RESULT Q	S.L.	M.L.
MISCELLANEOUS COMPOUNDS			<u> </u>
Benzoic acid	< 87	400	690
Benzyl alcohol	< 10	25	73
Dibenzofuran	< 17	54	540
Hexachlorobutadiene	< 14	29	290
Hexachloroethane	< 17	1400	14,000
N-Nitrosodiphenylamine	< 10	28	220
SURROGATES (% RECOVERY)			
2-Fluorophenol	55.0		
D-6-Phenol	64.0		
D-5-Nitrobenzene	59.0		
2-Fluorobiphenyl	75.0		,
2,4,6-Tribromophenol	99.0		
D14-Terphenyl	87.0		
VOLATILE ORGANICS			
Ethylbenzene	< 3	10	50.
Tetrachloroethene	< 3	14	210
Trichloroethene	< 3	160	1,600
Xylene	< 3	12	160
SURROGATES (% RECOVERY)			
D4-1,2-Dichloroethane	87.0		
D8-Toluene	98.0		
4-Bromofluorobenzene	76.0		
PESTICIDES & PCB's			- -
Aldrin	2.4	10	-
Chlordane	4.4	10	
DDD	6.7*	6.9	6 9
DDE	3.7		
DDT	3.6		
Dieldrin	6.1	10	
Heptachlor	< 0.52	10	and the second
Lindane	< 0.52	10,	
A-1016	< 8.6 *	130	2,500
A-1221	< 34	Total	Total
A-1232	< 8.6		
A-1242	< 8.6		
A-1248	< 8.6		
A-1254	160		·:
A-1260	< 8.6		
SURROGATE (% RECOVERY)			
Hexabromobenzene	98.		
Tetrachloro-m-xylene	81.		

VALUES ARE IN UG/KG DRY WEIGHT

* Value exceeds PSDDA SL

AR 023390

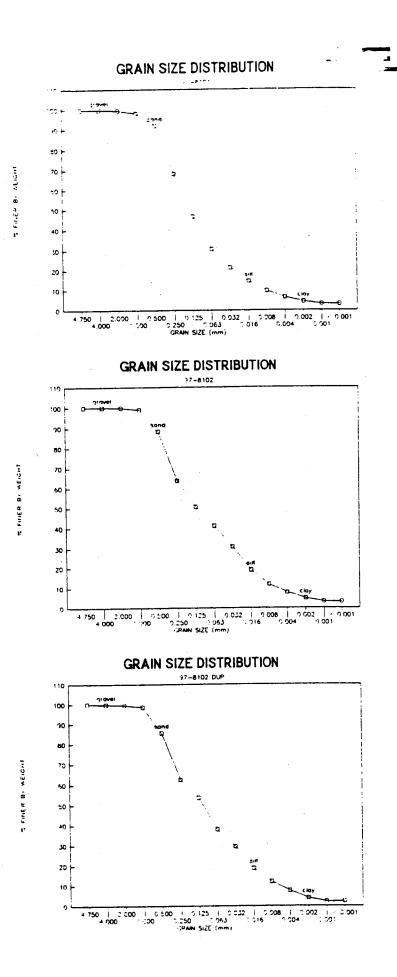
Bothell,	rth Creek Pkwy suite WA 98011		ved: 6/18/97 ted: 7/14/97
Attentio	n: John Lunz	Project Name: F Project #: 01-0	amm Crk Restoration
	PS	DDA CHEMICALS OF CONCE	ERN
AM TEST		97-A008102	
CLIENT I DATE SAM		C2 6/16/97	
UNIL SAM		8/10/9/	
		RESULT Q	S.L. M.L.
CONVENTI	ONALS (DRY WEIGHT)		· · · · · · · · · · · · · · · · · · ·
	Solids (%)	77.2	
	Volatile Solids (%)	2.37	
	rganic Carbon (%)	0.63	
GDNIN GI			N. Contraction of the second sec
PHI	ZE DISTRIBUTION OPENING (MM)	% RETENTION	
	4.75	< 0.1	• • • • • • • • • • • • • • • • • • •
-2,	4.00	< 0.1	
-1,	2.00	0.10	
ō,	1.00	0.90	
+1,	0.50	10.6	
+2,	0.25	24.6	and the second
+3,	0.125	13.2	
+4,	0.063	9.50	
+5,	0.032	10.3	
+6,	0.016	11.9	
+7,	0.008	7.00	
+8,	0.004	4.10	
+9,	0.002	3.00	
+10,	0.001	1.60	
>+10,	<0.001	3.20	
METALS	(MG/KG DRY WEIGHT)		
	Antimony	< 1.3	20 200
	Arsenic	6.3	57 700
	Cadmium	< 0.03	0.96 10
	Copper	18	81 810
·	Lead	24	66 660
	Mercury	0.047	0.21 2.44
	Nickel	11	140
	Silver	< 0.13	1.2 55
	Zinc	42	160 1,600
	Chromium	19.5	

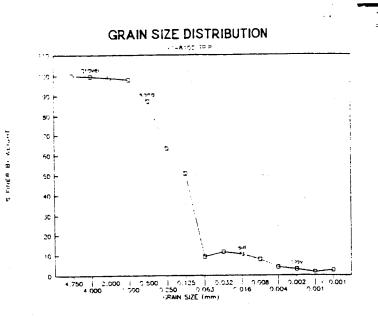
П

PSDDA CHEMICALS OF CONCERN

AM TEST ID	97-A008102			
CLIENT ID	C2			
DATE SAMPLED	6/16/97			
	RESULT Q	S.L.	M.L.	<u> </u>
ORGANICS (UG/KG DRY WEIGHT)				
LPAH				
Acenaphthylene	< 19	64	640	
Acenaphthene	< 19	63	630	,
Anthracene	< 19	130	1,300	
Fluorene	< 19	64	640	
Naphthalene	< 19	210	2,100	
Phenanthrene	< 19	320	3,200	
2-Methylnaphthalene	< 19	67	670	
НРАН		_	`	
Benzo(a)anthracene	< 19	450	4,500	
Benzo(a)pyrene	< 19	680	6,800	
Benzo(b)fluoranthene	< 19	800	8,000	
Benzo(k)fluoranthene	< 19			
Benzo(ghi)perylene	< 19	540	5,400	
Chrysene	< 19	670	6,700	
Dibenzo(a,h)anthracene	< 19	120	5,400	
Fluoranthene	< 19	630	6,300	
Indeno(1,2,3-cd)pyrene	< 19	69	5,200	1
Pyrene	< 19	430	7,300	
CHLORINATED HYDROCARBONS				
Hexachlorobenzene	< 11	23	230	
l,2-Dichlorobenzene	< 3	19	350	
1,3-Dichlorobenzene	< 3	170	260	
1,4-Dichlorobenzene	< 3	26	260	-
1,2,4-Trichlorobenzene	< 6	13	64	
PHTHALATES				
Diethyl phthalate	< 19	97		
Dimethyl phthalate	< 19	160		· ·
Di-n-butyl phthalate	< 19	1,400		
Di-n-octyl phthalate	< 19	6,200	м ²	
Bis(2-ethylhexyl)phthalate		3,100		
Butyl benzyl phthalate	< 19	470		
PHENOLS		100	600	
Pentachlorophenol	< 47	100	690	
Phenol	< 19	120	1,200	
2 Methylphenol	< 9	20	72	
4 Methylphenol	< 19	120	1,200	
2,4-Dimethylphenol	< 9	29	50	

PSDDA CHEMICALS OF CONCERN


AM TEST ID CLIENT ID DATE SAMPLED 97-A008102 C2 6/16/97


	RESULT Q	S.L.	M.L.
MISCELLANEOUS COMPOUNDS			
Benzoic acid	< 93	400	690
Benzyl alcohol	< 11	25	73
Dibenzofuran	< 19	54	540
Hexachlorobutadiene	< 15	29	290
Hexachloroethane	< 19	1400	14,000
N-Nitrosodiphenylamine	< 11	28	220
SURROGATES (% RECOVERY)			1
2-Fluorophenol	53.0		
D-6-Phenol	61.0		
D-5-Nitrobenzene	42.0		
2-Fluorobiphenyl	53.0		
2,4,6-Tribromophenol	93.0		
D14-Terphenyl	54.0		
VOLATILE ORGANICS			
Ethylbenzene	< 3	10	5.0
Tetrachloroethene	< 3	14	210
Trichloroethene	< 3	160	1,600
Xylene	< 3	12	160
SURROGATES (% RECOVERY)			
D4-1,2-Dichloroethane	87.0		
D8-Toluene	93.0		
4-Bromofluorobenzene	73.0		
PESTICIDES & PCB's			
Aldrin	1.3	10	
Chlordane	1.5	10	
DDD	5.3*	6.9	69
DDE	2.9		
DDT	3.1		
Dieldrin	6.0	10	
Heptachlor	< 0.55	10	and the first state of the
Lindane	< 0.55	10	
A-1016	< 9.2	130	2,500
A-1221	< 37	Total	Total
A-1232	< 9.2		
A-1242	< 9.2		
A-1248	< 9.2		
A-1254	76		
A-1260	< 9.2		
SURROGATE (% RECOVERY)			
Hexabromobenzene	87.	÷.	
Tetrachloro-m-xylene	82.		

VALUES ARE IN UG/KG DRY WEIGHT

Π

* Value exceeds PSDDA SL

Π

AIC n: John Lunz Date Received: 6/18/97 Date Reported: 7/14/97

QUALITY CONTROL - ANALYSIS DATES*

97-A008101 through 8102 AmTest Sample Number: 6/30/97 Volatiles Semi-Volatiles 6/30/97 Extraction 7/10/97 Analysis Pesticides 6/27/97 Extraction 7/03/97 Analysis Polychlorinated Biphenyls 6/27/97 Extraction 7/08/97 Analysis

SAMPLE WEIGHTS (Grams)

AM TEST Sample #'s	VOLATILES	SEMI- VOLATILES	PESTICIDES	PCB's
97-A008101 97-A008102	2.00	70.20 70.80	35.31 35.67	35.31 35.69
97-A008101 MS 97-A008101 MSD	2.03	-	- -	-
97-A008102 MS	-	70.50 71.00	35.48 35.04	35.00 35.17
97-A008102 MSD HS-3	-	1.00	-	-
340 87001	-	-	2.00	- 0.50

 \mathbb{N}

IC .tn: John Lunz Date Received: 6/18/97 Date Reported: 7/14/97

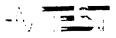
QUALITY CONTROL - BLANK

AM TEST Identification Client Identification	BLANK
ORGANICS (ug/kg) (PPB)	
LPAH	
Naphthalene Acenaphthalene Acenaphthene Fluorene Phenanthrene Anthracene 2-Methylnaphthalene	< 14 < 14 < 14 < 14 < 14 < 14 < 14
HPAH	
Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(ghi)perylene	< 14 < 14 < 14 < 14 < 14 < 14 < 14 < 14
CHLORINATED HYDROCARBONS	-
1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene Hexachlorobenzene	< 3.0 < 3.0 < 3.0 < 5.0 < 10
PHTHALATES	
Dimethyl phthalate Diethyl phthalate Di-n-butyl phthalate Butyl benzyl phthalate Bis(2-ethylhexyl)phthalate Di-n-octyl phthalate	< 14 < 14 < 14 < 14 < 14 < 14 < 14
= less than	

= less than
.ALUES IN UG/KG DRY WEIGHT

Ĩ

____ • ~~ _____


SAIC in: John Lunz Date Received: 6/18/97 Date Reported: 7/14/97

QUALITY CONTROL -BLANK

AM TEST Identification Client Identification	BLANK
ORGANICS (ug/kg)	
PHENOLS	
Phenol 2-Methylphenol 4-Methylphenol 2,4-Dimethylphenol Pentachlorophenol	< 14 < 7.0 < 14 < 7.0 < 36
MISCELLANEOUS COMPOUNDS	
Benzyl alcohol Benzoic acid Dibenzofuran Hexachloroethane Hexachlorobutadiene N-Nitrosodiphenylamine	< 9.0 < 71 < 14 < 14 < 11 < 9.0
SURROGATES RECOVERIES (%)	
2-Fluorophenol D6-Phenol D5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol D14-Terphenyl	58 66 50 56 78 55
VOLATILE ORGANICS Trichloroethene Tetrachloroethene Ethylbenzene Xylene	< 3.0 < 3.0 < 3.0 < 3.0 < 3.0
SURROGATE RECOVERIES (*) D4-1,2-Dichloroethane D8-Toluene 4-Bromofluorobenzene	82 111 80

+ = less than

VALUES IN UG/KG DRY WEIGHT

lic .tr: John Lunz

Date Received: 6/18/97 Date Reported: 7/14/97

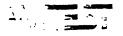
QUALITY CONTROL -BLANK

AM TEST Sample Number Client Identification	BLANK
ORGANICS (ug/kg)	
PESTICIDES DDE DDD DDT Aldrin Dieldrin Chlordane Heptachlor Lindane	< 0.57 < 0.71 < 1.4 < 0.43 < 0.57 < 1.1 < 0.43 < 0.43
PCB's A-1016 A-1221 A-1232 A-1242 A-1248 A-1254 A-1260	< 7.1 < 29 < 7.1 < 7.1 < 7.1 < 7.1 < 7.1 < 7.1 < 7.1
SURROGATE RECOVERIES (%) Hexabromobenzene Tetrachloro-m-xylene	87 82

> = less than
VALUES IN UG/KG DRY WEIGHT

n: John Lunz

Date Received: 6/18/97 Date Reported: 7/14/97


QUALITY CONTROL VOLATILES MATRIX SPIKES

AM TEST Sample Number

97-A008101 MATRIX SPIKE

COMPOUNDS	SAMPLE VALUE (ug/kg)	SAMPLE + SPIKE (ug/kg)	SPIKE CONCENTRATION (ug/kg)	RECOVERY (%)
Trichloroethene	< 3.0	72	75	96
fetrachloroethene	< 3.0	73	75	97
Sthvibenzene	< 3.0	70	75	94
Total Xylene	< 3.0	88	75	117
1,3-Dichlorobenzene	< 3.0	92	75	123
l,4-Dichlorobenzene	< 3.0	94	75	125
1,2-Dichlorobenzene	< 3.0	92	75	` 123
(ROGATE RECOVERIES ()	• •			
D4-1,2-Dichloroethane		94		
D8-Toluene		100		
4-Bromofluorobenzene		108		

= less than

Date Received: 0/18/97 Date Reported: 7/14/97

QUALITY CONTROL VOLATILES MATRIX SPIKES

AM TEST Sample Number

ic 1n: John Lunz

> 97-A008101 MATRIX SPIKE DUPLICATE

COMPOUNDS	SAMPLE VALUE (ug/kg)	SAMPLE + SPIKE DUPLICATE (ug/kg)	SPIKE CONCENTRATION (ug/kg)	RECOVERY (%)
<pre>frichloroethene Tetrachloroethene Ethylbenzene fotal Xylene 1,3-Dichlorobenzene</pre>	< 3.0 < 3.0 < 3.0 < 3.0 < 3.0 < 3.0 < 3.0	65 68 63 67 67 67 65	75 75 75 75 75 75 75 75	85 90 83 89 87 87 84
SURROGATE RECOVERIES (.)				
D4-1,2-Dichloroethane D8-Toluene 4-Bromofluorobenzene		85 100 86		

= less than

AVITEST

PIC n: John Lunz Date Received: 6/18/97 Date Reported: 7/14/97

QUALITY CONTROL VOLATILES MATRIX SPIKE DUPLICATES

M TEST Sample Numbe	М	TEST	Sample	Number
---------------------	---	------	--------	--------

97-A008101 MS + MSD

COMPOUNDS	MATRIX SPIKE (ug/kg)	MATRIX SPIKE DUPLICATE (ug/kg)	RELATIVE PERCENT DIFFERENCE (%)
`richloroethene	72	65	10
etrachloroethene	73	68	7.1
Ethylbenzene	70	63	11
Total Xylene	88	67	27
,3-Dichlorobenzene	92	67	31
1,4-Dichlorobenzene	94	67	33
1 2-Dichlorobenzene	92	65	34

1S + MSD = Matrix Spike + Matrix Spike Duplicate

ln: John Lunz

тC

Date Received: 6/18/97 Date Reported: 7/14/97

QUALITY CONTROL SEMI-VOLATILES MATRIX SPIKES

M TEST Sample Number

97-A008102 MATRIX SPIKE

JOMPOUNDS	SAMPLE VALUE (ug/kg)	SAMPLE + SPIKE (ug/kg)	SPIKE CONCENTRATION (ug/kg)	RECOVERY (३)
Naphthalene	< 19	620	930	67
Ncenaphthalene	< 18	690	930	74
cenaphthene	< 19	730	930	78
Fluorene	< 19	820	930	88
Phenanthrène	< 19	840	930	90
inthracene	< 19	810	930	87
l-Methylnaphthalene	< 19	710	930	76
Fluoranthene	< 19	930	930	100
ene	< 19	790	930	84
.izo (a) anthracene	< 19	8,60	930	92
Chrysene	< 19	870	930	93
Benzo(b)fluoranthene	< 19	820	930	88
<pre>3enzo(k)fluoranthene</pre>	< 19	780	930	84
Benzo(a)pyrene	< 19	810	930	86
Indeno (1, 2, 3-cd) pyrene	< 19	970	930	104
)ibenzo(a,h)anthracene	< 19	920	930	99
}enzo(ghi)perylene	< 19	940	930	101
1,2,4-Trichlorobenzene	< 6.0	680	930	73
Texachlorobenzene	< 11	880	930	94
Jimethyl phthalate	< 19.	810	930	86
Diethyl phthalate	< 19.	870	930	93
Di-n-butyl phthalate	< 19	860	930	92
Butyl benzyl phthalate	< 19	880	930	94
<pre>Bis(2-ethylhexyl)phthalate</pre>	< 19	900	930	97
Di-n-octyl phthalate	< 19	960	930	102

< = less than

AVITEST

AIC

n: John Lunz

Date Received: 6/18/97 Date Reported: 7/14/97

QUALITY CONTROL SEMI-VOLATILES MATRIX SPIKES

^M TEST Sample Number

97-A008102 MATRIX SPIKE

OMPOUNDS	SAMPLE VALUE (ug/kg)	SAMPLE + SPIKE (ug/kg)	SPIKE CONCENTRATION (ug/kg)	RECOVERY (%)
<pre>henol 2-Methylphenol -Methylphenol ,4-Dimethylphenol Pentachlorophenol Penzyl alcohol enzoic acid Dibenzofuran Hexachloroethane achlorobutadiene Mitrosodiphenylamine</pre>	< 19 < 9.0 < 19 < 9.0 < 47 < 11 < 93 < 19 < 19 < 15 < 11	520 580 600 590 910 630 740 760 570 670 790	930 930 930 930 930 930 930 930 930 930	56 62 64 63 98 68 79 82 61 72 85
<pre>CURROGATES RECOVERIES (%) 2-Fluorophenol D6-Phenol .5-NitrobenzeneFluorobiphenyl 2,4,6-Tribromophenol .14-Terphenyl</pre>		61 67 68 76 104 86		

: = less than

. .

AMIEST

in: John Lunz

.C

Date Received: 6/18/97 Date Reported: 7/14/97 -

QUALITY CONTROL SEMI-VOLATILES MATRIX SPIKES

AM TEST Sample Number

97-A008102 MATRIX SPIKE DUPLICATE

AR 023405

COMPOUNDS	SAMPLE VALUE (ug/kg)	SAMPLE + SPIKE DUPLICATE (ug/kg)	SPIKE CONCENTRATION (ug/kg)	RECOVERY (%)
Joshthalasa	. 10			
Naphthalene	< 19	550	930	59
Acenaphthalene	< 18	670	930	72
Acenaphthene	< 19	700	930	75
Fluorene	< 19	820	930	88
Phenanthrene	< 19	820	930	89
Anthracene	< 19	810	930	87
2-Methylnaphthalene	< 19	660	930	71
oranthene	< 19	880	930	95
rene	< 19	800	930	86
lanzo (a) anthracene	< 19	850	930	91
	< 19	860	930	93
anzo(b)fluoranthene	< 19	860	930	· 93
Benzo(k)fluoranthene	< 19	770	930	83
Benzo(a)pyrene	< 19	810	930	87
Indeno (1, 2, 3-cd) pyrene	< 19	980	930	105
Jibenzo(a,h)anthracene	< 19	950	930	102
Benzo(ghi)perylene	< 19	960	930	104
1,2,4-Trichlorobenzene	< 6.0	600	930	65
Hexachlorobenzene	< 11	820	930	8 8
Dimethyl phthalate	< 19	800	930	86
Diethyl phthalate	< 19	830	930	90
Di-n-butyl phthalate	< 19	880	930	95
Butyl benzyl phthalate	< 19	890	930	96
Bis(2-ethylhexyl)phthalate	< 19	900	930	97
Di-n-octyl phthalate	< 19	980	930	106

Τ.

< = less than

AVIESI

LTC John

:: John Lunz

Date Received: 6/18/97 Date Reported: 7/14/97

QUALITY CONTROL SEMI-VOLATILES MATRIX SPIKES

M TEST Sample Number

97-A008102 MATRIX SPIKE DUPLICATE

OMPOUNDS	SAMPLE VALUE (ug/kg)	SAMPLE + SPIKE DUPLICATE (ug/kg)	SPIKE CONCENTRATION (ug/kg)	RECOVERY (%)
Phenol -Methylphenol 2,4-Dimethylphenol entachlorophenol enzyl alcohol Benzoic acid Dibenzofuran achloroethane exachlorobutadiene N-Nitrosodiphenylamine	< 19 < 9.0 < 19 < 9.0 < 47 < 11 < 93 < 19 < 19 < 15 < 11	480 580 580 530 880 620 760 720 460 560 800	930 930 930 930 930 930 930 930 930 930	52 62 63 57 95 66 82 78 50 60 86
<pre>?-Fluorophenol >6-Phenol >5-Nitrobenzene 2-Fluorobiphenyl ,4,6-Tribromophenol >14-Terphenyl</pre>		55 62 62 76 103 92		

= less than

AVIEST

1: John Lunz

۲C

Date Received: 6/18/97 Date Reported: 7/14/97

QUALITY CONTROL SEMI-VOLATILES MATRIX SPIKE DUPLICATES

M TEST Sample Number

97-A008102 MS + MSD

SMPOUNDS	SAMPLE VALUE (ug/kg)	DUPLICATE VALUE (ug/kg)	RELATIVE PERCENT DIFFERENCE (%)
······································			······································
Maphthalene.	620	550	12
cenaphthalene	690	670	2.9
Acenaphthene	- 730	700	4.2
Fluorene	820	820	0
henanthrene	840	820	2.4
.nthracene	810	810	0
2-Methylnaphthalene	710	660	7.3
oranthene	930	880	5.5
ene	790	800	1.3
≣enzo(a)anthracene	860	850	1.2
Chrysene	870	860	1.2
enzo(b)fluoranthene	820	860	4.8
Jenzo(k)fluoranthene	780	770	1.3
Benzo(a)pyrene	810	810	0
ndeno(1,2,3-cd)pyrene	970	980	1.0
ibenzo(a,h)anthracene	920	950	3.2
Benzo(ghi)perylene	940	960	2.1
',2,4-Trichlorobenzene	680	600	13
exachlorobenzene	880	820	7.1
Dimethyl phthalate	810	800	1.2
Diethyl phthalate	870	830	4.7
i-n-butyl phthalate	860	880	2.3
_utyl benzyl phthalate	880	890	1.1
Bis(2-ethylhexyl)phthalate	900	900	0
i-n-octyl phthalate	960	980	2.1

. = less than

AVITES

AIC

h: John Lunz

Date Received: 6/18/97 Date Reported: 7/14/97

QUALITY CONTROL SEMI-VOLATILES MATRIX SPIKE DUPLICATES

AM TEST Sample Number

97-A008102 MS + MSD

COMPOUNDS	SAMPLE VALUE (ug/kg)	DUPLICATE VALUE (ug/kg)	RELATIVE PERCENT DIFFERENCE (3)
		480	8.0
'henol	520 580	580	0
2-Methylphenol	600	580	3.4
-Methylphenol 1,4-Dimethylphenol	590	530	11
Pentachlorophenol	910	880	3.4
Benzyl alcohol	630	620	1.6
zoic acid	740	760	2.7
Jipenzofuran	760	720	5.4
Hexachloroethane	570	460	21
lexachlorobutadiene	670	560	18
Nitrosodiphenylamine	790	800	1.3
·			

< = less than

- ·

AVIESI

n: John Lunz

- - C

Date Received: 6/18/97 Date Reported: 7/14/97

QUALITY CONTROL SEMI-VOLATILES STANDARD REFERENCE MATERIAL HS-3

ample Date: 6/30/97 Date Analyzed: 7/09/97

COMPOUNDS	MEASURED VALUE (ug/kg)	TRUE VALUE (ug/kg)	RECOVERY	LABORATORY CONTROL LIMIT (ug/kg)
Naphthalene	4,200	9,000	47	280-4,440
cenaphthene	170	300	57	28-310
cenaphthene	2,500	4,500	56	428-3,300
Fluorene	5,300	13,300	40	1,040-8,050
nanthrene	68,000	85,000	80	7,300-70,800
_hracene	3,600	13,400	27	520-4,500
Fluoranthene	45,000	60,000	75	6,100-59,700
Þyrene	24,000	39,000	62	4,500-35,800
;enzo(a)Anthracene	8,600	14,600	59	1,490-12,100
hrysene	10,000	14,100	71	1,700-13,400
nzo(a)Pyrene	5,200	7,400	70	1,600-5,600
anzo(b)Fluoranthene	6,000	7,700	78	2,800-10,300
enzo(E)Fluoranthene	5,700	2,800	204	430-7,200
Benzo(ghi)perylene	3,600	5,000	72	960-3,900
Dibenzo(a,h)Anthracene	1,200	1,300	92	240-1,200
ndeno(1,2,3-cd)Pyrene	3,500	5,400	65	1;040-4,020

2-Fluorophenol	57
D5-Phenol	61
)5-Nitrobenzene	54
-Fluorobiphenyl	63
2,4,6-Tribromophenol	90
D14-Terphenyl	54

AVIEST

AIC

n: John Lunz

Date Received: 6/18/97 Date Reported: 7/14/97

QUALITY CONTROL PESTICIDES MATRIX SPIKES

AM TEST Sample Number

97-A008102 MATRIX SPIKE

OMPOUNDS	SAMPLE VALUE (ug/kg)	SAMPLE + SPIKE (ug/kg)	SPIKE CONCENTRATION (ug/kg)	RECOVERY (%)
indane Heptachlor Aldrin Jieldrin DD DD DDE	< 0.55 < 0.55 1.3 6.0 5.3 2.9 3.1	16 19 17 24 23 20 21	19 19 19 19 19 19 19	86 102 84 99 93 89 97
SURROGATE RECOVERIES ()				
[exabromobenzene Tetrachloro-m-xylene		79 76	•	

. = less than

6

= -

AVITET

Date Received: 6/18/97 Date Reported: 7/14/97

QUALITY CONTROL PESTICIDES MATRIX SPIKES

AM TEST Sample Number

97-A008102 MATRIX SPIKE DUPLICATE

COMPOUNDS	SAMPLE VALUE (ug/kg)	SAMPLE + SPIKE DUPLICATE (ug/kg)	SPIKE CONCENTRATION (ug/kg)	RECOVERY (%)
Lindane Heptachlor Aldrin Dieldrin DDD T	<pre>< 0.55 < 0.55 1.3 6.0 5.3 2.9 3.1</pre>	16 19 16 24 23 20 21	19 19 19 19 19 19 19	86 98 80 94 92 88 92
SURROGATE RECOVERIES (%)				
Hexabromobenzene Natrachloro-m-xylene		81 76		

< = less than

τC

in: John Lunz

ANTEST

AIC n: John Lunz Date Received: 6/18/97 Date Reported: 7/14/97

QUALITY CONTROL PESTICIDES MATRIX SPIKE DUPLICATES

AM TEST Sample Number		97-A008102 MS + MSD	
COMPOUNDS	MATRIX SPIKE (ug/kg)	MATRIX SPIKE DUPLICATE (ug/kg)	RELATIVE PERCENT DIFFERENCE (%)
Lindane Heptachlor Aldrin Dieldrin DDD I J	16 19 17 24 23 20 21	16 19 16 24 23 20 21	0 0 6.1 0 0 0

MS + MSD = Matrix Spike + Matrix Spike Duplicate

Date Received: 6/18/97 Date Reported: 7/14/97

.n: John Lunz

TC

QUALITY CONTROL PESTICIDES STANDARD REFERENCE MATERIAL ERA - PPS-45, LOT #340*

COMPOUNDS	MEASURED VALUE (ug/kg)	TRUE VALUE (ug/kg)	RECOVERY (%)	PERFORMANCE ACCEPTANCE LIMITS (ug/kg)
いDT	350	397	88	158-429
DDE	230	275	84	163-316
	250	299	84	146-356
Aldrin	290	341	85	194-379
Dieldrin ,	260	329	79	172-372

* Environmental Resource Associates, Arvada, CO.

AR 023413

ł

AVITEST

Date Received: 5/18/97 Date Reported: 7/14/97

AIC n: John Lunz

QUALITY CONTROL POLYCHLORINATED BIPHENYLS MATRIX SPIKES

AM	TEST	Sample	Number
----	------	--------	--------

97-A008102

٠

COMPOUNDS	SAMPLE VALUE (ug/kg)	SAMPLE + SPIKE (ug/kg)	SPIKE CONCENTRATION (ug/kg)	RECOVERY (%)
Aroclor 1260	< 9.2	85	94	90
				2
COMPOUNDS	SAMPLE VALUE (ug/kg)	SAMPLE + SPIKE DUPLICATE (ug/kg)	SPIKE CONCENTRATION (ug/kg)	RECOVERY (१)
Aroclor 1260	< 9.2	82	94	88
	MATRIX SPI	KE DUPLICATE	ES	
COMPOUNDS	MATRIX SPIKE (ug/kg	S: S: () DUP:	PIKE P	CLATIVE ERCENT FFERENCE (3)
Aroclor 1260	85		82	3.6

∞< = less than</pre>

MS + MSD = Matrix Spike + Matrix Spike Duplicate

AVIEST

Date Received: 6/18/97 Date Reported: 7/14/97

QUALITY CONTROL POLYCHLORINATED BIPHENYLS STANDARD REFERENCE MATERIAL ERA 87001*

COMPOUND	MEASURED VALUE (mg/kg)	TRUE VALUE (mg/kg)	RECOVERY (%)
".roclor 1260	14	11.8	121

idvisory Range: 6.6 - 24 mg/kg

Environmental Resource Associates, Arvada, CO.

C .n: John Lunz

AVITEST

AIC n: John Lunz Date Received: 6/18/97 Date Reported: 7/14/97

QUALITY CONTROL CONVENTIONALS & METALS ANALYSIS DATES

AmTest Sample Number:

97-A008101 through 8102

ANALYTES	ANALYSES DATES	
fotal Solids	6/19/97	
Total Volatile Solids	6/19/97	
fotal Organic Carbon	6/19/97	
(stale Digestion	6/23/97	
1etals Digestion		
Antimony	7/01/97	
Arsenic	7/02/97	
imium	7/01/97	
_pper	6/26/97	
Lead	6/26/97	
Mercury	6/23/97	
Nickel	6/26/97	
Silver	7/03/97	
Zinc	6/26/97	
Chromium	6/26/97	

AVIESI

TC .n: John Lunz

Date Received: 6/18/97 Date Reported: 7/14/97

QUALITY CONTROL METALS DUPLICATES

W TEST Sample Number

97-A008101

JOMPOUNDS	SAMPLE VALUE (mg/kg)	DUPLICATE VALUE (mg/kg)	RELATIVE PERCENT DIFFERENCE (%)
Antimony	< 1.1	< 1.1	_
Arsenic	8.8	9.5	7.6
Cadmium	0.04	0.05	22
Copper	22	19	15
Jead	32	30	6.5
Mercury	0.074	0.063	16
Nickel	2.0	17	16
ver	0.23	0.23	0
Sinc	66	64	3.0
Thromium	23	22	4.4

: = less than

AVIEST

AIC n: John Lunz Date Received: 6/18/97 Date Reported: 7/14/97

QUALITY CONTROL METALS MATRIX SPIKES

AM TEST Sample Number

97-A008102

COMPOUNDS	SAMPLE VALUE (mg/kg)	SAMPLE + SPIKE (mg/kg)	SPIKE CONCENTRATION (mg/kg)	RECOVERY (%)
Antimony	< 1.3	6.6	6.4	103
rsenic	6.3	17	13	82
ladmium	< 0.03	0.29	0.26	112
Copper	18	150	130	102
ead	24	150	130	97
fercury	0.047	0.269	0.259	86
Nickel	11	140	130	99
⁻ 'ver	< 0.13	2.2	2.6	85
۲C	42	180	130	106
Chromium	19	150	130	101

. = less than

ţ;

AR 023418

.____

C Ln: John Lunz

Date Received: 6/18/97 Date Reported: 7/14/97

QUALITY CONTROL METALS & TOTAL ÓRGANIC CARBON STANDARD REFERENCE MATERIAL

NBS 2704

OMPOUNDS	MEASURED VALUE (mg/kg)	TRUE VALUE (mg/kg)	RECOVERY (१)	LABORATORY CONTROL LIMITS (mg/kg)
METALS				
Antimony	3.7	3.79	98	2.8 - 4.5
Arsenic	19	23.4	81	15 - 29
Cadmium	3.4	3.45	99	2.6 - 3.8
Copper	87	98.6	88	50 - 130
Lead	170	161	106	94 - 200
Mercury	1.36	1.44	94	1.0 - 1.8
Mickel	37	44.1	84	22 - 65
inc	430	438	98	330 - 530
Chromium	85	135	63	81 - 104
otal Organic Carbon (%)	3.32	3.35	97	2.5 - 4.2

AVITEST

nTC 1: John Lunz Date Received: 6/18/97 Date Reported: 7/14/97

QUALITY CONTROL METALS BLANK

-LEMENTS	RESULTS (mg/kg)	
^a ntimony	< 1.0	
rsenic	< 1.0	
Cadmium	< 0.02	
Copper	< 2.0	
ead	< 10	
mercury	< 0.02	
Nickel	< 10	
ilver	< 0.10	
Linc	< 2.0	
Chromium	< 6.0	

= less than

-

Analysis based on 2.0 grams in 200 mls.

AVIES

Retained %

Duplicate/Triplicate Analysis

Lab I.D. 97-A008102

phi/opening Sample Duplicate Triplicate (mm) 4.75 < 0.1 < 0.1 < 0.1 -2/ 4.0 < 0.1 0.1 0.5 -1/ 1.7 0.1 0.3 0.5 0/ 1.0 0.9 1.0 1.0 +1/0.5 10.6 13.0 10.7 +2/ .25 24.6 23.1 23.9 +3/ .125 13.2 12.7 8.8 +4/ .063 9.5 15.7 9.3 + 5/ .032 10.3 8.6 11.7 +6/ .016 11.9 10.6 10.4 +7/ .008 7.0 6.7 7.9 +8/ .004 4.1 4.4 4.1 +9/ .002 3.0 3.6 3.0 +10/.001 1.6 1.6 1.9 Pass 3.2 2.4 2.6 **Total Solids %** 77.19 77.21 77.27

ANTEST

SAIC

n: John Lunz

Date Received: 6/18/97 Date Reported: 7/14/97

QUALITY CONTROL CONVENTIONALS TRIPLICATES

			, , , , , , , , , , , , , , , , , , ,
	#1	#2	#3
fotal Solids (%) 97-A008102	77	77	77
<pre>fotal Volatile Solids (%) 97-A008102</pre>	2.4	2.4	2.8
Fotal Organic Carbon (%) 97-A008101	1.9	2.0	1.7

CONVENTIONALS BLANKS

AM TEST Sample Numbers Client Identification

Total Organic Carbon (%)

< 0.05

BLANK #1

< less than

REPORTED BY Mark A. Fugiel MAF/jb

SAIC 18706 North Creek Pkwy suite 110 Bothell, WA 98011 Attention: John Lunz

Date Received: 6/18/97 Date Reported: 7/10/97

Project Name: Hamm Crk Restoration Project #: 01-0440

MARINE SEDIMENT QUALITY STANDARDS WAC 173-204

AM TEST ID	97-A008101
CLIENT ID	C1
DATE SAMPLED	6/16/97

	RESULT	Q	CC	MCC
METALS (MG/KG DRY WEIGHT)	······································			
Arsenic	8.8		57	93
Cadmium	0.04		5.1	6.7
Chromium	23.		260	270
Copper	22.		390	390
Lead	32.		450	530
Mercury	0.074		0.41	0.59
Silver	0.23		6.1	6.1
Zinc	66.		410	960
ORGANICS PPM (DRY WEIGHT) NORM	ALIZED TO TOC			
LPAH'S				
Naphthalene	< 0.89		99	170
Acenaphthylene	< 0.89		66	66
Acenaphthene	< 0.89		16	57
Fluorene	< 0.89		23	79
Phenanthrene	< 0.89		100	480
Anthracene	< 0.89		220	1200
2-Methylnaphthalene	< 0.89		38	64
HPAH'S				
Fluoranthene	< 0.89		160	1200
Pyrene	< 0.89		1000	1400
Benzo(a)anthracene	< 0.89		110	270
Chrysene	< 0.89		110	460
Benzo(b)fluoranthene	< 0.89		230	450
Benzo(k)fluoranthene	< 0.89			
Benzo(a)pyrene	< 0.89		99	210
Indeno(1,2,3-cd)pyrene	< 0.89		34	88
Dibenzo(a, h) anthracene	< 0.89		12	33
Benzo(ghi)perylene	< 0.89		31	78
CHLORINATED BENZENES				
1,2-Dichlorobenzene	< 0.16		2.3	2.3
1,4-Dichlorobenzene	< 0.16		3.1	9
1,2,4-Trichlorobenzene	< 0.25		0.81	1.8
Hexachlorobenzene	< 0.53		0.38	2.3

- .

MARINE SEDIMENT QUALITY STANDARDS WAC 173-204

AM TEST ID	97-A008101
CLIENT ID	C1
DATE SAMPLED	6/16/97

.

	RESULT	Q	CC	MCC
PHTHALATES ESTERS				
Dimethyl phthalate	< 0.89		53	E 3
Diethyl phthalate	< 0.89		61	53 110
Di-n-butyl phthalate	< 0.B9		220	1700
Butyl benzyl phthalate	< 0.89		4.9	64
Bis(2-ethylhexyl)phthalate	< 0.89		47	
Di-n-octyl phthalate	< 0.89		58	78 4500
				4500
IISCELLANEOUS				
Dibenzofuran	< 0.89		15	58
Hexachlorobutadiene	< 0.74		3.9	6.2
N-Nitrosodiphenylamine	< 0.53		11	11
SURROGATES (& RECOVERY)				
2-Fluorophenol	51 0			
D-6-Phenol	51.0			
D-5-Nitrobenzene	60.0 43.0			
2-Fluorobiphenyl	52.0			
2,4,6-Tribromophenol	93.0			
D14-Terphenyl	58.0			
	50.0			
PCB'8				
Total PCB's	8.7		12	65
Aroclor 1016	< 0.45			U 4
Aroclor 1221	< 1.8			
Aroclor 1232	< 0.45			
Aroclor 1242	< 0.45			
Aroclor 1248	< 0.45			
Aroclor 1254	8.7			
Aroclor 1260	< 0.45			
SURROGATES (RECOVERY)				
Hexabromobenzene	60			
Tetrachloro-m-xylene	98.			
W_XIEUG	81.0			

MARINE SEDIMENT QUALITY STANDARDS WAC 173-204

AM TEST ID	97-A008101
CLIENT ID	C1
DATE SANPLED	6/16/97

..

	RESULT	Q	ĊĊ	MCC
PHENOLS & MISC. (UG/KG DRY	veiger)			
Phenol	< 17		420	1000
2 Methylphenol	< 9		63	63
4 Methylphenol	< 17		670	670
2,4-Dimethylphenol	< 9		29	29
Pentachlorophenol	< 43		360	690
Benzyl alcohol	< 10		57	73
Benzoic acid	< 87		650	650

CONVENTIONALS	
Total Solids (%)	82.2
Total Volatile Solids (%)	4.60
Total Organic Carbon (%)	1.9
Total Petroleum	

Conventional parameters are reported on a dry weight basis.

GRAIN	SIZE DISTRIBUTION	
PHI	OPENING (MM)	RETENTION
	4.75	0.10
-2,	4.00	< 0.1
-1,	2.00	0.40
0,	1.00	1.30
+1,	0.50	6.20
+2,	0.25	23.8
+3,	0.125	21.5
+4,	0.063	15.9
+5,	0.032	9.30
+6,	0.016	6.80
+7,	0.008	4.80
+8,	0.004	3.40
+9,	0.002	2.10
+10,	0.001	1.20
>+10	, <0.001	3.10

CC - Chemical Criteria

NCC - Maximum Chemical Criteria/Minimum Clean-up Levels

D - Associated Compound required a "Dilution" as a result of the matrix or the sample concentration

.

MARINE SEDIMENT QUALITY STANDARDS WAC 173-204

AM TEST ID	97-A008102
CLIENT ID	C2
DATE SAMPLED	6/16/97

	RESULT	Q	CC	MCC
METALS (MG/KG DRY WEIGHT)				<u></u>
Arsenic	6.3			
Cadmium	< 0.01		57	93
Chronium	19.		5.1	6.7
Copper	19.		260	270
Lead	24.		390	390
Mercury	0.047		450	530
Silver	< 0.03		0.41	0.59
Zinc	42.		6.1	6.1
	٩٢.		410	960
RGANICS PPM (DRY WEIGHT) NORI	GALIZED TO TOC			
JPAH'S				
Naphthalene	< 3		99	1=-
Acenaphthylene	< 3		55 66	170
Acenaphthene	< 3		16	66
Fluorene	< 3		23	57
Phenanthrene	< 3			79
Anthracene	< 3		100 220	480
2-Methylnaphthalene	< 3			1200
-	- •		38	64
IPAH'S				
Fluoranthene	< 3		160	1000
Pyrene	< 3		1000	1200
Benzo(a)anthracene	< 3		110	1400
Chrysene	< 3			270
Benzo(b)fluoranthene	< 3		110	460
Benzo(k)fluoranthene	< 3		230	450
Benzo(a)pyrene	< 3			
Indeno(1,2,3-cd)pyrene	< 3		99	210
Dibenzo(a, h) anthracene	< 3		34	88
Benzo(ghi)perylene	< 3		12	33
•	×)		31	78
HLORINATED BENZENES				•
1,2-Dichlorobenzene	< 0.48		. .	
1,4-Dichlorobenzene	< 0.48		2.3	2.3
1,2,4-Trichlorobenzene	< 0.95		3.1	9
Hexachlorobenzene			0.81	1.8
	< 1.7		0.38	2.3

MARINE SEDIMENT QUALITY STANDARDS WAC 173-204

DATE SAMPLED 6/16/97 RESULT Q CC MCC PHTHALATES ESTERS Disethyl phthalate < 3 53 53 Diethyl phthalate < 3 61 110 Di-n-butyl phthalate < 3 220 1700 Butyl benzyl phthalate < 3 4.9 64 Bis(2-ethylhexyl) phthalate < 3 47 78 D1-n-octyl phthalate < 3 58 4500 MISCELLANEOUS 58 4500 Dibenzofuran < 3 15 58 N-Nitrosodiphenylamine < 1.7 11 11 SURROGATES (% RECOVERY) 2-Fluorobiphenol 53.0 6.1 D-6-Phenol 61.0 0 53.0 2.4 2-Fluorobiphenol 53.0 2.4 3.9 6.1 D-6-Phenol 61.0 0 2.4 3.9 6.1 D-5-Nitrobenzene 42.0 2.7 2.7 2.6 12 65 Total PCB's 12 12 65 4.00 12 65				97-A008102	AM TEST ID Client Id
PHTHALATES RSTERS Dimethyl phthalate < 3 53 53 Diethyl phthalate < 3 61 110 Di-n-butyl phthalate < 3 61 110 Butyl benzyl phthalate < 3 220 1700 Butyl benzyl phthalate < 3 4.9 64 Bis(2-ethylhexyl)phthalate < 3 4.7 78 Di-n-octyl phthalate < 3 58 4500 MISCELLANEOUS 58 4500 Dibenzofuran < 3 15 58 Hexachlorobutadiene < 2.4 3.9 6.3 N-Nitrosodiphenylamine < 1.7 11 11 SURROGATES (4 RECOVERY) 2-Fluorophenol 53.0 2-Fluorophenol 2-Fluorophenol 53.0 2.4,6-Tribromophenol 93.0 D14-Terphenyl 54.0 93.0 12 65 PCB's Total PCB's 12 12 65 Aroclor 1016 < 1.5 Aroclor 1232 < 1.5 Aroclor 1242 < 1.5 15 56					
Dimethyl phthalate < 3 53 53 Diethyl phthalate < 3 61 110 Di-n-butyl phthalate < 3 220 1700 Butyl benzyl phthalate < 3 4.9 64 Bis(2-ethylhexyl)phthalate < 3 47 78 Di-n-octyl phthalate < 3 58 4500 MISCELLANEOUS 58 4500 MISCELLANEOUS 58 4500 Dibenzofuran < 3 15 58 Hexachlorobutadiene < 2.4 3.9 6.1 N-Nitrosodiphenylamine < 1.7 11 11 SURROGATES (% RECOVERY) 2-Fluorophenol 53.0 53.0 D-6-Phenol 61.0 0 53.0 2.4,6-Tribromophenol 93.0 D14-Terphenyl 54.0 93.0 0 0 0 PCB's 12 12 65 65 Aroclor 1016 < 1.5 12 65 Aroclor 1221 < 5.9 3.5 5 Aroclor 1232 < 1.5 5	MCC	CC	Q	RESULT	
Diethyl phthalate < 3					PHTHALATES ESTERS
Diethyl phthalate < 3	53	57		< 3	Dimethyl phthalate
Di-n-butyl phthalate < 3					Diethyl phthalate
Butyl benzyl phthalate < 3					Di-n-butyl phthalate
Bis(2-ethylhexyl)phthalate < 3					Butyl benzyl phthalate
D1-n-octyl phthalate < 3	÷ •	•••			Bis(2-ethylhexvl)phthalate
Dibenzofuran < 3					Di-n-octyl phthalate
Hexachlorobutadiene < 2.4		·			MISCELLANEOUS
Hexachlorobutadiene < 2.4	59	15		< 3	
N-Nitrosodiphenylamine < 1.7					Hexachlorobutadiene
2-Fluorophenol 53.0 D-6-Phenol 61.0 D-5-Nitrobenzene 42.0 2-Fluorobiphenyl 53.0 2.4,6-Tribromophenol 93.0 D14-Terphenyl 54.0 PCB's 12 12 Total PCB's 12 65 Aroclor 1016 < 1.5					N-Nitrosodiphenylamine
2-Fluorophenol 53.0 D-6-Phenol 61.0 D-5-Nitrobenzene 42.0 2-Fluorobiphenyl 53.0 2.4,6-Tribromophenol 93.0 D14-Terphenyl 54.0 PCB's 12 12 Total PCB's 12 65 Aroclor 1016 < 1.5			•		SURROGATES (& RECOVERY)
D-6-Phenol 61.0 D-5-Nitrobenzene 42.0 2-Fluorobiphenyl 53.0 2,4,6-Tribromophenol 93.0 D14-Terphenyl 54.0 PCB's 12 12 Total PCE's 12 65 Aroclor 1016 < 1.5				53.0	2-Fluorophenol
D-5-Nitrobenzene 42.0 2-Fluorobiphenyl 53.0 2.4,6-Tribromophenol 93.0 D14-Terphenyl 54.0 PCB's 12 12 Total PCB's 12 12 Aroclor 1016 < 1.5					D-6-Phenol
2-Fluorobiphenyl 53.0 2,4,6-Tribromophenol 93.0 D14-Terphenyl 54.0 PCB's 12 12 65 Total PCB's 12 12 65 Aroclor 1016 < 1.5					D-5-Nitrobenzene
2,4,6-Tribromophenol 93.0 D14-Terphenyl 54.0 PCB's 12 12 65 Total PCB's 12 12 65 Aroclor 1016 < 1.5					2-Fluorobiphenyl
D14-Terphenyl 54.0 PCB's 12 12 65 Total PCB's 12 65 Aroclor 1016 < 1.5					2,4,6-Tribromophenol
Total PCB's 12 12 65 Aroclor 1016 < 1.5					D14-Terphenyl
Aroclor 1016 < 1.5					
Aroclor 1016 < 1.5	65	12		12	Total PCB's
Aroclor 1221 < 5.9	63	**			
Aroclor 1232 < 1.5 Aroclor 1242 < 1.5					
Aroclor 1242 < 1.5					
				< 1.5	Aroclor 1248
Aroclor 1254 12					
Aroclor 1260 < 1.5					Aroclor 1260
SURROGATES (* RECOVERY)					SURROGATES (& RECOVERY)
Hexabronobenzene 87				87.	Hexabromobenzene
Tetrachloro-m-xylene 82.0					Tetrachloro-m-xylene

MARINE SEDIMENT QUALITY STANDARDS WAC 173-204

AM TEST ID	97-A008102
CLIENT ID	C2
DATE SAMPLED	6/16/97

	RESULT	Q	CC	MCC
PHENOLS & MISC. (UG/KG DRY				
rnenol	< 19		420	1000
2 Methylphenol	< 9			1000
4 Methylphenol	< 19		63	63
2,4-Dimethylphenol	< 9		670	670
Pentachlorophenol	•		29	29
Benzyl alcohol	< 47		360	690
Benzoic acid	< 11		57	73
	< 93		650	650

CONVENTIONALS

Total Solids (%)	77.2
Total Volatile Solids (%)	
Total Organic Carbon (%)	2.37 0.63
Total Petroleum	0.03

Conventional parameters are reported on a dry weight basis.

grain Phi	SIZE DISTRIBUTION OPENING (NN)	* RETENTION
-	4.75	< 0.1
-2,	4.00	< 0.1
-1,	2.00	0.10
Ο,	1.00	0.90
+1,	0.50	10.6
+2,	0.25	24.6
+3,	0.125	13.2
+4,	0.063	9.50
+5,	0.032	10.3
+6,	0.016	11.9
+7,	0.008	7.00
+8,	0.004	4.10
+9,	0.002	3.00
+10,	0.001	
>+10,	<0.001	1.60
		3.20

CC - Chemical Criteria

MCC - Maximum Chemical Criteria/Minimum Clean-up Levels

D - Associated Compound required a "Dilution" as a result of the matrix or the sample concentration

Aug 12 1997

SAIC 18706 North Creek Pkwy suite 110 Bothell, WA 98011 Attention: Lisa Roach

Dear Lisa Roach:

Enclosed please find the analytical data for your Hamm Creek Restor. project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AM TEST ID TEST
Carr Inlet, Carr 4	Sediment	97-A009723 CONV, GR SIZE,

Your sample was received on Monday, July 21 1997. This was a total of 96 hours (4 days) after sample collection (7/17/97). At the time of receipt, the sample was logged in and properly maintained prior to its subsequent analyses.

The analytical procedures used at Am Test are well documented, and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the QC results and "Methodology Report". This table includes information relative to the detection limits, analyses dates and method references.

Please note that the detection limits that are listed in the body of the report refer to the Method Detection Limits (MDL's), as opposed to Practical Quantitation Limits (PQL's).

If you should have any questions pertaining to the data package, please feel free to contact me.

Sincerely,

Mark A. Fugiel General Manager

Project #: 01-0440-04-8357 PO Number: 4500155689

BACT = Bacteriological MET = Metals CONV = Conventionals ORG = Organics Aniestics

ANTEST

nativitadi = : Lurvices

1403 N E 17 19 Pramone 4 4 98052

Fox: 205 863 2472

Tel. 206 685 1.5+

Date Received:

Date Reported:

AmTest inc

Protessional = : -naivtical Services

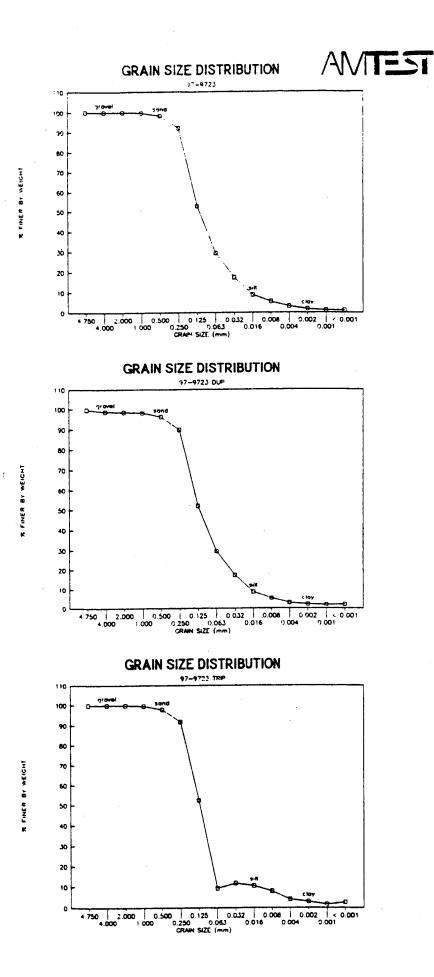
14603 N.E. 27th 31 Redmond, 224

3052

Fax: 206 883 3405

Project Name: Hamm Creek Restorance 885 1664 Project #: 01-0440-04-8357 PO Number: 4500155689

7/21/97


8/12/97

PSDDA CHEMICALS OF CONCERN

	RESULT Q	S.L.	. M.L.
CONVENTIONALS (DRY WEIGHT)			
Total Solids (%)	71.3		
Total Volatile Solids (%)	1.61		
Total Organic Carbon (%)	0.39		•

GRAIN SI 'HI	ZE DISTRIBUTION OPENING (MM)	% RETENTION
-2,	4.75 4.00	< 0.1 < 0.1
-1,		< 0.1 0.30
+1,		1.50 6.20
+3,	0.125 0.063	
		11.9 8.70
•		3.40 2.30
+9, +10,	0.002 0.001	
>+10,	<0.001	1.10

SAIC 18706 North Creek Pkwy suite 110 Bothell, WA 98011

AVITEST

AR 023432

Date Received: 7/21/97 Date Reported: 8/12/97

QUALITY CONTROL ANALYSIS DATES

AmTest Sample Number:

97-A009723

ANALYTES	ANALYSES DATES		
Total Solids Total Volatile Solids Total Organic Carbon	7/22/97 7/22/97 7/24/97		
Grain Size	7/22/97		
r_{i}	·		
	METHOD REFERENCES		
Total Solids Total Volatile Solids Total Organic Carbon	PSEP p17 PSEP p20 PSEP p23		
Grain Size	PSEP p9		

AIC

AVITEST

Date Received: 7/21/97 Date Reported: 8/12/97

QUALITY CONTROL MATRIX SPIKES

AmTest Sample Number:	97-A009	723		
COMPOUNDS	SAMPLE VALUE (mg/kg)	SAMPLE + SPIKE (mg/kg)	SPIKE CONCENTRATION (mg/kg)	RECOVERY (%)
Total Organic Carbon (%)	0.39	2.0	1.8	89

< = less than

,

QUALITY CONTROL STANDARD REFERENCE MATERIAL

NBS 2704

COMPOUNDS	MEASURED VALUE (mg/kg)	TRUE VALUE (mg. kg)	RECOVERY (१)
Total Organic Carbon (%)	3.0	3.35	90

AR 023433

AIC

AVITEST

Retained %

Duplicate/Triplicate Analysis

Lab I.D. 97-A009723

phi/opening	(mm)	Sample	Duplicate	Triplicate
4.75		<0.1	0.3	0.1
-2/ 4.0		< 0.1	1.0	< 0.1
-1/ 1.7	•	< 0.1	0.1	< 0.1
0/ 1.0		0.3	0.4	0.4
+1/ 0.5		1.5	2.0	1.7
+2/ .25		6.2	6.3	6.0
+3/ .125		39.3	37.8	39.4
+4/ .063		23.3	22.6	24.2
+5/ .032		11.9	12.2	10.8
+6/ .016		8.7	8.6	8.6
+7/ .008		3.4	3.3	3.5
+8/ .004		2.3	2.3	2.1
+9/ .002		1.3	0.8	1.3
+10/.001		0.7	0.3	0.7
Pass		1.1	2.0	1.1
Total Solids %	, ,	71.32	71.36	71.40

ANTEST

Date Received: 7/21/97 Date Reported: 8/12/97

QUALITY CONTROL TRIPLICATES

AmTest Sample Number:

97-A009723

	#1	#2	#3
Total Solids (%)	71.3	71.4	71.4
fotal Volatile Solids (%)	1.61	1.60	1.68
<pre>fotal Organic Carbon (%)</pre>	0.39	0.43	0.42

BLANKS

BLANK

Total Organic Carbon (%)

< 0.05

< less than

ſAF/jb

AR 023435

· ..

Aug 13 1997

minsting

rrotessional Lialytica-Liervices

= :

14603 N E. ± 1990. Reamona 1200 16052

Fax: 206 383 2416

Tel: 206 885 1664

SAIC 18706 North Creek Pkwy Suite 110 Bothell, WA 98011 Attention: John Lunz

Dear John Lunz:

Enclosed please find the analytical data for your Hamm Creek Restor. project.

Les A

The following is a cross correlation of client and laboratory identifications for your convenience.

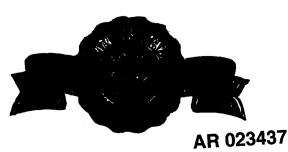
CLIENT ID	MATRIX	AM TEST ID	TEST
C-1 C-2 Carr 4	Sediment	97-A010379 97-A010380 97-A010381	CONV,

Your three (3) samples were received on Tuesday, August 5 1997. This was a total of 120 hours (5 days) after sample collection (7/31/97). At the time of receipt, the samples were logged in and properly maintained prior to their subsequent analyses.

The analytical procedures used at Am Test are well documented, and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the QC results and "Methodology Report". This table includes information relative to the detection limits, analyses dates and method references.

Please note that the detection limits that are listed in the body of the report refer to the Method Detection Limits (MDL's), as opposed to Practical Quantitation Limits (PQL's).


If you should have any questions pertaining to the data package, please feel free to contact me.

Sincerely,

Mark A. Fugiel General Manager

Project #: 01-0440-04-8357

BACT = Bacteriological CONV = Conventionals MET = Metals ORG = Organics

i niestinn

-ntessional -naivticai bervices

1603 1 6 -11 Redmona. -052

Fax: 205 883 0000

SAIC 18706 North Creek Pkwy Suite 110 Bothell, WA 98011 Attention: John Lunz

Date Received: 8/ . 5/97 Date Reported: 8/13/97

Tel: 206 885 178+

Project Name: Hamm Creek Restor. Project #: 01-0440-04-8357

PSDDA CHEMICALS OF CONCERN

AM TE	EST ID
CLIEN	VT ID
DATE	SAMPLED

<u>2</u>.

97-A010379 C-1 7/31/97

	RESULT Q	S.L.	M.L.
CONVENTIONALS (DRY WEIGHT)	····		
Total Solids (%)	97.2		
Ammonia (mg/kg)	1.8		
Total Sulfides (mg/kg)	< 16		

SAIC 18706 North Creek Pkwy Suite 110 Bothell, WA 98011 Attention: John Lunz

ç'

Date Received: 8/ 5/97 Date Reported: 8/13/97

Project Name: Hamm Creek Restor. Project #: 01-0440-04-8357

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED	97-A010380 C-2 7/31/97		
	RESULT Q	S.L.	M.L.
CONVENTIONALS (DRY WEIGHT)			· · · · · · · · · · · · · · · · · · ·
Total Solids (%)	87.5		
Ammonia (mg/kg)	30		
Total Sulfides (mg/kg)	96		

AVIEST

SAIC 18706 North Creek Pkwy Suite 110 Bothell, WA 98011 Attention: John Lunz Date Received: 8/ 5/97 Date Reported: 8/13/97

Project Name: Hamm Creek Restor.
Project #: 01-0440-04-8357

PSDDA CHEMICALS OF CONCERN

AM TEST	ID
CLIENT	ID
DATE SA	MPLED

97-A010381 Carr 4 7/31/97

	RESULT	Q	S.L.	M.L.
CONVENTIONALS (DRY WEIGHT)			· · · · · · · · · · · · · · · · · · ·	
Total Solids (%)	80.6			
Ammonia (mg/kg)	25			
Total Sulfides (mg/kg)	35			

AVIEST

SAIC tention: John Lunz Date Received: 8/05/97 Date Reported: 8/13/97

Project Name: Hamm Creek Restor. Project #: 01-0440-04-8357

QUALITY CONTROL ANALYSIS DATES

AmTest Sample Numbers: 97-A010379 to 97-A010381

ANALYTES	ANALYSES DATES
Total Solids	8/06/97
Total Sulfides	8/06/97
Ammonia	8/06/97

METHOD REFERENCES

al	Solids	PSEP	p17
rotal	Sulfides	PSEP	p32
Ammon	ia	Plumb,	1981

AVIEST

Jention: John Lunz

Date Received: 8/05/97 Date Reported: 8/13/97

Project Name: Hamm Creek Restor. Project #: 01-0440-04-8357

QUALITY CONTROL MATRIX SPIKES

AmTest Sample Numbers:

۰Ċ

97-A010379 to 97-A010381

COMPOUNDS	SAMPLE VALUE (mg/kg)	SAMPLE + SPIKE (ag/kg)	SPIKE CONCENTRATION (ng/kg)	RECOVERY (%)
Ammonia (mg/kg) 97-A010380	30	43	13	100
fotal Sulfides (mg/kg) 97-A010380	96	160	60	107

TRIPLICATES

Amtest Sample Number 97-A010379	#1	#2	#3
Total Solids (%)	97.2	97.4	96.0
<pre>Potal Sulfides (mg/kg)</pre>	< 16	< 16	< 16
Ammonia (mg/kg)	1.8	1.8	2.0

BLANKS

ί.	BLANK	
Ammonia (mg/kg)	< 1.0	
Total Sulfides (mg/kg)	< 10	

REPORTED BY

less than

Mark Α. Fua j∕el AR 023442

MAF/jb

APPENDIX I

TEST PROTOCOL (Included by Reference)

APPENDIX II

RAW DATA

MURTH	WESTERN AQUATIC SCIENCES PROTOCOL NO. NAS-XXX-CG4
	SEDIMENT LARVAE TEST BASED ON PSEP PROTOCOLS
Test	No. 534-5 Slient SAIC Investigator pop. 1-18 TRAR 8/26/97
עתדדי	MANAGEMENT
11001	Client: SAIC, 18706 N. Creek Pkung, Suite 110, Bothell, WA 98011
	Client's Study Monitor: Ms_Liso_Roach
	Testing Laboratory: Northwestern Aquatic Sciences
	Test Location: Newport Laboratory
	Laboratory's Study Personnel:
	Proj. Man./Study Dir. <u>M.S. Redmond MUR</u>
	QA Officer L.K. Nemeth
	1. G. J. IRISSAPEL GUL 2. DAB-WILL UT
	3. D.S. (did the 18 4
	Test Beginning: 2100 Test Ending: 8/2/97 1100
TEST	MATERIAL
1201	General description (see sample logbook/chain-of-custody for details):
	NAS Sample No.: <u>8670E</u> <u>8677E</u> <u>8673E</u>
	Description: C/ C2 CARRY
	Collection Date: 6-16-97 6-16-97 7-17-99
	Receipt Date: 7-22-97 7-22-97 7-23-97
	Inters.Salinity (ppm): - + 2.0 29.0
	* Samples Completely W/O Free Water Gr mussersment 1 8 1/197 15 per
	mSR 7-31-97 (set it
	NAS Sample No.:
	Description:
÷	Collection Date:
	Receipt Date:
	Inters.Salinity (ppm):
TEST	WATER .
	Source: 404ma Bay, UR
	Date of Collection: 7/3/47 Salinity (ppt) 28.9 pH 7.9
	Treatments: F. Hem to 10. 40 Min; Acated ; Colinity adjusted with D.I. Ver
TEST	ORGANISMS Permit -1-1
	Species: Dendraskr excentricus Date Publicitased: 7/30/97
	Source: Mannies, Inc., Long Brich, 199
	Acclimation Data:
	Date 'Temp (°C) DO (mg/L) pH Sal (ppt) Comments
	Adults held svernight in 54. pm canton the used directly from
	box En spring. No wein notit dates availably
	Mean
	<u>S.D.</u>
	(\mathbf{N})

- / -

5/1/91 (Rev. 9-1-94)

٠

HORTHWESTERN	AQUATIO S	CIENCES	PROTOCOL MQ. 2460 2011 RM 4
<i>I</i> .,	<u></u>	<u></u>	
	STA		PROTOCOL NO. 100 PROTOCOL NO. 100 PROTOCOL NO. 100 PROTOCOL PROTOC
Test 10 534	-6 - ent	SAIC	

SEDIMENT DESCRIPTIONS--SUPLEMENTAL NOTES

Sample	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
No	· •	Descr	iption	
!	A the concerta -m	an sandu me	id unil- conta	ýI
186725-		<i>s i</i>	/	1
[· · · · · · · · · · · · · · · · · · ·			
<u>-8670 E</u>	town and	- dini da	trant mater	LAV !!
!	· ·.	<u>· // /</u>		1
8671E	may panding	must		. I
·	<u> </u>			i
- <u></u>		un rand,	<u>chinar</u>	in such.
	1. O min scare	'ar'	<u> </u>	· · · ·
				·····
				· · · · · · · · · · · · · · · · · · ·
	<u>Prime at cri</u>			
			houghly he	
		s dittaile		
	here in an			1 in sigher for
·····	12 22 - in the	534-5, and	<u>L'Eamilie a</u>	2 Trical
	10 2 monor	e and an	fills and sty	22.1.) Cach
• *	fluin un 27	- adulta		int marks
,		- and saller		ic til to
1	us is a licelo			- Judimenti
	- formantes	- 10 - aitur	in that July	kins dor
		and in a co		i sin each
		NTT PARA		<u></u>
	Becker F		Beaker 7	Q - I
	<u> </u>	14.5	/2	<u> </u>
	2	14.5		14.0
	3	16.0	15	14.0
Р	*	16.0	16	/3.5 !
	.5	14.0	17	15.5
	<u> </u>	14.0	18	15.0
	7	15.5	19	15.0
·	3	14.0	20	14.0
·	÷÷	15.0	21	(J.J.)
' 	10	14.0	22	16.0
	11	<i>. ب</i>	23	15.5
	12	12.2	<u> </u>	16.0
		 _		·
	the mande	in palanting	adjust and	bcomb of over-
	line water		Hall stry ?	2. Show and
,			haut the 351	
	15. CPT SINC	water in	Min then po	accil in constant
	Timpint tis !!	sam ha	deling to 21	vation, and
	and and the	wat il pla	$-\underline{n}$	<u>21 R 7-31-97</u>
		J		·····
		<u></u>		
			······	······································
	······			

- ऱ -

Revised 12-30-92

NORTHWESTERN AQUATIC SCIENCES PROTOCOL NO. NAS-XXX-CG4 SEDIMENT LARVAE TEST BASED ON PSEP PROTOCOLS

Test No. 534-5 Client SAIC

____Investigator____

Spawnin Number Egg Dil Co	g: Init of Orga ution (unt/ml	ial <u>143</u> nisms U 1 ml di of dilu	Jan PM Jsed: fe luted t ition: 1	males_	-29	; ma	les_		4/7 M
Test ch Test vo Replica Use: 6t Test wa Bottle Larval Subsamp Photope	ambers: lumes: tes/tre h repli ter cha placeme stock (le size riod: 1 s: Nega	1 L gl 20g of catment: cate/te inges: 5 2.500 c for cs 4L:10D tive (c	lass con test se (3) est sedi None tal rand 5.007ml bunting:	diment ment fo homizat finci iomizat finci iomi io ml	; 1000 rganism or WQ; eration ion ulation , no se	ml of t s/treat develop : yes volume diment)	est wate ment: (2 ment ass ; Fe :: 10 ml; 7-15-77	essment beake eding: None <2-hr old	.
	ation c		iv	15	71	21	24	Far lu	-Dury Fl
1	<u>ا</u> ہے ہ				· · · · · · · · · · · · · · · · · · ·	10		¥_ 1/	- Lehot
	5	Х	()	<u> </u>			1 25		
1	4	۲	10	13)6	19	22		1 <u> </u>
1				_]		1 1 1		l L
					1	1			1
					1	1			
Randomiz	zation c	chart:							
	Spawnin Number Egg Dil Co DF PROCEDU Test ch Test vo Replica Use: 6t Test wa Bottle Larval Subsamp Photope Control	Spawning: Init Number of Orga Egg Dilution (Count/ml DF (mean PROCEDURES AND Test chambers: Test volumes:' Replicates/tre Use: 6th repli Test water cha Bottle placeme Larval stock (Subsample size Photoperiod: 1 Controls: Nega Posi Controls: Nega Posi	Spawning: Initial 1973 Number of Organisms U Egg Dilution (1 ml di Count/ml of dilu DF (mean x 100/2 PROCEDURES AND CONDIT Test chambers: 1 L gi Test volumes: 20g of Replicates/treatment: Use: 6th replicate/te Test water changes: 1 Bottle placement: Tot Larval stock (2,500 Subsample size for ca Photoperiod: 14L:10D Controls: Negative (a Positive (1) Candomization chart: 3 4 9	Number of Organisms Used: fe Egg Dilution (1 ml diluted t Count/ml of dilution: 1 DF (mean x 100/2000) = 25,000 PROCEDURES AND CONDITIONS Test chambers: 1 L glass con Test volumes: 20g of test se Replicates/treatment: (7) Use: 6th replicate/test sedi Test water changes: None Bottle placement: Total rand Larval stock (2,000 - 0,007 ml Subsample size for counting: Photoperiod: 14L:10D Controls: Negative (clean repositive (reference Positive (reference Controls: Negative (clean repositive (reference Controls: Negative (clean repositive (reference Controls: Negative (reference Controls: Nega	Spawning: Initial 1433 AM FM, Fina. Number of Organisms Used: females Egg Dilution (1 ml diluted to 100 m Count/ml of dilution: 1. DF (mean x 100/2000) = PROCEDURES AND CONDITIONS Test chambers: 1 L glass container: Test volumes: Deg of test sediment Replicates/treatment: (7)_6O Use: 6th replicate/test sediment fr Test water changes: None A Bottle placement: Total randomizat Larval stock (2.000 - 3000 / ml) inoc Subsample size for counting: 10 ml Photoperiod: 14L:10D Controls: Negative (clean indiment Positive (reference toxi Candomization chart: 7	Spawning: Initial 1430 AM-TM, Final 1630 Number of Organisms Used: females 79 Egg Dilution (1 ml diluted to 100 ml): Count/ml of dilution: 1	Spawning: Initial $\frac{1433}{2}$ AM/PM, Final $\frac{1630}{24}$ AM/PM. Number of Organisms Used: females $\frac{24}{24}$; ma Egg Dilution (1 ml diluted to 100 ml): Count/ml of dilution: 1; 2; 3. DF (mean x 100/2000) = $\frac{2}{240}$ PROCEDURES AND CONDITIONS Test chambers: 1 L glass containers (beakers or Test volumes: 20g of test sediment: 1000 ml of t Replicates/treatment: (5) <u>6</u> Organisms/treat Use: 6th replicate/test sediment for WQ; develop Test water changes: None Aeration: yes Bottle placement: Total randomization Larval stock ($\frac{21000}{2400}$ $\frac{100}{2400}$ ml finoculation volume Subsample size for counting: 10 ml Photoperiod: 14L:10D Controls: Negative (clean rediment, no sediment) Positive (reference toxicant test by A Sandomization chart: 3 <u>6</u> <u>9</u> <u>10</u> <u>13</u> <u>16</u> <u>19</u> <u>1</u> <u>4</u> <u>7</u> <u>10</u> <u>13</u> <u>16</u> <u>19</u>	Spawning: Initial $\frac{1433}{1433}$ AMPM, Final $\frac{1630}{29}$ AMPM. Fertili Number of Organisms Used: females $\frac{129}{29}$; males $\frac{1}{29}$ Egg Dilution (1 ml diluted to 100 ml): Count/ml of dilution: 1	Spawning: Initial $\frac{1433}{1433}$ AMFM, Final $\frac{1630}{24}$ AMFM. Fertilization $\frac{1703}{163}$ AMFM. Number of Organisms Used: females $\frac{1}{24}$; males

MISCELLANEOUS NOTES

- 3 -

5/1/91 (Rev. 9-1-94)

_Investigator

Test No. 534-5 Ment SAIC

WATER QUALITY RECORD

Beaker	Temp., DO	Sal. pH	S NH	3	
No.	1'(°C) !(ppm		<u>(nag)</u>	<u>m) </u>	Comments
Н	1 16.01 8.4	39.0 7.8	1<.21 10-1	25 E E	
7	5.3.5.2	129.0 . 7.7		1011	
8	15.3 8.4	14.0178	10 110.	3011	
19	160 34	28.0 78	1 < . 1 <0.	10:1	
		к т.	1 ;	1	
	4			1	
	· · · · · · · · · · · · · · · · · · ·			: · ·	
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		, ¹	
	······································				
				Į I	· · · · · · · · · · · · · · · · · · ·

Day 1 (8/1 97)65

- dy 0 (7/31/97)

l		Temp.			рH		NH3		Comments	
_	<u>No.</u>			(000)			תסם) (1	COMMETICS	
1	4	5-1	3.4	130	7.9			<u> </u>		<u> </u>
١	7	15-1	8.3	130	8-0	:		:		
;	8	151	8.4	7,301	79		•	11		1
-	19	15.1	3.4	720	29		•	1		1
!		· :				1	1	j i		1
!		1.1	1	i		i	!	11		1
- 1		1.2	1	!		l t	1	11		!
1		······································		1		4	1	1		
:		1.1		:		1	1	11		1
		:	•			!	L.	1		1
T		· ·	•			1		1.1		1
÷.							,	11		1

Day 2 (8 12 197) mar/651

	Temp.					NH3 (DDm		Comments
<u>No</u>	<u> (°C) </u>	the second s	the second s			11:00m	+ + +	<u>commenca</u>
<u> </u>	15.6							
<u> </u>	<u> 15,7</u>		28.0				1 1	
<u> </u>			27.5					
19	15.7	8.2	25.0	8.0			: 1	
	-	:	1	,	1	1	1	1
1			1	:			1.1	1
1			1	1	!)	1.1	
1	•••	· · · · ·	•	•		1	1.1	
,		,	1	1		1	÷ •	
								!
					,			1
:	<u></u>							

5/1/91 (Rev. 9-1-94)

NORTHWESTERN AQUATIC SCIENCES

IC SCIENCES PROTOCOL NO. NAS-XXX-CG4 SEDIMENT LARVAE TEST BASED ON PSEP PROTOCOLS

Test	: No. <u>53</u>	<u>4-5</u> 01	ient_		SAIC				nvestigator	
	15 - 14 - 12 (8/ 3	;+i7 5/97) }	nsR/6	12	WATER (QUALIT	Y RECO	RD		
	Beaker No.	Temp !(°C)			1. pH t)		<u>סס) (m</u>	<u>m) </u>	Comments	1
-	4	1:15	718.1	27.	5 7.5		011<0			
-	7		8 ' 8,0	25.	0 7.8		J1:<0			
	8	15.	7:8.1				SH Q.		·	
_	19	1150	8 8.1	37.	571	<u>'<</u>	יס∠יוני.	1011	<u></u>	
		1.4		!	!	<u>'<</u>				
_	,	• •		,	1	•		1		<u> </u>
_	;	1 () 	, <u>, , , , , , , , , , , , , , , , , , </u>	'			·	. 1		
-	1	! .						· · ·		
_	!	- 1 P	'	1			:			
-	,							· ·	· · · · · · · · · · · · · · · · · · ·	<u> </u>
_	I	· · ·		1		. <u></u>				<u> </u>
	1	÷	+		•			+		

Day 1 (/ /)

:	Beaker No	Ten) Sa ງຫ_) (ກ	al.; pH ot)	; ; (p;	וא 5 (מס) (mo	H3 ; om)!!	Comments	ļ
1	14		· · · · · · · · · · · · · · · · · · ·	· · · · ·		,		1		
تليه	7 F	1	i	2	,	•	1			l
1.35	3	11	!	!	1	ŧ	4	1		
} ∼	ifi	- t	:	1	,	1	I	4 1		1
!		11	1	!	1	l	1	1		
!		11	1	i	1	1	i			!
;		11	ļ	J	!	!	I	1		
,		1.1	1	1	}	:		11		1
		i l	!	!	1	1	!	1.1		
!		1	!	1	1	1	1	÷ Į		
1		· 1	ļ	!	1	1	1	. '		
1		1	L	1	ļ	1	1	- 1		

Day 2 (/ /)

Beaker No.	Tem !(°C) Sa ס Sa	al.; pH pt)	9 (pr	S NH om) (pr	13 om)	Comments	
	1.1	I	į	1	:	!			
	1	\$		1	!	!	1		
	: 1	•	+		•		1.1		
		:		1			1.1		
		1	1	1	1	:	11		
		;	!	!	•	1	+ 1		
	1 (i	!	1	1	1	11		
·	· •	1	· · ·	1	1	1	1.1		
	: '		t	1		1	1.1		
						· ·			
	1.1				i.				
	• •						· · ·		

- 5-

5/1/91 (Rev. 9-1-94)

NORTHWESTERN AQUATIC SCIENCES

PROTOCCL NO. NAS-XXX-CG4

13-14-97

1

7

SEDIMENT LARVAE TEST BASED ON PSEP PROTOCOLS

Test No. 534-5 Client SAIC Investigator

					JNT DA		- 1	3/97		
Beaker	Response	1	Beaker	1	Respon	se I		Beaker	Resp	onse
No.	N A	1	No.	11	<u>N 1</u>	<u>A . </u>	1	No. !	<u> N</u>	<u>م ا</u>
1 1	12061221	1	-19		evo C.	cnist	!	97	IQCC3	
2	1981371	<u> </u>	<u> </u>	1 3	-41!			98 91	1235	15
3	1 197 35 1	1	<u> </u>	212			!	<u>101 802 101</u>	1158	12
4	·	· 1	<u> </u>		<u>262'</u>			100 11	96	7
! 5	121 22	!	<u> </u>		278:	<u> </u>	!	101 121	118	1 6
5	137 25	<u>!</u>	54 E		2701	1	1	102 17:		141
1 7	1 1 <u></u> 1	1	55	: 1	۱ 	!	!	103 141	1210	1 / 3
9	· · ;	5	56	; 1	:	!	· .	104	!	:
. 9	1236:17	1	57	:		<u> </u>	'	105		!
10	169 221		58			!	!	106	:	1
11	89 76	:	39	- 1	!	i	,	107		<u>i</u>
12	120 61	1	60		1		:	108	į	ł
	128.46	1	61	1		!		109 '	1	1
' 14	212 23	!	62	11	t.	1	:	110	:	i .
15	100 73		63	: !		i	1	111	1	1
16	22.41 15	:	-64	3 1		į		112	i	1
17	207 30	1	35	1	1	!	1	113	1	1
18	1174136 1	1	66	1	!	:	1	114 !	I	ł
19 •	. //	1	ô7	11	:	1	,	115	ł	1
	116 20 1	1	68	: 1	1	1		116	ļ.	l
21	121 : 64 :		59	; ;	ł	!	!	117 ;	!	ļ
and the second	1 221 5114	Par I	3 70	11		!	i	113	1	I
23	120151	T	71			1		119	!	1
24	2021241	1	72	1	Ì	!	1	120 '	1	ļ
25	1 1 I	<u> </u>	73	i t	1	1	!	121	1	ł
26	1 1	;	74	11			1	122 :	1	1
27	1 1	1	75	÷]		ł	!	123	l	1
28	:1 1	1	76	1.1	!	1	1	124	ł	1
29	: 1 : 1	• !	77	1 !		į	1	125	1	
30		1	78	1	I	:	1	125 1	1 -	!
31		1	79				4	127	!	1
the second s	- i - i	1	30	! į	ļ		!	128	1	
33	1	1	81	11	ł	!	ł	129	1	į
		1	32	!	:	1		130 1	1	
			83	11	I		1	131 /	1	1
				1 1	I	!	1	132 1	1	1
37	· · · · ·	- 1			!	1		133	!	1
	: · · · · · · · · · · · · · · · · · · ·	1		11	1	1	1	134 '		1
	e ta esta esta esta esta esta esta esta		87	11	,	1	!	135	1	i
		-	38	11	1	1	1	136	1	1
	E E E E	Ī	89	11	1	!	;	137	1	
	2.1 j - 1	· <u> </u>	90	11	1	1		138	!	
43	1	1	91	1.1		1		139	1	!
- ++		· .	92		:				•	!
45	· · · · · · · · · · · · · · · · · · ·	· -	93		:				!	1
+6	(· ·	94		•	!			1	1
			95	:	,				!	1

AR 023450

1

- 6 -

5/1/91 (Rev. 9-1-94)

Test number 534-5

. • -- 5

• • .

Larval Sediment Test Randomization Key

	NAS	CLIENT	
В	KR ISMPL	IDESCRIP	REPL
	31swcontrol	ISWCORTO	1
	2 swcontrol	swcontrol	2
	14 swcontrol	swcontrol	3
	171swcontrol	swcontrol	4
	18 swcontrol	swcontrol	5
×	19iswcontrol	swcontrol	6
	1518670E	1C1	1
	21 18670E	C1	2
	1318670E	.C1	3
	11:8670E	IC1	4
	1218670E	C1	5
¥	7:8670E	C1	6
Γ	2318671E	,C2	1
	2018671E	1C2	2
	618671E	C2	3
	5-8671E	-C2	4
	1018671E	C2	5
*	818671E	.C2	6
	1;8672E	CARR4	i 1
	24 i8672E	CARR4	2
	1618672E	CARR4	3
	918672E	CARR4	4
	22!8672E	CARR4	5
×	418672E	CARR4	6

*water quality beakers

7/25/97

-7-

Endpoints Data Entry and Calculations File

ł –																							
ł.	er number																		·····				'
INIT			s (from avera	ge of ze	210-61	e count	5)				zero	000613	L										
~	M=number norma		·····								a	241	L		- 1			!		1			
A	=number apnorma	11									b	237											
٢.	AL=NORM+ABN										e	262			_								
PSL	JRV=percent surviv	a=100(TOT	ALANIT								đ	278				1	1	;			1	:	
PNC	RM=percent norm	al= 100(NOF	MTOTAL)								e	270	1	:	; ;		1	1	i				
P	N=percent combin	ed survival a	and normal=1	00/NO	RMIN	T)					Mean =	258	-							······			
P	IRT=percent morta	Intv=100((IN	T-TOTAL VIN	(IT)						·					. :	· · · · · ·		1					
PAB	N=percent abnorm	antv=100(A	BN/TOTAL :				•								1			·····		· · · · ·		<u>_</u>	<u> </u>
PAB	ND=combined per	cent monalit	v and abnom	naiity=1	00((IN	IT-NOR					NS (mean	TS (mean									. <u> </u>		<u> </u>
N	Innormalized perci	ent mortality	= 100(1-(TOT)				- <u>-</u>				normal)	(total)		······									·
-	where TS=aver					controls	· · ·				197.6				1 .	· · ·						<u> </u>	
Nue	A=normalized con						~	(NISI)				1 23.0			+ + + + + + + + + + + + + + + + + + + +		· · · ·		i	<u> </u>	1		
	where NS=ave					<u> </u>	_								<u> </u>	· · ·	·						
	ANGLE NO-SVE	age of nom			364W4	tter com	1013																
-												n SW cont							·				
-	······										relative (D		L		1 1								
										·		76.7							•				
	NAS	CLIENT	••••••												·				•				
IN	BKR:SMPL		REPINIT	NOR		OTALIE	SURVIP	NOP	PCSN	PMOR	PARN	PABND	NPM	NCMA ·		26110		0000					
—	1 JISWCONSTDI	Swcontrol	258	197 ;	_	2321	90.11	34.91		3.9	:5.1		-1.01	0.3.		PSUR I	NUR	PCSNIF	MORT	PABN	PABNO		NCMA
-	2. 2. swconizol	swcontrol	2: 258	1981	37	2351	91.2!	84.31		3.8	15.7		-2.31	-0.21	Mean	69.21	85.9	76.7	10.81	14.11			
	3 14-swconirol	swcontrol	3, 258)	2121	231	2351	91.21	90.21	52.31	3,81	9.8		-2.31	-7,3;	S.D.	4,41	2.91	5.71	4.41	2.9;	23.3	4.91	0.0
	4. 17 swcontrol	SWCONTO!	±: 2581	207 :	301	2371	92.01	67.3	30.41	3.01	:2.7		-3.1!	-4.81	. n	5	51	51		2.31			/ .•• 5
	5 18 swcontrol	swcontrol	5i 258i	174	361	2101	81.5	32.91	67.51	18.5	17.1	: 32.5i	3.61	11.91							·····		
	ó 19-swcontrol	swcontrol	5 2 58 1			Di.	0.01 #	DIV/0!!	0.01	100.01	#0IV/0!	:00.01	:00.01	100.0									
_	7 15 867CE	Ç1	1. 2581	1001		1831	71.01	54.6)	38.81	29.0.	35.4	61.2!	20.41	49 41									
	3 21 867DE	01	2:2581	121:	641	185;	71.8i	55.4		28.2	34.6		19.5	38.81	Meani	69.21	62.61	43.31	30.81	37.41	56.7	22.5	43.5
	9 13-867DE	<u>C1</u>	3 258	128	46	174	67.5i	73.61	49.7	32.5	26.4		24.31	35.2	S.D	3,31	8.31	6,41	3.31	8.31	6.41	3.71	8.3
	3 11 8670E	C1	4 258	1201	76 · 64 ·	165	54.11	53.9	34.5	35.91	46.1		28.2	55 0;	n .	51	51	51	51	5;	5;	5.	5
-	2 7'8670E		51 2581	1201	04:	1841	71.41	65.21 DIV/01	46.6	28.61	34 8		19,91	39.3					-				
	13 23.8671E	C2	11 2581	1201	51	171	66.41	70.21	46.51	33.61	29.8		25.61	29.3				:	·				
-	20:8671E	C2	2:258	116	201	1361	52.81	85.3	45.01	47 2	14.7		40.8	41,31	Meani	62.41	81.51	50.81	77.61	10.5	10.21		
	-8671E	C2	31 2581	1371	351	172	56.81	79.71	53.21	33.21	20.3		25.21	30.7	S.D. i	7.8	7.01	7.11	37.61	18.5i	49.21	30.01	33.8
	18671E	C2	4. 2581	1211	22 :	1431	55.5 i	84.6	47.01	44.5	15.4		37.8	38.81	n	51	51	51	51	51	51	51	<u> </u>
—	10.8671E	C2	5: 258:	1601	22 :	1821	70.71	87.9	62.11	29.3	12.1	37.91	20.81	19.01				,					
	181 8-8671E	C2	61 2581		_	0 1	0.01#		0.01	100.01	#DIV/0!	100.01	100.01	100.01	1	;							
	19 1.8672E	ÇARR4	i: 258)	206)	22:	2281	38.51	90.41	80.01	11.5	9.ô	i 20.01	J.81	-4.31					,				
): 24-8672E	CARR4	2: 258)	202!	24:	2261	87.71	89.41		12.3	10.6		1.71	-2.2	Meani	91.71	92.21	84 51	8.31	7.81	15.5	-2.81	-10.2
	1 16:86725	CARR4	3: 258	2241	151	2391	92.81	93.71	87.01	7.21	6.3		-+ 01	-13,41	: S.D.	4.21	2.11	5.41	4.21	2.1:	5.41	4.71	7.0
	2 9-8672E	CARR4	4 258	2361	17!	2531	98.21	93.31	91.61	1.81	5.7		-10.11	-19,41	1 0	51	51	51	51	51	51	51	5
	23: 22:9672E 24: 4:8672E	CARR4 CARR4	512581	2211	141	2351	91.21	94.0	85.81	18.5	6.0		-2.31	-11.8	<u> :</u>				1			1]
لنسبية	44. 4.00/25		· 0, 2381			UI	U.U1 #	DIV/0!I	0.01	100.01	#DIV/0!	100.01	100.01	100.01	1 1								

-8--

Count data variériel rejeanet somebalet gfisht B

				١	Wat	er (Qua	lity D	ata	Fi	le						
	NAS	CLIENT	· i		:					1	1	<u> </u>		;			1
BKR	SMPL	DESCRIP	REPLID	XY 17	EMP	DO !	SAL I	PH IS	NH:	3	1						
	418672E	CARR4	6	01	16.01	8.41	29.01	7.81<0.0	01 0.	31	<u> </u>						
	718670E	C1	6	01	15.9	8.31	29.0	7.71<0.0	01 <0.1	1		TEMP!	DO	SAL	PH	S	INH:
	818671E	C2	61	01	15.91	8.4	29.01	7.8 <0.0	01 0.	3	Mean	15.6	8.2	28.1	7.9		1
	19ISW Cont	SW Cont	61	0	16.0	8.4	28.01	7.8 <0.0	01 <0.1	1	SD	0.31	0.2	0.5	0.1		
•	418672E	CARR4	61	11	15.11	8.4	28.0	7.9	1	1	n	16	16	16	161	8	N - 1
	718670E	C1	61	11	15.11	8.31	28.01	8.01	1	t	Max	16.0	8.4	29.0	8.01	<0.01	1 0.1
	818671E	C2	61	1	15.11	8.41	28.01	7.91	ł	I	Min	15.1	8.0	27.5i	7.7	<0.01	<0.
	19ISW Cont	SW Cont	61	1	15.11	8.41	28.0	7.91			1	: 1		l	1		
	418672E	CARR4	6	2!	15.61	8.11	28.01	7.91	•		i	I I	_				1
	718670E	C1	6	2!	15.7	8.1	28.01	7.8	,	1		!]					1
	818671E	C2	6 i	21	15.61	8.1	27.5	7.91		1	1				1		1
	19iSW Cont	SW Cont	61	2:	15.71	8.21	28.01	8.01	:	1	1	: [!
	4:8672E	CARR4	. 6i	31	15.71	8.1	27.5i	7.9i <0 .	01 <0.	1!		1		1			
	7.8670E	C1	61	31	15.81	8.0	28.01	7.8 <0.	01:<0.	1 :	,	· .					!
	818671E	C2	61	31	15.71	8.1	28.0	7.91<0.	011 0.	.2				1			1
	19;SW Cont	SW Cont	- 6 i	3!	15.8	8.1	27.5	7.91<0.	01 <0.	1							

Ven Eus against inchsent

Echinoderm Larval Test

8/22/97

				;	1	
			Normal La	rvae	i	
Beaker		Initial Cou	int .	QC Cou	nt	
No.	Non	mal Abr	normal :No	rmal Ab	normal (cv(normal
9		2361	17	235	15	(
101		1601	22!	158	21	
111		891	761	961	72	
12		1201	611	1181	661	
131		1281	46	1401	411	
141		212	23	210	17	
					i	
		::			!	
		250 -		ing in a second	•••••	
	QC Count	200 - 150 - 100 - 50 ÷	• • • • • • • • • • •	• 150 200	• • •	
	QC Count	200 - 150 - 100 - 50 ÷		• 150 200 Count	•	
	GG Count	200 - 150 - 100 - 50 - 0 - 0	Initial	Count	250	
	GC Count	200 - 150 - 100 - 50 - 0 - 0	Initial		250	

Verifiend spinst Lochsleed

CUSTODY SEAL 02 Sample No. Person Collecting Sample Time Collected Date Collected CUSTODY SEAL Person Collecting Sample Sample No. Date Collected Time Collected __ Received 7.22-97 SAIC 11:30 5 į,

-12-

ROM : NHS TOXICOLOGY LAB	PHONE NO. : 541 265 28	534 Aug. 22 199 ⁻	7 02:10PM P1
1	PACKING LIST	PACKING LIST NO.	013843
MARINUS, IN 1500 Pier C Stri Long Beach. CA 9	EET •NEW ADDRESS•	DATE 7/29/97	
(310) 435 6522 FAX	310 495 3120	SAME AS SOLD TO UNLESS OTHER	WEE INDICATED HERE
BOLD TO NORTH WEST AQUATIC SCI	ENCES	NOWEST	
GARY BUHLER			
5144 YAQUINA BAY ROAD			
NEWPORT, OR 97365			
OUR ORDER NO. YOUR ORDER NO. CARTONS PRE	DB. TOTAL WEIGHT PPD. DA	COLL SHIPPED VIA Fedrex Good	racet
OUANTITY OUANTITY ORDERED BACK-ORDO. SHIPPED		DEBCRIPTION	
150 150 Den	draster a	20115	
2 CONTAINERS	• · · · ·	B900 •	
(rec'd 7-30-97)			
	PLEASE NOTIFY US MMM	EDIATELY IF ERROR IS FOUND IN SHIPMENT.	
PACKED BY	· · · · · · · · · · · · · · · · · · ·	CHECKED BY	

-13-

Reference Toxicant Test

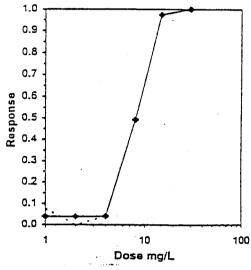
		2.00			Tital and t		ment Test			COXICO -		
	7/31/97 20		Test ID:				Sample (D)	-	REF-Ref			
	3/3/97 13:						Sample Ty	•		amium chio		
role Date:			Protocol:	-E.ºAW 95	-EPA West	Coast	Test Speci	es:	UE-Denar	aster excer	incus	
nents:			3									
-mg/L	1	2	1.0000	4 0.9669					·	<u>_</u>		
D-Control	1.0000											
. 1	0.9959	0.8430	1.0000	1.0000								
2	1.0000	0.9835	1.0000									
4	1.0000		1.0000									
8	0.9298	0.9793	0.9545									
15	1.0000	0.9876	0.9380									
30	1.0000	1.0000	1.0000	1.0000								
			Ť	ranstorm:	Arcsin Sq	uare Ro	ot	Rank	1-Tailed	_		
onc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical			
D-Control	0.9917	1.0000	1.5010			5.020						
1	0.9597	0.9677	1.4368			12.731	4	16.00	10.00			
2	0.9959	1.0042				3.195	4	18.50	10.00			
4	1.0000	1.0083				0.000		20.00	10.00			
- 8	0.9576	0.9656				3.834		11.50	10.00			
15	0.9814	0.9896				7.070		16.00	10.00			
30		1.0083				0.000		20.00	10.00	÷		
ary Tes	ts						Statistic		Critical		Skew	Kurt
-Wilk's	Test indic	cates non-	normal di	ștribution ((p <= 0.01)		0.83126		0.896	•	1.8306	4.7775
luality of var			A . /									
,	nance can	not be cor	TIMPER (
pothesis T	'est (1-tail	, 0.05)	NOEC		ChV	ти					<u> </u>	
ypothesis T al's Many-	'est (1-tail	, 0.05)	NOEC) LOEC >30	ChV	TU		<u></u>				
pothesis T	'est (1-tail	, 0.05)	NOEC									
pothesis T	'est (1-tail	, 0.05)	NOEC			TU Respons	se Plot			· · · · · · · · · · · · · · · · · · ·	<u></u>	
pothesis T	'est (1-tail	, 0.05)	NOEC				se Plot	······································		. <u> </u>		
pothesis T	'est (1-tail	, 0.05)	NOEC				se Plot			·		
pothesis T	est (1-tail One Rank	, 0.05)	NOEC				se Plot			· · · · · · · · · · · · · · · · · · ·		
pothesis T	'est (1-tail	, 0.05)	NOEC				se Plot			- <u> </u>		
pothesis T	est (1-tail One Rank	, 0.05)	NOEC				se Plot Ŧ					
pothesis T	est (1-tail One Rank 0.9 0.8	, 0.05)	NOEC				se Plot					
pothesis T	est (1-tail One Rank 0.9 0.8	, 0.05)	NOEC				se Plot					
pothesis T	est (1-tail One Rank 0.9 0.8	, 0.05)	NOEC				se Plot					
pothesis T	est (1-tail One Rank 0.9 0.8	, 0.05)	NOEC				se Plot	1				
pothesis T	est (1-tail One Rank 0.9 0.8	, 0.05)	NOEC				se Plot					
pothesis T	est (1-tail One Rank 0.9 0.8	, 0.05)	NOEC				se Plot					
pothesis T	est (1-tail One Rank 0.9 0.8	, 0.05)	NOEC				se Plot					
pothesis T	est (1-tail One Rank 0.9 0.8 0.7 0.6 0.7 0.6 0.7 0.6 0.5 0.7 0.5 0.6 0.5	, 0.05)	NOEC				se Plot	1				
pothesis T	est (1-tail One Rank 0.9 0.8	, 0.05)	NOEC				se Plot					· · · · · · · · · · · · · · · · · · ·
pothesis T	est (1-tail One Rank 0.9 0.8 0.7 0.8 0.7 0.6 0.5 0.5 0.5 0.2 0.2	, 0.05)	NOEC				se Plot					
pothesis T	est (1-tail One Rank 0.9 0.8 0.7 0.8 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.2 0.3 0.2 0.2 0.1	, 0.05)	NOEC				se Plot					
pothesis T	est (1-tail One Rank 0.9 0.8 0.7 0.8 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.2 0.1	, 0.05) Test	NOEC	>30				1				
pothesis T	est (1-tail One Rank 0.9 0.8 0.7 0.8 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.2 0.1	, 0.05) Test	NOEC				Ŧ	5	30			
pothesis T	est (1-tail One Rank 0.9 0.8 0.7 0.8 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.2 0.1	, 0.05) Test	NOEC	>30			Ŧ	15	30			
pothesis T	est (1-tail One Rank 0.9 0.8 0.7 0.8 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.2 0.3 0.2 0.2 0.1	, 0.05) Test	NOEC	>30			Ŧ	5 T	30			
pothesis T	est (1-tail One Rank 0.9 0.8 0.7 0.8 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.2 0.1	, 0.05) Test	NOEC	>30			Ŧ	15	30			
pothesis T	est (1-tail One Rank 0.9 0.8 0.7 0.8 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.2 0.1	, 0.05) Test	NOEC	>30			Ŧ	55	30			
pothesis T	est (1-tail One Rank 0.9 0.8 0.7 0.8 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.2 0.1	, 0.05) Test	NOEC	>30			Ŧ	5	30		AR 02	2345
pothesis T	est (1-tail One Rank 0.9 0.8 0.7 0.8 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.2 0.1	, 0.05) Test	NOEC	>30			Ŧ	ţ.	30		AR 02	2345
pothesis T	est (1-tail One Rank 0.9 0.8 0.7 0.8 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.2 0.1	, 0.05) Test	NOEC	>30			Ŧ	15 T	30		AR 0	2345
pothesis T	est (1-tail One Rank 0.9 0.8 0.7 0.8 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.2 0.1	, 0.05) Test	NOEC	>30			Ŧ	15	30		AR 02	2345
vpothesis T al's Many-d	est (1-tail One Rank 0.9 0.8 0.7 0.8 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.2 0.1 0.7	, 0.05) Test	NOEC	>30	Dose-f	Respons	æ	5	30			• .
pothesis T	est (1-tail One Rank 0.9 0.8 0.7 0.8 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.2 0.1 0.7	, 0.05) Test	NOEC	>30	Dose-f		æ	15	30		AR 0	۰.

						-	
			Sivalve L	arvai Surviv	ai and Developr	nent Test-Prop	
art Date:	7/31/97 20	00:00	Test :D:	299-782		Sample ID:	REF-Rer Toxicant
End Date:	3/3/97 13:	00	Lap ID:	CRNAS-Nor	thwestern Aquat	Sample Type:	
ample Date:			Protocoi:	EPAW 95-E	PA West Coast	Test Species:	DE-Denoraster excentricus
ments:							
:-mg/L	1	2	3	1			
D-Cantrol	0.9711	1,0000	1.0000	0.9421			· · · · · · · · · · · · · · · · · · ·
. 1	0.8471	0.7934	0.9711	1.0000			
2	1.0000	0.9339	1.0000	0.9793			
.4	0.9711	0.9132	0.9463	0.9256			
8	0.4215	0.4380	0.6240	0.5041			
15	0.0124	0.0124	0.0331	0.0455			
30	0.0000	0.0000	0.0000	0.0000			

			Tra	anstorm:	Arcsin So	uare Root	t		1-Tailed		Number	Total
Conc-mg/L	Меап	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
D-Control	0.9783	1.0000	1.4513	1.3279	1.5386	7.241	4				21	968
1	0.9029	0.9229	1.3016	1.0989	1.5386	15.650	4	1.846	2.410	0.1954	94	968
2	0.9783	1.0000	1.4537	1.3107	1.5386	7.494	4	-0.029	2.410	0.1954	21	968
4	0.9390	0.9599	1.3258	1.2718	1.3999	4.246	.4	1.548	2.410	0.1954	59	968
-8	0.4969	0.5079	0.7825	0.7066	0.9107	11.841	4	8.249	2.410	0.1954	487	968
*15	0.0258	0.0254	0.1552	0.1116	0.2148	33.538	4	15.986	2.410	0.1954	943	968
30	0.0000	0.0000	0.0321	0.0321	0.0321	0.000	4				968	968

Auxiliary Tests			-		Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates no	ormai distribu	tion (p >	0.01)		0.97492		0.884		0.13467	0.03207
artlett's Test indicates equal va	ariances (p =	0.24)			6.78542		15.0863			
hypothesis Test (1-tail, 0.05)	(NOEC)	LOEC	ChV	τυ	MSDu	MSDp	MSB	MSE	F-Prob	df
Durnett's Test	4	6	5.65685		0.08172	0.08289	1.06457	0.01315	1.1E-11	5,18

				Max	imum Likeliho	od-Probit					
Parameter	Value	SE	95% Fidu	cial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
<iope< td=""><td>7.22283</td><td>1.30503</td><td>3.59947</td><td>10.8462</td><td>0.02169</td><td>67.7567</td><td>13.2767</td><td>6.8E-14</td><td>0.91019</td><td>0.13845</td><td>7</td></iope<>	7.22283	1.30503	3.59947	10.8462	0.02169	67.7567	13.2767	6.8E-14	0.91019	0.13845	7
tercept	-1.5742	1.24782	-5.0 38 7	1.89035							
1 SCR	0.04717	0.01496	0.00563	0.0887		1.0 -				<u> </u>	
Point	Probits	mg/L	95% Fidu	cial Limits		0.9		1	7/ 1		
201	2.674	3.87355	1.52356	5.24696		0.5		/			
205	3.355	4.81351	2.49245	6.10822		0.8		1	/		
EC10	3.718	5.40457	3.12526	6.6 387	•	0.7		<u> </u>	1		
F-015	3.964	5.84383	3.63494	7.03347				- H			
- 220	4.158	6.21827	4.09303	7.37405		g 0.6 -					
LC25	4.326	6.55857	1.52551	7.58997		esnors		1			
50-10	4.747	7,50095	5.77382	8.62898				- Ti-			
250)	5.000	(8.1319)	<u>6.60924</u>	9.35435		₽ 0.4					
260	5.253	8.81592	7.4584	10.2864		0.3		Ľ			
EC75	5.674	10.0827	8.77308	12.5195		0.2		. [·			
= ∙⊃80	5.842	10.6344	9.25107	13.6895		0.2		/ //			
235	6.036	11.3158	9.78786	15.2748		0.1		11			
_390	6.282	12.2355	10.4487	17.6319		0.0		∳ /			
EC95	6.645	13.7379	11.4317	21.9624				10		100	
299	7.325	17.0716	13.386	33.5199			1	Dose m		100	


gnificant neterogeneity detected (p = 5.75E-14)

-16 -

Reviewed by:____

الح Bivarve Larval Survival and Development Test-Proportion Normat- ا ت Date: 7/31/97 20:00 Test ID: 999-782 Sample ID: 7 REF-Ret Toxica	
L T Date: 7/31/97 20:00 Test ID: 999-782 Sample ID: 725-24t Toylog	
	Int
nd Date: 8/3/97 13:00 Lab ID: ORNAS-Northwestern Aquat Sample Type: (CDCL-Cadmium	
mole Date: Protocol: EPAW 95-EPA West Coast Test Species: DE-Dendraster	excentricus
ients:	
ng/L 1 2 3 4	
-Control 0.9711 1.0000 1.0000 0.9421	
1 0.8471 0.7934 0.9711 1.0000	
2 1.0000 0.9339 1.0000 0.9793	
4 0.9711 0.9132 0.9463 0.9256	
8 0.4215 0.4380 0.6240 0.5041	
15 0.0124 0.0124 0.0331 0.0455	
30 0.0000 0.0000 0.0000	

				Line	ar interpoia	tion (80 Re	samp	pies)	
Point	mg/L	SD	95% C	L(Exp)	Skew				
C-5	4.0874	1.5221	0.0000	4.4155	-0.7005				······································
IC)	4.5299	0.1359	4.0241	4.8408	0.1032				
C15	4.9724	0.1492	4.5066	5.4469	0.2304	· ·	1.0 -		
1520	at.4150	0.1764	4.9307	5.9773	0.4189			T T	
	(5.8575	0.2122	5.3618	6.6176	0.5828		0.9] /	
īc. J	7.1850	0.3430	6:5246	8.6282	0.8269		0.8	4 /	
C50	8.1151	0.4883	7.2219	10.0096	0.6232		0.7	1 /	
								{	
						58	0.6	1 /	

Reviewed by:_____

-17-

			arvai Survivai a			Test (D: 999-7	W <u>95-</u> EPA We	est Coast
			raster excentric				CDCL-Caomi	
		_	ef Toxicant	End Date: 8/3			S-Northweste	
start	Uate:	131191	20.00		Final	Total	Numper	
		B	Group	Initial Density	Density	Counted	Normal	Notes
sد_		Repi	D-Controll	2421	2451	2421	2351	
		2	D-Controll	2421	2621	2421	2591	
	2	2	D-Controll	2421	2651	2421	2571	· · · · · · · · · · · · · · · · · · ·
			D-Controll	242	2341	2421	2281	
	4		1.000	2421	241	2421	205	
	<u>></u> 6	2	1.000		2041	2421	1921	
	7		1.000		2431	242	235	
	8		1.000	2421	2501	2421	2421	••••••••••••••••••••••••••••••••••••••
	3		2.000		2531	2421	2491	
		2	2.000		2381	2421	2261	
			2.000		2621	2421	2491	
	12		2.000		247	2421	2371	
	1 13		.000		2511	2421	2351	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	14	121	000.L		251	2421	2211	
	1 15	1 3 1			244	2421	2291	
	16		4,000		2431	2421	2241	
	1 17		5.000		2251	2421	1021	
	1 18	2	3.000		2371	2421	1061	
	1 19		000.6		2311	2421	151	
	20		3.000		2341	2421	122	
	1 21		15.000		2461	2421	31	
	22	2	15.000	2421	239	2421	31	
	23	131	15.000	2421	227	2421	81	
	24	4	15.000	2421	246	2421	11	
	1 25	111	30.000	2421	260	242	0	
_	26	21	30.000	242	251	242	01	
	27	3 1	30.000	242	2421	2421	01	· · · · · · · · · · · · · · · · · · ·
	28	4	30.000	2421	2551	242	01	

Comments:

-18-

Reviewed by:

AR 023461

### PARAMETRIX, INC.

Sediment Monitoring Bioassays -20-Day <u>Neanthes</u>

AR 023462



An Employee-Owned Company

Parametrix, Inc.

.:::08 Lu-le Washington Blvd, M.E., Kir-Jand, WA 26033-7350 -:::5-822-3830 • Flor: -:25-839-8608



September 3, 1997 55-1738-63 (01)

Ms. Lisa Roach SAIC, INC. 18706 North Creek Parkway, Suite 110 Bothell, Washington 98011

### SUBJECT: HAMM CREEK SEDIMENT MONITORING BIOASSAYS

Dear Ms. Roach:

Please find enclosed one bound and one unbound copy of the final report for Hamm Creek sediment monitoring bioassays and a diskette containing the final report and data tables.

Testing consisted of sediment bioassays conducted on two composite samples and one reference station using *Neanthes arenaceodentata*. All tests were conducted according to the Puget Sound Dredged Disposal Analysis Program (PSDDA) and Puget Sound Estuary Program (PSEP) with Sediment Management Annual Review Meeting 1996 modifications.

Control sediment location is as follows:

West Beach Control Sediment	
Location:	North Whidbey Island, Washington
Latitude and Longitude:	48°23.00′N,122°40.00′W
LORAN C TDD Readings for Station:	28481.0 by 42338.8
Grain Size Distribution:	100% sand

Should you have any questions or comments concerning the results, please call me at (425) 822-8880. Thank you.

Sincerely,

PARAMETRIX, INC.

Nathaniel Merrill Project Manager, Toxicology Laboratory

Enclosures

cc: D. Ormerod

😸 Рипска с Пяксьегор Раран

### SEDIMENT MONITORING BIOASSAYS

Prepared for

SAIC, INC. 18706 North Creek Parkway, Suite 110 Bothell, Washington 98011

Prepared by

PARAMETRIX, INC. 5808 Lake Washington Blvd. N.E. Kirkland, Washington 98033

### AUGUST 1997

### SIGNATURE PAGE

Submitted by:

Parametrix's Environmental Toxicology Laboratory 5808 Lake Washington Blvd. NE Kirkland, Washington 98033

Prepared by:

Natherill

Nathaniel Merrill Manager, Toxicology Laboratory

Approved by:

Dayle/Ormerod Manager, Toxicology Laboratory

Date

Approved by:

Charles S. Wisdom, Ph.D. QA/QC Officer

AR 023465

#### TABLE OF CONTENTS

EXEC	UTIVE SUMMARY OF TEST RESULTS i	v
1.	INTRODUCTION	1
2.	METHODS AND MATERIALS         2.1       Procedures         2.2       Test Sediment         2.3       Control and Reference Sediment	2 2
3.	RESULTS	4 4
4.	REFERENCES	5

### DATA TABLES:

Neanthes arenaceodentata (Polychaete worm)

### APPENDICES:

- A Chain-of-Custody Form
- B Ammonia and Sulfide Water Quality Data

### LIST OF TABLES

### Table

#### Page

1.	Summary of test conditions for the 20-day Neanthes sp. bioassay	3
2.	Summary of test results	4

iii

Parametrix, Inc.

August 1997

### AR 023466

Page

### EXECUTIVE SUMMARY OF TEST RESULTS

	Neanthes sp.				
Station	Mortality (%)	Mean Growth Rate (mg)			
Control	8	0.92			
C1	8	0.91			
C2	0	0.59			
N2 (Cart 4)	4	0.84			
Reference Toxicant (LC50)	11	ppm Cd			

Parametrix, Inc.

August 1997

### 1. INTRODUCTION

Parametrix's Environmental Toxicology Laboratory was contracted by SAIC, Inc. to perform bioassays on two sediment samples and one reference sediment for Hamm Creek restoration project using *Neanthes arenaceodentata* (benthic dwelling polychaete worm) as the test organism.

All tests were conducted according to the Puget Sound Dredged Disposal Analysis Program (PSDDA) and Puget Sound Estuary Program (PSEP). In addition, the interim growth rate and mortality guidelines for the *Neanthes* bioassay were followed according to the Sediment Management Annual Review Meeting (SMARM) presented on 3 and 4 May 1995.

Parametrix, Inc.

1

August 1997

### 2. METHODS AND MATERIALS

#### 2.1 Procedures

The bioassays were conducted according to the Parametrix protocol #1059:

 Bioassay Procedures for Conducting Static-Renewal 20-Day Chronic Sediment Toxicity Tests According To Recommended Guidelines for Conducting Laboratory Bioassays On Puget Sound Sediments (PSWQA, 1995) Using the Polychaete Neanthes sp.

A summary of test conditions is provided in Table 1. In addition to the biological observations, total ammonia and sulfide measurements were taken at initiation and termination of the *Neanthes* sp. tests.

#### 2.2 Test Sediment

Sediment samples were provided to Parametrix's Environmental Toxicology Laboratory located in Kirkland, Washington on 21 July 1997. Upon arrival, appropriate chain-ofcustody (COC) procedures were followed: sample labels were checked against the chain-ofcustody form, containers inspected for damage during shipment, and sediment volumes were determined to be adequate. After completing the COC procedures, the samples were purged with nitrogen gas and stored in a refrigerator set at 4°C until test initiation. All bioassays were initiated within eight weeks of sample collection. Copies of the COC forms are located in Appendix A.

#### 2.3 Control and Reference Sediment

The control sediment used for the Neanthes bioassay was collected from West Beach in Whidbey Island, Washington. Prior to initiation of the Neanthes test, the control sediment was sieved through a 500  $\mu$ m screen and washed with clean seawater to ensure that no amphipods remained in the sediment. The reference sediment was collected on 21 July 1997 and provided by SAIC, Inc. personnel.

Parametrix, Inc.

August 1997

ob Name: SAIC, Inc.	Job Number: 55-1738- Test Date: 24 July - 13 August 199
Test Protocol:	Parametrix Protocol #1059. Bioassay Procedures for Conducting Static-Renewal 20-Day Chronic Sediment Toxicity Tests According To Recommended Guidelines for Conducting Laboratory Bioassays On Puget Sound Sediments (PSWQA 1995) Using the Polychaete Neanthes sp.
Test Material:	Sediment provided by SAIC, Inc.
fest Organisms:	Neanthes arenaceodentata (polychaete worm)
Source:	Dr. Don Reish; Long Beach, California
Number/Container:	Five
Test Concentrations:	175 mL of sediment in 950 mL of seawater
Replicates:	Five
Reference Toxicant:	Cadmium, as cadmium chloride
Test Duration:	20 days
Dilution Water:	Natural seawater collected from National Marine Fisheries Service; Mukilteo, Washington
Test Chambers:	1 liter glass beakers
Lighting:	Continuous overhead lighting
lemperature:	20 ± 1° C
Aeration:	Gentle aeration at <100 bubbles/minute
Renewals:	Every third day
Feeding:	Ground TetraMarin [®] every other day (40 mg dry wt/test vessel)
Chemical Data:	Salinity, temperature, pH, and dissolved oxygen of overlying water at initiation and every third day; ammonia and sulfide at initiation and test termination. Interstitial salinity at test initiation.
Effect Measured:	Mortality and growth
Test Acceptability:	Mean control mortality $\leq 10\%$ , and $\geq 0.72$ mg/day growth

Table 1. Summary of test conditions for the 20-day Neanthes sp. bioassay.

Parametrix, Inc.

3

August 1997

### 3. RESULTS

#### 3.1 Test Results

A summary of bioassay results is located in the Executive Summary and in Table 2. The results of the ammonia and sulfide analyses are given in Appendix B. All original raw data, chain-of-custody forms, and project notes are maintained in Parametrix project files.

Test acceptability criteria were met for all tests. No toxicity was observed for survival or growth in sample C1. Toxicity was observed for growth only in sample C2. No effects were observed in the reference sample.

	Neanthes sp.		
Station	Mortality (%)	Mean Growth Rate (mg)	
Control	8	0.92	
C1	8	0.91	
C2	0	0.59	
N2 (Carr 4)	4	0.84	
Reference Toxicant (LC50)	11	ppm Cd	

4

#### Table 2. Summary of Test Results

Parametrix, Inc.

August 1997

#### 4. REFERENCES

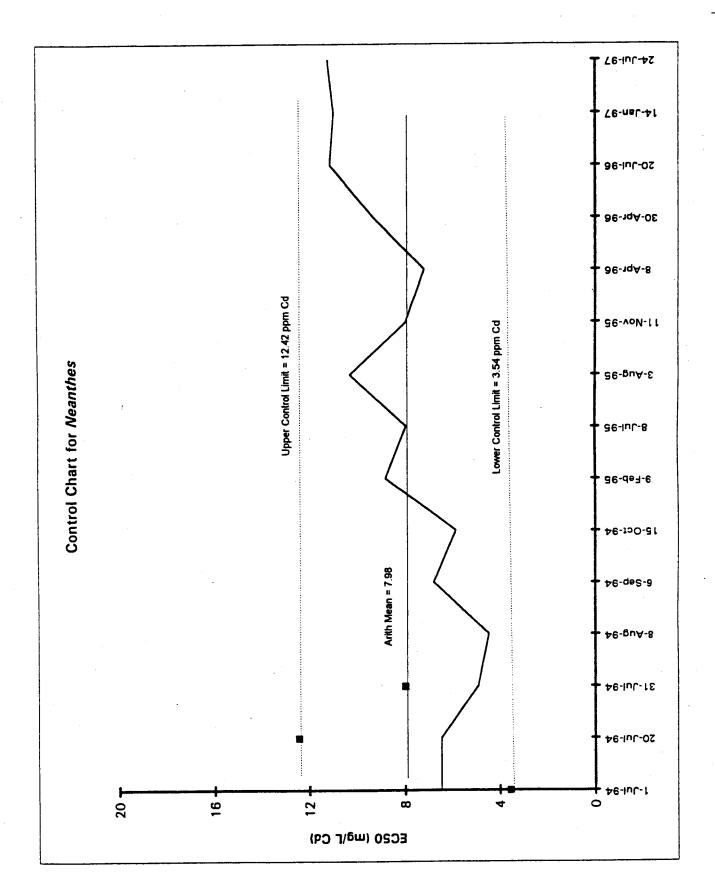
- Hamilton, M.A., R.C. Russo, and R.V. Thurston. 1977. Trimmed Spearman-Karber Method for Estimating Median Lethal Concentrations in Toxicity Bioassays. Environ. Sci. Technol. 11(7):714-719; Correction 12(4):417 (1978).
- Parametrix, Inc. 1995. Protocol #1059. Bioassay Procedures for Conducting Static-Renewal 20-Day Chronic Sediment Toxicity Tests According To Recommended Guidelines for Conducting Laboratory Bioassays On Puget Sound Sediments (PSWQA, 1995) Using the Polychaete Neanthes sp. Parametrix, Inc., Kirkland, Washington.
- PTI Environmental Services. 1991. Recommended guidelines for conducting laboratory bioassays on Puget Sound sediments. U.S Environmental Protection Agency, Region 10. Puget Sound Estuary Program (PSEP).
- Puget Sound Water Quality Authority. 1995. Recommended guidelines for conducting laboratory bioassays on Puget Sound sediments. U.S. Environmental Protection Agency, Region 10.
- U.S. Army Corps of Engineers. 1989. Puget Sound Dredged Disposal Analysis (PSDDA) Management Plan Report, unconfined open-water disposal of dredged material phase II (north and south Puget Sound). U.S. Army Corps of engineers, Seattle district; U.S. Environmental Protection Agency, Region 10; Washington State Department of Natural Resources; Washington State Department of Ecology; Seattle, Washington.

Parametrix, Inc.

August 1997

Neanthes arenaceodentata

1997
August
3
7
I July
24
bioassay,
- Neanthes
- SAIC -
<b>Creek</b>
Нашы


-
5
9
-
<u>ن</u> ا ا
. 8
3
-

									Dry Weight Total	Total	Mcan	St Dev	Individual	Mcan	St Dev	Growth	Mcan	St Dev	
	4		hend		đ	Station 9	Station % Mortality	Weisht	of Pan and Biomass	Biomass		Total		Individual	Individual	Ratio	Growth	Growth	d
Station	9 9	Alive	Dead		Mortality	/ Mortality	Dead Mortality Mortality Std. Dev.	Jo		(gm)	i	) Biomass	(mg/org.)	(mg/org.) Biomass(mg) Biomass	Biomass	Endpoint	Ratio	Ratio	Valuc
								9) CC	75 97	1 84	77.1	0.41	0.8	0.7	0.1				
T INICIAL								24.75	27.64	2.91	<b>,</b>		0.6						
	4 <del>6</del> 0							21.00	24.07	3.07			0.6						
ย	101N	Ś	0	0	0	0	0.0	81.94	149.88	67.94	62.03	11.97	13.6	12.4	2.4	0.65	0.59	0.12	0.017
}	N102	ŝ	0	0	0			84.39	166.92	82.53			16.5			6.0			
	N103	Ś	0	0	0			86.15	135.04	48.89			9.8			0.46			
	NIO	ŝ	0	0	0			86.18	141.97	55.79			11.2			0.53			
	N105	S	0	0	0			uu	127.23	<b>5</b> 5.01			11.0			0.52			
5	N106	Ś	0	0	0	80	9.80	86.17	168.94	82.77	85.54	9.30	16.6	18.8	2.7	6,70	16:0	0.13	0.275
	N107	S	0	0	0			71.97	15551	81.54			16.3			0.78			
	N108	4	0	Ţ	20			73.87	168.69	94.82			23.7			1.15			
	601N	4	0	-	20			76.56	148.22	71.66			17.9			0.86			
	N110	÷	0	0	0			84.76	181.69	96.93	,		19.4			0.94			
N2 (Cart 4)		4	0	-	20	4	8.00	83.90	160.57	76.67	83.59	15.44	19.2	17.5	3.1	0.93	0.84	0.16	
		Ś	0	0	0			71.48	177.87	106.39			21.3			1.03			
	N113	Ś	0	0	0			71.40	168.27	96.87			19.4			<b>5</b> .0			
	N114	s	0	0	0			. 71.64	144.00	72.36			14.5			0.69			
	<b>N115</b>	s	0	0	0			70.31	135.95	65.64			13.1			0.62			
Control	<b>N116</b>	4	0	1	20	œ	9.80	84.74	175.00	90.26	87.48	10.26	22.6	19.1	2.1	1.10	0.92	0.10	
	<b>NI17</b>	s	0	•	0			85.01	185.10	100.09			20.0			0.97			
	N118	Ś	0	0	0			73.82	157.40	83.58			16.7			0.80			
	<b>6110</b>	4	0	-	20			70.75	140.68	66.93			17.5			0.84			
	N120	\$	0	0	0			83.38	176.90	93.52			18.7			0.90			
Reference Toxicant (CdC12)	: Toxicant	(C4C12)	_			222,222,222,000,000,000,000		annontro constantes ta			**************************************			.,					

000004 0 0 0 0 . . . . . . 5 4 0 0 v 0 -Š Š Ś \$ 14.0 0.0 5.0 1.8 3.0 8.4

1/ Note: Station standard deviations calculated on raw, untransformed data.

RIMMED SPEARMAN-KARBER METHO	D. MONTANA STAT	TE UNIV		<b></b> .
FOR REFERENCE, CITE: HAMILTON, M.A., R.C. RUSSO, TRIMMED SPEARMAN-KARBER METH LETHAL CONCENTRATIONS IN TOX ENVIRON. SCI. TECHNOL. 11(7) CORRECTION 12(4):417 (1978)	OD FOR ESTIMATIN ICITY BIOASSAYS. : 714-719;	IG MEDIAN		•
DATE: 7/24/97 T CHEMICAL: CDCL2	EST NUMBER: 1		DURATION: SPECIES:	96 HOURS NEANTHES
RAW DATA: CONCENTRATION(MG/L) NUMBER EXPOSED: MORTALITIES: SPEARMAN-KARBER TRIM:	1.80 3.00 10 10 0 0 10.00%			
SPEARMAN-KARBER ESTIMATES:	95%	11.16 CONFIDENCE LI NOT RELIABLE		



# 20 DAY NEANTHES

(Neathes arenaceodentata)

### DATA PACKET

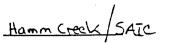
CLIENT: <u>5</u> A	IC
PROJECT NAME:	Hamm Creek
PROJECT NUMBER:	55-1738-63-01

	Hamm Creek /5	Date:		
Project Number:	55-1738-63-01			
				<u></u>
			-1	,
7/23 -	CI and C2 :	Samples sourced in	Full strenth seac	vater
for 4h	wurs prior to Tes	+ chamber filling th	o raise Salihity.	4
Interstitio	al water to Test le	evels.		
	······································			
- 424 -	Initial organism	uts -Panwtrag)	Pan + orgis	
	somple 1	22.08	25,9ž	
	22	24.73	27.64	
	3	21.00	24.07	
				, 
·				
			<u> </u>	
		an a tha Balan a fe <u>ann a tha a</u> an an dù ann Balan a shù a a an an a		
• • • _ • • • • • • • • • • • •				<u></u>
			<u></u>	
			,,,,,,,,	
				<u> </u>
<del></del>				
<u> </u>				
<u></u>				

.

20 DAY NEANTHES SEDIME	NT SETUP RECORD SHEET
------------------------	-----------------------

7/24/97


Project Name: HAMM CREEK SALC

Date:

Project Number: <u>55-1738-63-01</u>

Station	Lab	Interstitial		
I.D.	I.D.	Salinity	Comments	Initials
Ca	N101-105	30	Silty mud * fixel 25	NA
				N.M.
CI	N106-110	NA	Dry Dirt w/ rats * finel 26	
No (Carry)	NIII-115	28		NM
West beach	N116-120	12827		NM
·			* both sediments adjusted to 28 opt Interstitiel Salinity by Yhr Soakin 28ppt Sea	
			28 ppt Interstitiel Salinity	
			by Yor soelkin 2800t see	
			water	
·				
		<u> </u>		
·				

Job	Name



Day	0 of Test		
Date	7/24/97	Time	1330
Temp		20	°C
Observer(s)	IIM		

Job Number

55-1738-6301

	<u> </u>
Temp	
Observer(s)	NM

Water Quality Parameters D.O. Salinity Comments Container pН 6.4 26 NIOI 7.1 27 27 6.8 6.8 11106 6.2 7.6 NIL 7.7 6.6 27 NILL 7.9 7.4 (mA 27 7.7 7.9 14,08 27

Job	Name
100	Name

Hamm Creek/SAIC 55-1738-63-01

Day	3	of Test		
Date	7/27/97	-	Time	1205
Тетр		וב	-	°C
Observer(s)	N	$\overline{\gamma}$		

Job Number

	Water Quality Parameters		ameters			
Container	pH	D.O.	Salinity	Comments		
N106	6.4	6.6*	27	* Reading from # N107 - 106 Air Stopped overvight DO. : 2.5, Air Started		
NILG	7.2	5.2	27	overvight DO .: 2.5 Air Started		
NIDI NITI	7.2	7.2 7.4	27	,		
NIII	7.7	7.4	27			
			<u> </u>			
Con A	7.7	8.6	75			
14.0 A	7.9	8.6	27			
			-	*, During AH20, nearthes were on the side of the beaker in N118 + N120		
				side of the beaker in NIB + NICO		
,						
				,		
			· .			
				· · · · · · · · · · · · · · · · · · ·		
				·		
			+			

Job Name Job Number	HAM1 55-1	<u>m Cree</u> 1738-6	=K/SHIC 3-01	Day <u>6</u> of Test Date <u>7/30/97</u> Temp Observer(s) P5	Time 1550 Zj °C
<b></b>	Water	Quality Par	ameters	· · · · · · · · · · · · · · · · · · ·	
Container	pH	D.O.			
NIDE	1.2	16.8	2.6		
N116	7.6	6.7	27		
NIOI	7.3	6.5	26		
NIII	80	6.9	27		
	0.0	6. 1			· · · · · · · · · · · · · · · · · · ·
	+	1		· · · · · · · · · · · · · · · · · · ·	
			<u> </u>		
·····			1		
·					
<u></u>			1		
		1			
				•	
		1			
			ļ		
			ļ		
•	l				
		L			
			ļ		
	<u>}</u>				
			ļ		
		1	l		

				Day _		of Test		•
Job Name	HAMM	n CREE	E/SAIC	Date	8/2/17		-	0900
300 T (u)			1	Temp	۰.		20	°C
Job Number	HAMM 55-173	<u>8-63-0</u>	>1	Observer(s)	للا		·····	
				i				
		Juality Para	meters	4		Comments		
Container	pH	D.O.	Salinity			Совщения		
N106	7.1	66	28					
NILG	74	6.4	28					
NIUI	7.2	6.6	28					
NILL	7.9	6.6	28					
			· · · · ·	ļ				
				<u> </u>				
				ļ				
				<u> </u>				
					·			
				·	····			
							<u> </u>	
	-							
							<u> </u>	

Job Name

(BAIC Hamm (red

of Test 12 Date ×/5/97

Time 1246 ZĪ °C

Job Number

55-138-63-01

Тетр ρs Observer(s)

Day

	Water Quality Parameters		rameters	· ·		
Container	pH	D.O.	Salinity	Comments		
NIOG	7.3	6.8	27	······································		
NIIG	7.6	7.0	27			
NIOI	7.3	6.8	27			
NIII	80	7.1	27			
				·		
			ļ			
1						
			<u> </u>			
	<u> </u>	L	L			
	ļ		ļ			
ļ						
			<u> </u>			
	L					
ļ			<u> </u>			
			<u> </u>			
		·····				
			<b></b>			
				•		
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		
l.,			L			

Job Name	HAMMCREEK/SHIC	Day Date Temp	15 8/8/97	_of Test _	Time <u>153:</u> Z1 °C
Job Number	55-1738-63-01	Observer(	(s) PS		

	Water	Quality Par	ameters Salinity	
Container	pH	D.O.	Salinity	Comments
N106	7.2	6.4	27	
N116	7.5	6.5	27	
NIOI	7.3	6.4	27	
	7.9	6.7	27	
		1		
	1			
	<u> </u>			
	1			
	1			
	<u> </u>			
		1		
		1		
		1	1	
		1		
	1	1		
		1	T	
				·
	1			
	1			
	1			
		1		
<u></u>	1	1		
<u></u>				
	1			
<u></u>	1			
		1		
	1			

Job Name Job Number	<u>HAMM CREEK/SAIC</u> <u>55-1738-63-01</u>			Day 18 of Test Date $\frac{8/11/97}{7}$ Time 1310 Temp 21 °C Observer(s) AC
	Water	Quality Pa	rameters	
Container	pH	D.O.	Salinity	Comments
N106	7.2	6.7	28	
NII6	7.4	6.6	28	
N IOI	7.3	6.6	28	
	7.7	7.0	28	
		1.0	0	
				· · · · · · · · · · · · · · · · · · ·
	1			
			<u> </u>	
,				
	+			
	-			
	1			
	1			
	<u>†                                    </u>			
	<u> </u>			
	1 1			· · · · · · · · · · · · · · · · · · ·
				· ·
	1			
	<u> </u>			· · · · · · · · · · · · · · · · · · ·
				······································
			•	
				· · · · · · · · · · · · · · · · · · ·

Job Name	<u>HAMM CREEK</u> SAIC 55-1738-63-01			Day 20 of Test Date $8/13/97$ Time 0915 Temp 2/°C
Job Number	35-1136-65-01			Observer(s) AC
	Water (	Quality Par	ameters	
Container	pН	D.O.	Salinity	Comments
N 106	6.6	7.2	29	
NIIb	6.8	7.0	29	
NIO	6.7	6.8	28	
NIII	7.2	7.4	29	
	1.0			
<u>.</u>				
	<u> </u>		 	
	<u> </u>			
L				
L				
			<u> </u>	
	<u> </u>			
	<u> </u>	 	<u> </u>	
	<u> </u>		<u> </u>	
	<u> </u>			
	<u> </u>	ļ <u> </u>		
			ļ	
			ļ	
	<u> </u>	ļ		

### 20 DAY NEANTHES BIOASSAY BREAKDOWN Positve Control-Reference Toxicant

Job Name

Hamm Creck/SAIC

Reference Toxicant Càcha Date Stock Prep. 2/4/97 Date 7/24 - 7/28/97

Job Number

55-1738-63-01

		Found				
Container	Concentration (mg/l)	Alive	Dead	Initials		
ConA	0.0	5 5	0	UM		
β	0.0	5	<u> </u>	NM		
1.8 A	1.8	5	0	NM		
1.3 A B		5	O	NM		
3.0 prid A	3.0	<u>5</u> 5	0	NM		
3.0 pt A B		5	0	Nm		
5.0 205 A	5.0	5	0	Nm		
B		5	0	Nm		
8.4 m5 A	8.4	5	0	NM		
B		5	0	NM		
14.0 p 6 A	14.0	0	5	Vri		
14.0 g 6 A B		1	4	Pri -		
			······································			
			<u></u>	<u> </u>		

### 20 DAY NEANTHES BIOASSAY BREAKDOWN

Job Name

HAMM CZEER SAIC

8/13/97

Job Number

55-1738-63-01

Day 20 of Test

Date

	Four			
Container	Alive	Dead	Comments	Initials
NIOI	5	<u>c</u> i		131
N 102	5	0		AC
N 103	5	0		AC
N 104	5	0		1212
N 105	5 1	0 .		A* (
N106	5	0		101
NIDF	5 5 4	0		AC
N 108		0		AC.
N 109	4	<u> </u>		137.
NIO	5	0		AC
NII	4	0		
N112	5	0		, rc
N 113	5	0		
N114	5	0		
N 115	5	8		The
NIIb	4	and the second	/	
NIIT	5	0		AC
N 118	5	0		- AC
N 119	4	0		1,20
N120		0		
	· · · · · · · · · · · · · · · · · · ·			
			······································	
			· · · · · · · · · · · · · · · · · · ·	
			······································	
				<u>_</u>
				1
				<u>.</u>

### NEANTHES BIOMASS DATA

Job Name

HAMM CREEK/SAIC

<u>55-1738-63-01</u> Date <u>8/14/97</u>

Day of Test

Job Number

Replicate Number	Weight of Pan (g)	Dry Weight of Pan and Worms (g)	Dry Weight of
· NIOI	81,94	149.88	Worms (87 Mg)
N 102	84.39	166.92	82.53
N103	86.15	135.04	48.89
N 104	86.18	135.04	55,79
N105	72.22	12723	55.01
NIDE	86.17	168,94	82.77
N107	71.97	153.51	81,54
N 108	73.87	168.69	94.8Z
N109	76.56	148.22	71.66
NIIO	84.76	181.69	96.93
· WIII	83.40	160.57	76.67
NII2	71.48	177.87	106.39
NII3	71,40	168.27 I	96.87
N114	71.64	144.00	72.36
N IIS	70.31	135,95	65.64
NII6	84.74	175,00	90.76
NII7	85.01	185.10	100.09
N118	73.82	157,40	83.58
N119	70.75	140.63	69.93
N120	83.38	176.90	93.52
		<u></u>	
			· · · · · · · · · · · · · · · · · · ·
<u> </u>			
<u> </u>			
L			

2

### APPENDIX A

### CHAIN-OF-CUSTODY FORM

### APPENDIX B

### AMMONIA AND SULFIDE WATER QUALITY DATA

### SAIC, INC.

ORGANISM: Neanthes arenaceodentata ANALYSIS: Ammonia PROJECT NUMBER: 55-1738-63 (01)

TEST DATES: T Initial 7/24/97 T Final 8/13/97

DETECTION LIMIT: 0.01 (mg/L)

Sample I.D.	T Initial (mg/L)	T Final (mg/L)		
Control	0.04	2.14		
C1	0.17	5.20		
C2	1.73	5.44		
N2	0.55	0.33		

ANALYSIS: Total Sulfide

TEST DATES: T Initial 7/24/97 T Final 8/13/97

DETECTION LIMIT: 0.003 (mg/L)

Sample I.D.	T Initial (mg/L)	T Final (mg/L)		
Control (West Beach)	ND	ND		
C1	ND	ND		
C2	ND	ND		
N2	ND	ND		

ND = Not detected

### Laboratory Analysis Record

#### Parametrix, Inc.

Analysis:		Ammo	onia	Med	ia:			Staff:	2
Organism:				Round			_	Date: 8/	5
Project Na	mc:	SAIC-	Naan	Test Da	te: <u>7/7</u>	24	Start '	Time:	
Project Nu	mber:						End	Тіте:	
ustrument Calibrations Unit 001: Orion Model #720A Unit 002: Orion Model #250A									
Orion Unit	#		<del></del>				-0.7		· · · · ·
)01) Specia	lic Ion Probe	: #		ial #		Slope % _	59,1 (	(-56 to -60 mV	/decade)
002) Speci	fic Ion Prob	: #	Ser	ial #		Slope %	(	(-56 to -60 mV	/decade)
mmonia Standards (SOP #PMX-AN-3)NBS Standard Orion Cat. No. 951207 @ 100 ppm $\100 \text{ ppm (NH}_3-N)$ $\10 \text{ ppm (NH}_3-N)$ $_Lot # \ Date \$ $_/2 _ 10 \text{ ppm (NH}_3-N)$ $_Lot # \ Date \$ $_/2 _ 10 \text{ ppm (NH}_3-N)$ $_Method Detection Limit = 0.01 \text{ ppm NH}_3-N$ $_/2 _ 0.05 \text{ ppm (NH}_3-N)$ $_Method Detection Limit = 0.1 \text{ ppm NH}_3-N$ $_0.05 \text{ ppm (NH}_3-N)$ $_Lab Temp: \C$									
<u></u>		Lab		% Recovery	Time (hrs)	Sample I.D.	Lab Sample I.D.	NH ₃ -N (ppm)	% Recovery
: (hrs)	Sampie I.D.	Sample I.D. N101-105	NH ₃ -N (ppm)	Recovery	1 mic (ms)		·		
╟	12	Wie1-105MS	2.31						ļ
	CI	W106-110	0.168						<b></b>
		N106-110 Dun	0.166						<u> </u>
	NZ	W111-115	0,554	ļ				_ <u></u>	<b> </b>
	WB	W116-120	0.0433	ļ					<u> </u>
									+
┣									
li									ļ
		· ·		1					ļ
							·		<b></b> {
				ļ					
l									1
ľ	<u></u>		l. 		-				
k									
┣									L

= Calibration Standard

= Method Blank (daily with each seawater batch)

13 1 ЛP MS

= Duplicate (laboratory) (1 in 20) = Spike Analysis (laboratory) (1 in 20)

____m/ SAOB

mts sample:__

_ppm mts spike @_

= Sample Preservation Blanks

sow

SPB Std

RS

sw

= Synthetic Ocean Water (for standards preparation)

= Ammonia Standard (processed; 28 ppt)

= Seawater (0.2 µm filtered; UV processed; 28 ppt)

= Replicate Sample (field) (1 in 20)

boratory Analysis Record

Parametrix, Inc.

.

Round #         Test Dat         del #720A         del #250A         ial #         ial #         %         Recovery	te: 8/	Slope % NBS S Orion Lot # Methor Report	Start T End T	Time: Time: -56 to -60 mV -56 to -60 mV 7 @ 100 ppm Date nit = 0.01 ppu 1 ppm NH ₃ -N	//decade) //decade) m NH3-N
del #720A del #250A ial # ial #		Slope % Slope % NBS S Orion Lot # Methor Report Lab Te	End T End T (- Standard Cat. No. 951207 od Detection Lin ting Limit = 0.1 emp:	Fime: $9/$ Fime: $9/$ Fim:	//decade) //decade) m NH ₃ -N
del #250A ial # ial #		Slope % Slope % NBS S Orion Lot # Methor Report Lab Te	(- Standard Cat. No. 951207 	-56 to -60 mV -56 to -60 mV 7 @ 100 ppm Date nit = 0.01 ppm 1 ppm NH ₃ -N C	//decade) m NH ₃ -N
del #250A ial # ial #	·	Slope % NBS S Orion Lot # Methor Report Lab Te	(- Standard Cat. No. 951207 	-56 to -60 mV 7 @ 100 ppm Date nit = 0.01 pp 1 ppm NH ₃ -N C	//decade) m NH ₃ -N
del #250A ial # ial #	·	Slope % NBS S Orion Lot # Methor Report Lab Te	(- Standard Cat. No. 951207 	-56 to -60 mV 7 @ 100 ppm Date nit = 0.01 pp 1 ppm NH ₃ -N C	//decade) m NH ₃ -N
ial #	Time (hrs)	Slope % NBS S Orion Lot # Methor Report Lab Te	(- Standard Cat. No. 951207 	-56 to -60 mV 7 @ 100 ppm Date nit = 0.01 pp 1 ppm NH ₃ -N C	//decade) m NH ₃ -N
ial #	Time (hrs)	Slope % NBS S Orion Lot # Methor Report Lab Te	(- Standard Cat. No. 951207 	-56 to -60 mV 7 @ 100 ppm Date nit = 0.01 pp 1 ppm NH ₃ -N C	//decade) m NH ₃ -N
70	Time (hrs)	NBS S Orion Lot # Methor Report Lab Te	Standard Cat. No. 951207 od Detection Lin ting Limit = 0.1 emp:	7 @ 100 ppm  nit = 0.01 ppn 1 ppm NH ₃ -N C	m NH ₃ -N
	Time (hrs)	Orion Lot # Method Report Lab Te	Cat. No. 951207 od Detection Lin ting Limit = 0.1 emp: Lab Sample I.D.	Date mit = 0.01 pp 1 ppm NH ₃ -N C	m NH ₃ -N
	Time (hrs)	Lot # Methor Report Lab Te	d Detection Lin ting Limit = 0.1 emp:	Date mit = 0.01 pp 1 ppm NH ₃ -N C	m NH ₃ -N
	Time (hrs)	Metho Report Lab Te	d Detection Lin ting Limit = 0.1 emp:	mit = 0.01 pp 1 ppm NH ₃ -N <u>C</u>	m NH ₃ -N
	Time (hrs)	Report Lab Te	ting Limit = 0.1 emp: Lab Sample I.D.	1 ppm NH,-N <u>°C</u>	70
	Time (hrs)	Report Lab Te	ting Limit = 0.1 emp: Lab Sample I.D.	1 ppm NH,-N <u>°C</u>	70
	Time (hrs)	Lab Te	Lab Sample I.D.	<u>•</u> C	%
	Time (hrs)		Lab Sample I.D.	1	
	Time (hrs)	Sampie I.D.	Sample I.D.	NH,-N (ppm)	
	Time (hrs)	Sampie I.D.	Sample I.D.	NH,-N (ppm)	
		1			
		1	1	l .	
·			1		
				AR 023	495
			<u> </u>	I	L
					•

a contraction of the second		Parametriz Inc.
Laboratory Analysis Record		
organism: Projem Name: <u>SAIC</u> Projem Number:	Test Date: +1221	Date: <u>8///97</u> Star: Time: End Time:
Instrument Calibrations Unit 201: O	rice Model #730A	
001) Specific Ion Probe <u>9416</u> 002) Specific Ion Probe <u>#</u>	Serial #Si Serial #Si	ope 75-29,   (-25 to -30 ±V/de=de) ope 76(-25 to -30 ±V/de=de)
Sulfide Sundards (SOP # PM)	K-بند-2)	
	AS Re	rion Method Detection Limit = 0.203 ppm Suifide STM Method D4638 Lower Limit 0.04 ppm Suifide sporting Limit 0.5 ppm Suifide b Temp:C
	ulide 5 av 1	Tene (bas) Samere L. Samere L. Samere L. Samere L.
1.075)       26 \$(1, b, c, -29)		

re (hrai) Sampie Samele		1 4	j.	1		1	1
1.075) 1				1	1	}	1
1.75 EStobe = -29.	1			1	1	i	ļ
17.5)		!	1	1	1	1	1
1.075 1-064	1.064-1		I	1	<u>.                                    </u>		1
1,75 1-72	1,721			1	, 1	1	1
17.5 17.2	17.21	1		1	1	1	1
IDF I	10,0 1		1		1	·	 1
	1		1	<u></u>	<u> </u>	!	i
Kra H=0	IND 1	;	1		<u> '</u>	·	1
INMES 4.01	1.119 1		1		1	1	1
WAFS HOMS	INDI	1	1	1	<u> </u>		)
10/01 103	$\frac{1.00}{100}$	1		1	1		1
W106-110 CT					1		1
Will-115   N'Z	1.00			1	1	i	
WIII-115 MS	10/25 1		1		1		
11116-120 I WB	INDI			1	1		
W 116-120 Aut	INSI	H			1		1
			1	1 .	I	1	1
				<u> </u>	1		1
			1	1		1	
				1			

ר. 2015: באי

 Culbrator Standard
 Menot Sint (duity with and severe sees)
 Dupticar (latorstory) (l is I)
 Soize Adapted (latorstory) (l is II)
 T (SAGE) nts ancie_ _____

- Sample Programs Stars
- Synthese Come Water (for moders programs)
- Suffee Summer (programs I prt)
- Serverer (L. an interes UV processes I prt)
- Replicate Sumple (fied) (1 in II)

Laboratory Analysis Record

Parametriz, Inc.

Analysis:	Total Su	ulfide		Media:				Λ	[		
Urganism Project N Project N	ame: <u>SAI</u>	<u> </u>	Te		8/13/	57		Date: 4	BE  2019	<u>7</u>	
Instrumen	u Calibration	rs Unit 001	: Orioa	Modei ≠	7204				····	_	
001) Spe 002) Spe	cific Ion Prot cific Ion Prot	be <u>9416</u> be <u>#</u>		ierial # _ ierial # _	UP1			-25 to -30 m ³ -25 to -30 m ³			
Sulfide Su	andards	(SOP ≠ )	PMX-AN	(-2)		·			-		
	·										
					• • •	ASTM Me Reporting					
	1					_					
		مد) ا	Suifica	5	1	1		منا	Smile	5	
الحدث عد	Samore LD.	مدا .2 Samole	Suifice	300000	- av	inne (bra)	Samme LD.		Smilde (ppm)	5. 3	ਕ∀
<u>== ();;;</u>	1 90 H	Samore LT.	(prom)	30000		1 1 1	Samole LD.  -				. <b>∀</b>
	1 90 H 1 90 H MS	Samole L.	(prem)   ND  ,145	30000	V.m.		Samore LD.				
	1 90 H 1 90 H MS W 101-105	Samole LD.       (, 2	(;;;;;;;)   <u>ND</u>   <u>145</u>   ND	30000		 					. <b>π</b> ¥
	1 90 H 1 90 H MS IN 101-105 W101-105 Due	Samole LD.       (, 2	1.145 1.145 1.ND 1.ND	30000			Samore ().  -  -				. <del>л</del> ¥
	1 90 H 1 90 H MS 1 101-105 1 101-105 1 101-105 1 106-110	Samole L1	1.145 1.145 1.0D 1.0D 1.0D	30000	Vm       		Samore ().  -  -				
	1 90 H 1 90 H MS 1N 101-105 W101-105 Due W106-110 W111-115	Samole L1     (2     (2       (2       (2                   	IND IND IND IND IND IND	30000			Samone ().  - 				<b>π</b> ¥
	1 90 H 1 90 H MS 1 90 H MS 1 101-105 1 106-10 1 106-10 1 110-115 1 116-120	Samole L1     C2   C1   N2   W13	1.145 1.145 1.0D 1.0D 1.0D	30000			Samore ().  -  - 				
	1 90 H 1 90 H MS 1N 101-105 W101-105 Due W106-110 W111-115	Samole L1     C2   C1   N2   W13	1.145 1.145 1.145 1.145 1.20 1.20 1.20 1.20	30000			Samore ().  - 				<i>⊒</i> ∛
	1 90 H 1 90 H MS 1 90 H MS 1 101-105 1 106-10 1 106-10 1 110-115 1 116-120	Samole L1     C2   C1   N2   W13	1.145 1.145 1.145 1.145 1.20 1.20 1.20 1.20	30000							лV
	1 90 H 1 90 H MS 1 90 H MS 1 101-105 1 106-10 1 106-10 1 110-115 1 116-120	Samole L1     C2   C1   N2   W13	1.145 1.145 1.145 1.145 1.20 1.20 1.20 1.20	30000			Samore (). 				
	1 90 H 1 90 H MS 1 90 H MS 1 101-105 1 106-10 1 106-10 1 110-115 1 116-120	Samole L1     C2   C1   N2   W13	1.145 1.145 1.145 1.145 1.20 1.20 1.20 1.20	30000							лV
	1 90 H 1 90 H MS 1 90 H MS 1 101-105 1 106-10 1 106-10 1 110-115 1 116-120	Samole L1     C2   C1   N2   W13	1.145 1.145 1.145 1.145 1.20 1.20 1.20 1.20	30000							
	1 90 H 1 90 H MS 1 90 H MS 1 101-105 1 106-10 1 106-10 1 110-115 1 116-120	Samole L1     C2   C1   N2   W13	1.145 1.145 1.145 1.145 1.20 1.20 1.20 1.20	30000							л V
	1 90 H 1 90 H MS 1 90 H MS 1 101-105 1 106-10 1 106-10 1 110-115 1 116-120	Samole L1     C2   C1   N2   W13	1.145 1.145 1.145 1.145 1.20 1.20 1.20 1.20	30000							
	1 90 H 1 90 H MS 1 90 H MS 1 101-105 1 106-10 1 106-10 1 110-115 1 116-120	Samole L1     C2   C1   N2   W13	1.145 1.145 1.145 1.145 1.20 1.20 1.20 1.20	30000							
	1 90 H 1 90 H MS 1 90 H MS 1 101-105 1 106-10 1 106-10 1 110-115 1 116-120	Samole L1     C2   C1   N2   W13	1.145 1.145 1.145 1.145 1.20 1.20 1.20 1.20	30000							
	1 90 H 1 90 H MS 1 90 H MS 1 101-105 1 106-10 1 106-10 1 110-115 1 116-120	Samole L1     C2   C1   N2   W13	1.145 1.145 1.145 1.145 1.20 1.20 1.20 1.20	30000							

.1

Calibration Standard
 Method Blank (daily with sign service back)
 Duplicate (laboratory) (l is 21)
 Spike Assivat (laboratory) (l is 21)

ר איז: איז: איז:

ł

nts amore _m/ SAOB سفد"

**223** 

Sample Processon Black
 Simple Processon Black
 Simple Come Water (for standards preparation)
 Suffice Scanned (processon 2 ppr)
 Serveter (0.2 an illustrat UV processon 2 ppr)
 Replicate Sample (field) (I in 23)

224

. ....

			10-	
" Lisa Roach		Date: 9/9	1977	
SAIC		•		
	Proie	ct No:	· · · · · · · · · · · · · · · · · · ·	
·				
	· · · · · · · · · · · · · · · · · · ·			
^r rom:				
Vashington		······	Oregon	
□ 5700 Kitsab Wav Suite 202	<ul> <li>P O. Box 460</li> </ul>		.⊒ 11820 N/E, Holman' Sisto 5-è	
Bremenon: //A 92312-2234 360-377-9014 • Pay: 020-479-5861	Sumner, IVA 98390-1516 353-863-5128 • Filx, 150-8634	· 62,1	<ul> <li>Pomand, UR 87218-2859</li> <li>10-206-3-44 • 360-694-5020</li> </ul>	
E-mail: cmxbrem@parametrix.com	E-mail pmxsumper voalametr		File 603-256-4221	
XEELE Luke Masnington Bival N.E.			- exas	
Cone 200			📋 10540 Rischev Boad	
Kirkland, V/A 98023-7550 425-822-8890 • Fax: 1-25-889-8808			Plute 1970 • 1. statul 70 770 99-1531	
E-mail.cmc.r.ppra.netrx.com			31 500 + 541 • Fox _23 530-6744	
/e are transmitting the followi		tants		
Ve are transmitting the followi		tants		
Ve are transmitting the followi		tants		
Ve are transmitting the followi		tants		
Ve are transmitting the followi		tarits		
Ve are transmitting the followi		tants		
Ve are transmitting the followi		tants		
Ve are transmitting the followi		tants		
Ve are transmitting the followi		tarits		
Ve are transmitting the followi		tarits		
Ve are transmitting the followi NMFS ph0 Comments:	nty pollut		scan	
Ve are transmitting the following NMFS photocological photocologic	nty pollut	Sent via:	5CAM.	
Ve are transmitting the followi <u>NMFS</u> <u>PHO</u> Comments: Comments: Comments: For your Request For your Informat	nty pollut		SCAD . I U.S. Main I Courrier	
Ve are transmitting the followi <u>NMFS</u> <u>PHO</u> Comments: These are: For your Request For your Informat For your Review a For your Files	nty pollut		5CAM.	
Ve are transmitting the followi <u>NMFS</u> <u>PHO</u> Comments: Comments: For your Request For your Informat For your Review a	nty pollut		U.S. Mail Courier Express Overnight Cuther - Interoffice	98
Ve are transmitting the followi <u>NMFS</u> <u>PHO</u> Comments: These are: For your Request For your Informat For your Review a For your Files For your Action	nty pollut		U.S. Mail Courier Express Overnight	98
Ve are transmitting the followi <u>NMFS</u> <u>PHO</u> Comments: Comments: These are: Or Fer your Request For your Informat For your Review a These are: For your Files	nty pollut		U.S. Mail Courier Express Overnight Cuther - Interoffice	98
Ve are transmitting the followi <u>NMFS</u> <u>PHO</u> Comments: These are: For your Request For your Informat For your Review a For your Files For your Action	nty pollut	Sent via:	U.S. Mail Courier Express Overnight Cuther - Interoffice	98

P.03/22



I

BOTHELL = (425) 481-9200 = FAX 485-2992 SPOKANE . (509) 924-9200 . FAX 924-9290 PORTLAND = (503) 643-9200 = FAX 644-2202

			-	
Parametrix Inc	Destant			
5808 Lake Washington Blvd	Project:	Lab Water Analysis	Sampled:	705/07
Kinhing a mus open	Project Number:	124C7541 BI	_ •	
Kirkland, WA 98033	Project Manager:		Received:	7/25/97
	, and the second s	Dayle Officerod	Reported:	8/25/97 13:43

#### Total Metals by EPA 6000/7000 Scries Methods North Creek Analytical - Bothell

Апајуте	Batch Number	Dute Prepared	Date Analyzed	Specific Method	Reporting Limit	Result	Units	N
NMFS (PX-97-1984) Antimony Beryllium Cadmlum Chromium Copper Nickel Thallium Zine Arsenic Lead Mercury Selenium Silver	0770898 - - - - 0870053 - 0770889 0870053 0870053	7/30/97 - - 8/4/97 8/4/97 8/12/97	<u>B7075</u> 8/1/97 - - - 8/6/97 8/5/97 7/30/97 8/6/97 8/13/97	01-01 EPA 6010A EPA 6010A EPA 6010A EPA 6010A EPA 6010A EPA 6010A EPA 6010A EPA 6010A EPA 7060A EPA 7421 EPA 7470A EPA 7740 EPA 7760A	0.100 0.00500 0.01500 0.0300 0.0300 0.200 0.0200 0.00400 0.00200 0.00200 0.00500 0.00500 0.0200	ND ND ND ND ND ND 0.0204 ND ND ND 0.0190 0.0600	Water mg/l	

North Creek Analytical, Inc.

Kirk Gendron, Project Manager

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132

*Refer to end of report for text of notes and definition

1

Pag€



Paramet	ix Inc	Project	Lab Martas Analysis		
5808 Lat	e Washington Blvd		Lab Waler Analysis	Sampled:	7/25/97
		Project Number:	124C7541 BI	Received:	7/75/07
Kirkland	. WA 98033	Project Manager:	Davis Ormand		
		tojetetiminget.	Dayle Officioa	Reported:	8/25/97 13:43

#### Organochlorine Pesticides and PCBs by EPA Method 8081 North Crcek Analytical - Bothell

Amelica	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	1
<u>NMFS (PX-97-1984)</u>			B7075	1 01				
Aldrin	0770854	7/29/97	8/2/97	<u>,,,,,,,</u>			Water	
Npha-BHC	4	1/ <b></b>	<i>0/2/7/</i> ►		0.0400	ND	ug/l	
octa-BHC	•		~		0.0200	ND	-	
icita-BHC	•	-	-		0.0300	ND	۹r	
zamma-BHC (Lindane)		-			0.0200	ND	-	
Chlordane (tech)		-			0.0300	ND	-	
lipha-Chlordanc		-			0.150	ND	-	
amma-Chlordane					0.0200	ND	•	
,4'-DDD	"				0.0200	ND	-	
4'-DDE	<b>H</b> .	-	-		0.0400	ND	tr	
4'-DDT		-	-		0.0300	ND	р	
Dieldrin		-	-		0.0900	ND		
Indosulfan I		-	~		0.0700	ND	•	
indosulfan II		• . •	-		0.0300	ND	H	
Indosulfan sulfate			•		0.0500	ND	-	
Endrin		-	•		0.0700	ND	**	
Endrin aldehyde			-		0.0800	ND	**	
Icptachlor					0.0800	ND		
Icptachlor epoxide	-	•	-		0.0300	ND	•	
iethoxychlor		-			0.0300	ND	P	
oxaphene	n -	•	•	•	0.500	ND		
roclor 1016	. 14	M	R		1.50	ND	•	
roclor 1221		*	8/3/97		0.100	ND	-	
stocior 1221		"	•		0.100	ND	11	•
rocior 1242	T	-	-		0.100	ND	м	•
	61	Hr.	*		0.100	ND	P .	
Jocior 1248	•				0.100	ND	er -	
roclor 1254	-	•	*		0.100	ND	*1	
stoclor 1260	*	•	н		0.100	ND	٣	
Jociar 1262	•	•			0.100	ND		
socior 1268	•		w		0.100	ND		
urrogale: TCX			)r	40.0-130	0.100	87.8	%	

North Cleck Analytical, Inc.

Kirk Gendron, Project Manager

*Refer to end of report for text of notes and definitio.

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 East 11115 Montgomery, Suite B, Spokane, WA 99205-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132

Page



- 1	Parametrix Inc	Denlast			
	SPORT also Mr. 1.1		Lab Water Analysis	Sampled:	7/25/97
	5808 Lake Washington Blvd	Project Number:	124C7541 BI	Received:	7/75/07
- 1	Kirkland, WA 98033	Project Manager:	Davis Original		
•		rtojeet ivianaget.	Dayle Unnerod	Reported:	8/25/97 13:43

#### Volatile Organic Compounds by EPA Method 8260A North Creek Analytical - Bothell

Analyte	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	1
<u>NMFS (PX-97-1984)</u>			Datar					
Acetone	0870126	8/5/97	<u>B7075(</u>	<u></u>			Water	
Benzene	*	0/J/9/	8/5/97 "		10.0	14.5	ug/l	
Bromobenzenc	17	-			1.00	ND	40	
Bromochloromethane	-	-			1.00	ND	-	
Bromodichloromethane	-		-		1.00	ND	-	
Bromoform	-				1.00	ND	*	
Bromomethane	•	-	*	•	1.00	ND	-	
2-Butanone	-		-		1.00	ND	-	
n-Butylbenzene	•		- n		10.0	ND	•	
sec-Butylbenzene			*		1.00	ND	-	
tert-Butylbenzene		-			1.00	ND	*	
Carbon disulfide		-	•		1.00	ND	-	
Carbon tetrachloride					1.00	ND	<b>.</b>	
Chlorobenzenc		-	•		1.00	ND	-	
Chloroethane			•		1.00	ND	-	
Chloroform		-	*		1.00	ND		
Chloromethane	-	-			1.00	ND	•	
2-Chlorotoluene		•	*		1.00	ND		
4-Chiorotoluene			**		1.00	ND		
Dibromochloromethane	- -		-		1.00	ND	-	
1,2-Dibromo-3-chloropropane	-	-	-		1.00	ND	۰.	
1,2-Dibromocthane		-	-		5.00	ND	-	
Dibromomethane		•	•		1.00	ND	•	
.2-Dichlorobenzenc	-	*			1.00	ND	**	
1,3-Dichlorobenzene		*	-		1.00	ND	•	•
1,4-Dichlorobenzene		•	4 <b>1</b>		1.00	ND	*	
Dichlorodifluoromethanc	•	•			1.00	ND	•	
, I-Dichloroethanc	*	•			1.00	ND	*	
,2-Dichloroethane	•	•	<b>n</b> .		1.00	ND		
	•	•	-		1.00	ND	**	
,1-Dichloroethene	•	**			1.00	ND	• -	
is-1,2-Dichlorocthene	*	•	н .		1.00	ND	•	
ans-1,2-Dichloroethene	<b>19</b> ·	•	-		1.00	ND	*	
,2-Dichloropropane		-			1.00	ND		
,3-Dichloropropane	-	•	•		1.00	ND		
,2-Dichloropropane	<b>T</b>	•	•		1.00	ND		
,1-Dichloropropene	•	*	-		1.00	ND		
is-1,3-Dichloropropene	-	-	•*		1.00	Dא DM	14	
ans-1,3-Dichloropropene	40	• .	-		1.00	ND ND		

North-Creek Analytical, Inc.

C

Kirk Gendeon, Project Manager

18939 120th Avenue N.E., Suite 101, Bathell, WA 98011-9508 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132

Page

AR 023501

*Refer to end of report for text of notes and definitio.



Г

BOTHELL = (425) 481-9200 = FAX 485-2992 SPOKANE = (509) 924-9200 = FAX 924-9290 PORTLAND = (503) 643-9200 = FAX 644-2202

Parametrix Inc	Brainer	1 - L W/ - A		
5808 Lake Washington Blvd		Lab Water Analysis	Sampled:	7/25/97
	Project Number.	124C7541 BI	Received:	
Kirkland, WA 98033	Project Manager.	Dayle Ormerod		
			Reported:	8/25/97 13:43

#### Volatile Organic Compounds by EPA Method 8260A North Creek Analytical - Bothell

Analyte	Batch Number	Date	Date	Surrogate	Reporting			
	Trumber	Prepared	Analyzed	Limits	Limit	Result	Units	3
NMFS (PX-97-1984) (continued)								
Ethylbenzene	0870126	8/5/97	<u>B7075(</u>	<u>11-01</u>			Water	
Hexachlorobutadiene	*		8/5/97 T		1.00	ND	ug/l	
2-Hexanone		-			1.00	ND	•	
lsopropylbenzene	*		-		10.0	ND	•	
p-lsopropyltolucne					1.00	ND	-	
Methylene chloride	•	-			1.00	ND	•	-
4-Methyl-2-pentanone	+				5.00	ND	•	
Naphthalene	w	•	-		10.0	ND		
n-Propylbenzene		<b>H</b>			1.00	ND	-	
Styrene	•	-			1.00	ND	88 	•
1,1,1,2-Tetrachlorocthane		-			1.00	ND	*	
1, 1, 2, 2-Tetrachloroethane	•				1.00	ND		
Tetrachlorocthene	*		-		1.00	ND		
Tolucne					1.00	ND	er.	
1,2,3-Trichlorobenzene	-		-		1.00	ND	•	
1,2,4-Trichlorobenzene	•	-			1.00	ND	P	
1,1.1-Trichloroethanc	-	_	*		1.00	ND		
1,1,2-Trichloroethane	-	-	~		1.00	ND	-	
Trichloroethene	-	-			1.00	ND	<b>n</b>	
Trichlorofluoromethane	-	-	-		1.00	ND		
,2,3-Trichloropropane		-	•		1.00	ND		
,2.4-Trimethylbenzene		-			1.00	ND	•	~
.3,5-Trimethylbenzene		-			1.00	ND		
/inyl chloride	•	-			1.00	ND		-
-Xylcne	-	-	-		1.00	ND	•	
p.p-Xylene		-	<b>#</b>		1.00	ND	•	
urrogate: 2-Bromopropene	w			·····	1.00	ND	N	
Surrogale: 1,2-DCA-d4	-	-		80.0-120		97.0	%	
urrogale: Toluene-d8		-		80.0-120		173	"	
Surrogale: 4-BFB		-		80.0-120		101	4	
		-		80.0-120		109	-	

North Creek Analytidal, Inc.

Kirk Gendron, Project Manager

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132

*Refer to end of report for text of notes and definitio

Page

,



BOTHELL	•	(425)	481-9200	FAX 485-2992
SPURANE		(509)	924-9200	FAX 924-9200
PORTLAND		(503)	643-9200	FAX 644-2202

Parametrix Inc			
5808 Lake Washington Blvd	Project: Lab Water Analysis Project Number: 124C7541 BI	Sampled:	7/25/97
Kirkland, WA 98033	Project Manager. Dayle Ormerod	Received:	
	Semivolatile Organic Compounds by EPA Method 827	Reported: 0B	8/25/97 13:43
	North Creek Analytical - Botheli		

Analyte	Batch	Date	Date	Surrogate	Reporting			
	Number	Prepared	Analyzed	Limits	Limit	Result	Units	
NMFS (PX-97-1984) (continued)			_				01113	
Acenaphthene	9708193		B7075	<u>)1-01</u>			Water	
Accnaphthylene	>/00133	7/31/97	8/7/97		4.7	ND	ug/l	
Aniline			•		4.7	ND	- <b>6</b> - •	
Anthracene	-	-	•		4.7	ND	-	
Benzoic Acid	-	-	*		- 9.4	ND	•	
Benzo (a) anthracenc	-		-		4.7	ND	-	
Benzo (b) fluoranthene	-	-	-		4.7	ND	-	
Benzo (k) fluoranthene	-	-	•		4.7	ND	•	
Benzo (ghi) perylene	-	-	•		4.7	ND		
Benzo (a) pyrene		-	•		4.7	ND	**	
Benzyl alcohol		-			4.7	ND	-	
Bis(2-chloroethoxy)methane	-				4.7	ND	-	
Bis(2-chloroethyl)cther		. =	*		4.7	ND		
Bis(2-chloroisopropyl)ether		-	• .		4.7	ND	*	
Bis(2-ethylhexyl)phthalate	-	•	•		4.7	ND		
-Bromophenyl phenyl ether	-	•	•		9.4	56		
Butyl benzyl phthalate	-	-			4.7	ND		
Carbazole		•	-		4.7	ND		
-Chloroaniline	-	-	-		9.4	ND		
-Chloronaphthalene	-		*		4.7	ND	-	
-Chloro-3-methylphenol	-	•	•		4.7	ND		
-Chlorophenol	-	•	• -		4.7	ND	-	
Chlorophenyl phenyl ether		*	-		4.7	ND	-	
hrysche	-	-	*		4.7	ND	P7 .	
ibenzo (a,h) anthracene	-	-	*		4.7	ND		
ibenzofuran	-	•	•		4.7	ND	•	•
i-n-butyl phthalate		-	•		4.7	ND		
3-Dichlorobenzene	-	•	-	•	9.4	ND	•	
4-Dichlorobenzene		• •	,		4.7		-	
2-Dichlorobenzene	*	• •	•		4.7	ND	-	
3'-Dichlorobenzidine	-	• •	•		4.7	ND		
4-Dichlorophenol	<b>#</b>	н , н	1		9.4	ND	"	
ethyl phthalate		•	,		9.4 4.7	ND		
-Dimetholet	•		,			ND	*	
4-Dimethylphenol		• •			4.7	ND	•	
methyl phthalate	н ,	• •			4.7	ND	"	
-Dinitro-2-methylphenol	۰ ،	• •			9.4	ND	•	
-Diniurophenol	• •	• •			9.4	ND	•	
Dinitrotoluene					4.7	ND		

North Creek Analysichi, Inc.

Laura L Dutton, Director, Analytical Services

*Refer to and of report for text of notes and definition

.

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132

AR 023503

Page



Parametrix Inc 5808 Lake Washington Blvd Kirkland, WA 98033	Pro	oject Number ject Manager atile Organ	Dayle Orn	BI	lethod 8270B I	Received;	
Analyte	Batch Number	Date Prepared	Date Analyzed	Surrogate Limits	Reporting	Perult	

			/ 4/26/7264	Chills	Limit	Result	Units	N
NMFS (PX-97-1984) (continued)	•		<u>B70750</u>	1 01				
2.6-Dinitrotoluene	9708193	7/31/97	8/7/97	1-01			Water	
Di-n-octyl phthalate		۹	н н		4.7	ND	ug/l	
Fluoranthene	n	*	-		4.7	ND	te .	
Fluorenc		•	-		4.7	ND	N	•
Hexachlorobenzene		-	-		4.7	ND	- <b>H</b>	
Hexachlorobutadiene		,			4.7	ND	H	
Hexachiorocyclopentadicne	**	-			4.7	ND		
Hexachloroethanc	-	-			9.4	ND		
Indeno (1,2,3-cd) pyrene	-	-	-		4.7	ND	67 67	
Isophoronc	•	-			4.7	ND	-	
2-Methylnaphthalene	-	~	-		4.7	ND	-	
2-Methylphenol	-	•			4.7	ND		
3 & 4-Methylpheuol		-	-		4.7	ND	-	
Naphthalenc	<b>t</b> 7				4.7	ND	*	
2-Nitroaniline	H				4.7	ND		
3-Nitroaniline			-		9.4	ND	-	1
4-Nitroaniline	*		-		9.4	ND	н	
Nitrobenzene	-		-		9.4	ND	•	
2-Nitrophenol	•		-		4.7	ND	H	
4-Nitrophenol	•	-	-		4.7	ND	भ	
N-Nitrosodiphenylamine			*		9.4	ND	R	
N-Nitrosodi-n-propylamine	-	-			4.7	ND	*	
Pentachiorophenol	*	-			4.7	ND	11	
Phenanthrene		-	•		9.4	ND	**	
Phenol			H		4.7	ND		•
Pyrene	•		n		4.7	ND	P	
1,2,4-Trichlorobenzene	•	•	*		4.7	ND		
2,4,5-Trichlorophenol					4.7	ND	"	
2,4,6-Trichlorophenol	•	•			9.4	ND	н	
Surrogale: 2-FP		•	•		4.7	ND	p.	
Surrogate: Phenol-d6			- 2	1-110		$-\frac{10}{71}$	%	
Surrogate: 2,4,6-TBP	-	~	" 1	0-110		79	-	
Surrogate: Nitrobenzene-d5	-	-	- 3	5-114		72	67	
Surrogale: 2-FBP	-	-	- d.	3-116		83	"	
Surrogale: p-Terphenyl-d14	~	-	• /	0-123		50		
p- ( L ( pilcily)=0 ] 4		*	<i>"</i> -	3-141		20		

North Creek Analytical, Inc.

*Refer to end uf report for text of notes and definition

Laura L Dutton, Director, Analytical Services

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 East 11115 Montgomery, Suite B, Spokanc, WA 99206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132

.

Page



	Parametrix Inc	Project	Lab Water Analysis		
ļ	5808 Lake Washington Blvd		•	Sampled:	7/25/97
		Project Number:	124C7541 BI	Received:	7/75/07
Į	Kirkland, WA 98033	Project Manager:	Davia Ornerad		
		trojet mataget.	Dayic Officios	Reported:	8/25/97 13:43

Total Metals by EPA 6000/7000 Series Methods/Quality Control

Analyte	Date Analyzed	Spike Level	Sample Result	QC		Reporting Limit		RPD	RPD
		Teaci	RCSUIT	Result	Units	Recov. Limits	%	Limit	.% N
Batch: 0770889	Date Preps	red: 7/30/	7		Fatas	ala Maharan ma			
Blank	0770889-BI		<u>.</u>		LIFE	tion Method: Bri	CI Digest	ion	
Mercury	7/30/97			ND	mg/l	0.00100			
LCS	<u>0770889-BS</u>	51							
Mercury		0.00500		0.00570	mg/i	<b>70.0-1</b> 30	-114		
Duplicate -	0770889-DL	/P1 B7	07501-01						
Mercury	7/30/97		ND	ND	mg/l			20.0	
Matrix Spike	0770889-M	<u>51 B7</u>	07501-01						
Mercury	7/30/97	0.00500	ND	0.00503	mg/i	75.0-125	101		
Matrix Spike Dup	0770889-MS	<u>501 B7</u>	07501-01						
Mcreury	7/30/97	0.00500	ND	0.00507	mg/l	75.0-125	101	20.0	0
Batch: 0770898	Date Prepar		<u>7</u>		Extract	tion Method: EPA	3010		
Blank	<u>0770898-BL</u>	<u>K1</u>							-
Antimony Beryllium	8/1/97			ND	mg∕l	0.100			
Cadmium				ND	H Č	0.00500			
	<b>H</b>			ND		0.00500			
Chromium	*			ND		0.0100			
Copper				ND	U	0.0300			
Nickel				ND	M	0.0300			
Thallium	•			ND	<b>#</b> 5	0.200			
Zinc	*			ND	•	0.0200			
LCS	0770898-BS1			-					
Antimony	8/1/97	1.00		0.958	mg/]	<b>80.0-</b> 120	95.8		
Beryllium	•	1.00		0.938	•	80.0-120	93.8		
Cadmium	•	1.00		0.944	**	80.0-120	94. <b>4</b>	-	
Chromium	W	1.00		0.984	-	80.0-120			
Copper		1.00		0.954			98.4		
Nickel	w	1.00		0.947	-	80.0-120	95.4		
Thallium	•	1.00				80.0-120	94.7		
Zinc	••	1.00	•	0.972 0.951	-	80.0-120 80.0-120	97.2 95.1		
Duplicate	0770898-DU	>1 R70	7501-01						
Antimony	8/1/97	/ -	ND	ND	mg/i		•	20.0	

North Creek Analytical, Inc.

*Refer to end of report for text of notes and definitic

Kirk Gendron, Project Manager

18939 120th Avenue N.E., Suite 101, Botheli, WA 98011-9508 East 11115 Montgomery. Suite B, Spokane, WA 99206-4776 9405 S.W. Nimbus Avenus, Beaverton, OR 97008-7132

AR 023505

Paį



**r** ...

BOTHELL = (425) 481-9200 = FAX 485-2992 SPOKANE = (509) 924-9200 = FAX 924-9290 PORTLAND = (503) 643-9200 = FAX 644-2202

	l'arametrix Inc	Destinate	F . 1. 197		
	5808 Lake Washington Bivd		Lab Water Analysis	Sampled;	7/25/97
		Project Number:	174C7541 BI	_ ·	
1	Kirkland, WA 98033			Rcceived:	7/25/97
		Project Manager:	Dayle Ormerod	Reported:	8/25/97 13:43
					0 4 4 1 2 1 1 2 : 4 3

Total Metals by EPA 6000/7000 Series Methods/Quality Control North Creek Analytical - Bothell : 2

Analyte	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD
	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	
Duplicate (continued)	0770898-DI		B707501-01						
Beryllium	8/1/97								
Cadmium	071)37		ND	ND	mg/l			20.0	
Chromium	· •		ND	ND				20.0	
Copper			ND	ND				20.0	
lickel	-		ND	ND	. •			20.0	
hallium			ND	ND	•			20.0	
inc			ND	ND				20.0	
anc .	•		0.0204	0.0750				20.0	114
<u>Iatrix Spike</u>	<b></b>							20.0	114
antimopy	0770898-M		<u> 8707501-01</u>						
eryllium	8/1/97	Í.00	ND	0.839	mg∕l	80.0-120	83.9		
•	<b>π</b>	1.00	ND	0.757	*	80.0-120	63.9 75.7		
admium	*	1.00	ND	0.794		80.0-120			
hromium	<b>n</b>	1.00	ND	0.745			79.4		
opper	8	1.00	ND	0.839	*	80.0-120	74.5		
ickel		1.00	ND	0.701		80.0-120	83.9		
hallium	*	1.00	ND			80.0-120	70.1		
inc		1.00		0.789		80.0-120	78.9		
		1.00	0.0204	0.852	*	80.0-120	83.2		
latrix Spike	0770898-MS		707501-01						
ntimony	8/1/97	2.00	ND		-				
ryllium	n	2.00	—	1.84	mg/l	80.0-120	92.0		
Idmium	*1		ND	1.67	•	80.0-120	83.5		
romium	-	2.00	ND	1.76	•	80.0-120	88.0		
opper		2.00	ND	1.70	•	80.0-120	85.0		-
ckci		2.00	ND	1.78	•	80.0-120	89.0		
allium	-	2.00	ND	1.64	. •	80.0-120	82.0		
	۳.	2.00	ND	1.79	•	80.0-120	89.5		
	-	2.00	0.0204	1.80	*	80.0-120	89.0		
atrix Spike Dup	0770000 >					•			
timony	0770898-MS		707501-01						
ryllium	8/1/97	1.00	ND	0,813	mg/l	80.0-120	81.3	20.0	3.15
dmium	-	1.00	ND	0.745	N	80.0-120	74.5	20.0	1.60
romium	R.	1.00	ND	0.794	**	80.0-120	79.4	20.0	
	n	1.00	ND	0.743	"	80.0-120			0
ppcr	7	1.00	ND	0.841			74.3	20.0	0.269
ikel	•	1.00	ND	0.686		80.0-120	84.1	20 <b>.0</b>	0.238
allium	-	1.00	ND	-		80.0-120	68. <b>6</b>	20.0	2.16
IC		1.00		0.798		80-0-120	79 <b>.8</b>	20.0	1.13
		1.00	0.0204	0.836	•	80.0-120	81.6	20.0	1.94

North Creek Apalytical, Inc.

Kirk Oendron, Project Manager

*Refer to end of report for text of notes and definitio.

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 East 11115 Montgomery, Suite B. Spokane, WA 99206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132

Pag

EK

YTICAL



BOTHELL = (425) 481-9200 = FAX 485-2992 SPOKANE = (509) 924-9200 = FAX 924-9250 PORTLAND = (503) 643-9200 = FAX 644-2202

Parametrix Inc	Project:	Lab Water Analysis	Sampicd:	7/25/97
5808 Lake Washington Blvd	Project Number:	124C7541 BI	Received:	7/25/97
Kirkland, WA 98033	Project Manager:	Dayle Ormerod	Reported:	8/25/97 13:43

Total Metals by EPA 6000/7000 Series Methods/Quality Control North Creek Analytical - Bothell - 2 ÷. . . .

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% N
Batch: 0870053	Date Prena	red: 8/4/91	7		Fisters	ction Method: EP	A 2020		
Blank	0870053-B		-		MON 4	cuon method: Er	A 3020		
Arsenic	8/6/97			ND	mg/]	0.00400			_
Lead	8/5/97			ND	ng/i				
Selenium	8/6/97			ND	-	0.00200 0.00500			
						0.00500			
LCS	0870053-B	51							
Arsenic	8/6/97	0.0500		0.0552	mg/l	75.0-125	110		•
Lead	8/5/97	0.0260		0.0269		75.0-125	103		
Selenium	8/6/97	0.0250		0.0226	-	75.0-125	90.4		
Des l'acto						. :			
Duplicate	0870053-D	<u>UP1 B7</u>	07523-04						
Arsenic	8/6/97		ND	ND	mg/l			20.0	
Lead	8/5/97		ND	ND				20.0	
Sclenium	8/6/97		ND	ND	-			<b>20.0</b>	
Matrix Spike	0870053-M	SI 87	07523-04						
Arsenic	8/6/97	0.0500	ND	0.0526	mg/l	70.0-130	105		
Lead	8/5/97	0.0260	ND	0.0260	*	70.0-130	105		
Selenium	8/6/97	0.0250	ND	0.0199	۳	70.0-130	79.6		
						•			
Matrix Spike Dup	<u>0870053-M</u>		07523-04	•					
Arsenic	8/6/97	0.0500	ND	0.0507	mg/l	70.0-130	101	20.0	3.88
Lead	8/5/97	0.0260	ND	0.0264	*	70.0-130	102	20.0	1.98
Selenium	8/6/97	0.0250	ND	0.0207	•	70.0-130	82.8	20.0	3.94
Batch: 0870337	Date Prepa	red: 8/12/9	7		Frime	tion Method: EPA	2010		
Blank	0870337-BL		<u> </u>			don Method. EFA	1 3010		
Silver	8/13/97			ND	mg/l	0.0200			
•								_	
LCS	0870337-BS	1				•		-	
Silver	8/13/97	1.00		0.933	mg/l	75.0-125	93.3		
Duplicate	0870337-DL	101 07	08007-01			L.			
Silver	8/13/97	<u> B/</u>	ND	ND	mg/l			20.0	
·								1V.V	
Matrix Spike	0870337-M	<u>51 B7</u>	<u>08007-01</u>			,			
Silver	8/13/97	1.00	ND	0.914	mg/l	75.0-125	91.4		

North Creek Analytical, Inc.

Kirk Gendroo Project Manager

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132

*Kefer to end of report for text of notes and definitie

Page

P.12/22



BOTHELL = (425) 481-9200 = FAX 485-2992 SPOKANE = (509) 924-9200 = FAX 924-9290 PORTLAND = (503) 643-9200 = FAX 644-2202

Parametrix Inc	Project	Lab Water Analysis	Casalad	
5808 Lake Washington Blvd		· · · ·	Sampled:	1/25/97
÷	Project Number:	124C7541 BI	Received:	7/25/97
Kirkland, WA 98033	Project Manager:	Davic Ormerod		8/25/97 13:43
			Reponeu.	0/23/7/13:43

### Total Metals by EPA 6000/7000 Series Methods/Quality Control North Creek Analytical = Bothell

Analyte	Datc Analyzed	Spike Level	Sample Result	QC Result	Units	Reporting Limit Recov. Limits	Rccov.	RPD Limit	RPD % N
<u>Matrix Spike Dap</u> Silver	<u>0870337-M</u> 8/13/97	<u>SD1 B</u> : 1.00	708007-01 ND	0.853	mg/l	75.0-125	85.3	20.0	6.90

North Greek Anatytical, Inc.

Kirk Gendron, Project Manager

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132

*Refer to end of report for text of notes and definition



Parametrix Inc	Project:	Lab Water Analysis		
5808 Lake Washington Blvd		······································	Sampled:	7/25/97
Kirkland, WA 98033	Project Number:		Received:	7/25/97
KIIKIANO, WA 98033	Project Manager:	Daylc Ormerod	Reported:	8/25/97 13:43

Organochlorine Pesticides and PCBs by EPA Method 8081/Quality Control North Creek Analytical - Bothell

	Date	Spike	Sample	QC		Reporting Limit	Recov	RPD	RPD
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits		Limit	۲. ۲ %
Batch: 0770854									
Blank	Date Prep	ared: 7/29/	<u>97</u>		Extrac	tion Method: EP	A 3520/6	00 Series	
Aldrin	0770854-1	<u>BLK1</u>			•				
alpha-BHC	8/2/97			ND	ug/l	0.0400			
bcm-BHC	•			ND		0.0200			
delta-BHC	-			ND	•	0.0300			
			•	ND	-	0.0200			
gumma-BHC (Lindane)	-			ND	•	0.0300			
Chlordane (tech)	<b>d</b> ,			ND		0.150			
ulpha-Chlordanc	*			ND		0.0200			
gamma-Chlordanc	*			ND	w	0.0200			•
4,4'-DDD	-			ND		0.0400			
4,4'-DDE				ND		0.0300	· · ·		
4,4'-DDT	•			ND	•	0.0900			
Dieldrin				ND	н	0.0700			
Endosulfan I	*			ND		0.0300			
Endosulfan II	*			ND	•				
Endosulfan sulfate	*			ND		0.0500			
Endrin				ND	<b>.</b>	0.0700			
Endrin aldchyde	•			ND		0.0800			
Heptachlor				ND		0.0800			
Heptachlor epoxide	•			ND		0.0300			
Methoxychlor	•			ND		0.0300			
Toxaphene				ND	-	0.500	•		
Aroclor 1016	8/3/97				-	1.50			
Aroclor 1221				ND	-	0.100			
Arocior 1232	•			ND	-	0.100			
Aroclor 1242				ND		0.100			
Arocior 1248	•			ND	*	0.100			
Aroclor 1254				ND	-	0.100			
Aroclor 1260				ND	~	0.100			
Aroclor 1262				ND	. •	0.100		-	
Aroclor 1268				ND	4	0.100			
Surrogate: TCX				ND		0.100			
Durrogale: ICA		0.200		0.163	9	40.0-130	81.5		
LCS	A								
Aldrin	0770854-B								
	8/2/97	0.250		0.218	ug/l	45.0-143	87. <b>2</b>		
gamma-BHC (Lindane)	•	0.250		0.194	-	45.0-147	77.6		
Heptachlor	•	0.250		0.122	**	37.0-156	48.8		
Aroclar 1260	8/3/97	10.0		7.65	•	33.0-122	76.5		

North Crack Analysical, Inc.

*Refer to end of report for text of notes and definitio

Kirk Gendron, Project Manager

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132

AR 023509

Page



5

BOTHELL = (425) 481-9200 = FAX 485-2992 SPOKANE = (509) 924-9200 = FAX 924-9290 PORTLAND = (503) 643-9200 = FAX 644-2202

rarametrix inc	Projecti	Lab Warra A. Lab		
5808 Lake Washington Blvd		Lab Water Analysis	Sampled:	7/25/97
	Project Number:	124C7541 BT	_ •	
Kirkland, WA 98033			Received:	7/25/97
	r toject Manager:	Dayle Ormerod	Reported	8/25/97 13:43
			Troportua.	0/22/7/13:41

Organochlorine Pesticides and PCBs by EPA Method 8081/Quality Control. North Creek Analytical - Bothell

Алајуте	Date Analyzed	Spike Level	Sample Result	QC Result	Units	Reporting Limit Recov. Limits	Recov.	RPD Limit	RPD % N
LCS (continued) Swrogate: TCX	<u>0770854-</u> B								
	8/3/97	0.200		0.166	ugli	40.0-130	83.0		
CS Dup	0770854-B	SD1							
Aldrin amma-BHC (Lindanc)	8/2/97	0.250		0.220	ug/l	45.0-143	88.0	36.0	0.913
leptachlor Aroclor 1260	<b>,</b>	0.250		0.197 0.124		45.0-147 37.0-156	78.8 49.6	25.0 37.0	1.53 1.63
Surrogale: TCX	8/3/97	<u>10.0</u>		7.77 		33.0-122	<u> </u>	21.0	1.56
				0.177	-	40.0-130	88.5		

North Creek Analytical, Inc.

Kirk Gendron, Project Manager

18939 120th Avenus N.E., Sulte 101, Bothell, WA 98011-9508 East 11115 Montgomery, Sultc B, Spokanc, WA 99206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132

*Refer to end of report for text of notes and definition

AR 023510

. Pag



Parametrix Inc	Project:	Lab Water Analysis		Sampled:	7/25/97
5808 Lake Washington Blvd	Project Number:	124C7541 BI	•	Received:	7/25/97
Kirkland, WA 98033	Project Manager:	Dayle Ormerod		Reported:	8/25/97 13:43

Volatile Organic Compounds by EPA Method 8260A/Quality Control North Creek Analytical - Bothell

	Date	Spike	Sample	QC		<b>Reporting Limit</b>		RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	N
Batch: 0870126	Date Prepa	red: 8/5/9'	7		Frim	ction Method: EP	A 6030			
Blank	0870126-B		<u> </u>		and a second	coon method, DI	A SUSV			
	8/5/97			ND	ug/l	10.0				
Benzene				ND	ugri H	1.00				
Bromobenzene	•			ND		1.00				
Bromochloromethanc				ND	<b>N</b> '	1.00				
Bromodichloromethane	•			ND	*	1.00				
Bromoform				ND		1.00				~
Bromomethanc	۳			ND	#	1.00				
2-Butanone	•			ND		10.0				
n-Butylbenzene	•			ND	п .	1.00				
sec-Butylbenzene	v			. ND	-	1.00				
ert-Butylbenzene				ND	w -	1.00				
Carbon disulfide	-			ND		1.00				
Carbon tetrachloride	*		•	ND	-	1.00				
Chlorobenzene				ND		1.00				
Chloroethane				ND		1.00				
Chloroform				ND		1.00				
Chloromethane				ND		1.00				
-Chlorotolucne	*			ND		1.00				
-Chlorotoluene				ND	•	1.00				
Dibromochloromethane	•			ND		1.00				
,2-Dibromo-3-chloropropane	*			ND	-	5.00				
,2-Dibromoethane	-			ND		1.00				
Dibromomethane	**			ND'	-	1.00				
.2-Dichlorobenzene	-			ND	•	1.00				
.3-Dichlorobenzene	-			ND	-	1.00				
4-Dichlorobenzene	•			ND	-	1.00				
Dichlorodifluoromethane	•			ND		1.00				
,I-Dichloroethanc	•			ND	-	1.00				
,2-Dichloroethane	<b>`</b> #			ND		1.00		-		
.I-Dichloroethene				ND		1.00				
is-1,2-Dichloroethenc	•			ND	-	1.00				
rans-1,2-Dichloroethene	-			ND		1.00				
,2-Dichloropropane				ND	•					
,3-Dichloropropane				ND		1.00				
,2-Dichloropropane				ND		1.00				
.1-Dichloropropene	**				 #	1.00				
sis-1,3-Dichloropropenc	*			ND		1.00				
				ND		1.00				

North Greek Analytical, Inc.

C

Kirk Gendron, Project Manager

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 9405 S.W. Nimbus Avenue, Bezverton, OR 97008-7132

*Refer to end of report for text of notes and definition

Page



.....

Parametrix Inc	Project:	Lab Water Analysis	Sampled:	7/25/97
5808 Lake Washington Blvd	Project Number:	124C7541 BI	Received:	7/25/97
Kirkland, WA 98033	Project Manager:	Dayle Ormerod	Reported:	8/25/97 13:43

#### Volatile Organic Compounds by EPA Method 8260A/Quality Control North Creek Analytical = Bothell

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD
Analytz	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%
Blank (continued)	<u>0870126-B</u>	( 14)	•			•			
trans-1,3-Dichloropropene	8/5/97			ND		1.00			
Ethylbenzene	*	•		ND	ug/l	1.00			
Hexachlorobutadiene				ND		1.00			
2-Hexanope				ND		1.00			
lsopropylbenzene				ND	· •	10.0			
p-Isopropyitoluene	•			ND		1.00			
Methylene chloride	-			ND		1.00			
4-Methyl-2-pentanone				ND		5.00			
Naphthalene				-		10.0			
n-Propylbenzene	-			ND		1.00			
Styrene				ND		1.00			
1,1.1,2-Tetrachloroethanc				ND		1.00			
1,1.2,2-Tetrachloroethane				ND		1.00			
Tetrachiorocthene				ND	**	1.00			
Toluene				ND	17	1.00			
1,2,3-Trichlorobenzene	-			ND	-	1.00			
1,2,3-Trichlorobenzene				ND	•	1.00			
1,1,1-Trichloroethanc	-			ND	-	1.00			
1.1.2-Trichloroethanc	-			ND	-	1.00			
Trichlorocthene	-			ND	•	1.00			
				ND	-	1.00			
Trichlorofluoromethane	•			ND	•	1.00			
1,2,3-Trichloropropane	**			ND	*	1.00			
1,2,4-Trimethylbenzene	-			ND	•	1.00			
1,3,5-Trimethylbenzene	•			ND	-	1.00			•
Vinyl chloride	•		,	ND	11	1.00			
o-Xylene	10			ND	٩	1.00			
m,p-Xylene	•			ND		1.00			
Surrogate: 2-Bromopropene	~	20.0		19.4	"	80.0-120	97.0		
Surrogale: 1,2-DCA-d4	-	20.0		21.2	<i>n</i> .	80.0-120	106		
Surrogate: Toluene-d8	"	20.0		20.6	"	80.0-120	103	-	
Surrogate: 4-BFB	-	20.0		21,5	"	80.0-120	108		
LCS	0870126-B	C1							
Benzene	8/5/97	<u>51</u> 10.0		10.0					
Chlorobenzene	0/J/7/ #			10.8	ug/l *	80.0-120	108		
I, I-Dichloroethene	•	10.0		10.4	-	80.0-120	104		
Toluene	-	10.0		10.6		80.0-120	106		
Trichlorocthene	-	10.0		10.5	R	<b>80.0-</b> 120	105		
I Hemoloculene	-	10.0		10.6	•	80.0-120	106		

North Creck Apalytical, Inc.

Kirk Gendron, Project Manager

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 East 11115 Montgomery, Suite B. Spokane, WA 99206-4778 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132

τ... } *Refer to end of report for text of notes and definiti

AR 023512

P.



Parametrix Inc	Project:	Lab Water Analysis	Sampled:	7/25/97
5808 Lake Washington Blvd	Project Number:	124C7541 BI	Received:	7/25/97
Kirkland, WA 98033	Project Manager:	Dayle Ormerod	Reported:	8/25/97 13:43
				and the second design of the

Volatile Organic Compounds by EPA Method 8260A/Quality Control North Creek Analytical - Bothell

	Dale	Spike	Sample	QC		<b>Reporting Limit</b>	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	1
LCS (continued)	0870126-BS	1								
Surrogate: 2-Bromopropene	8/5/97	20.0		19.3	ug/l	80.0-120	96.5			
Surrogate: 1,2-DCA-d4	-	20.0		21.3	n"	80.0-120	106			
Surrogate: Toluene-d8	-	20.0		20.3	<b>.</b>	80.0-120	101			
Surrogate: 4-BFB	~	20.0		23.6	-	80.0-120	118			
Matrix Spike	0870126-M	51	B707501-01							
Benzene	8/5/97	10.0	ND	11.1	ug/l	80.0-120	111			
Chlorobenzene		10.0	ND	10.7	~	80.0-120	107			
1,1-Dichloroethene	•	10.0	ND	11.2	n	80.0-120	112			
Toluene	"	10.0	ND	10.8	**	80.0-120	108			
Frichloroethene	•	10.0	ND	10.8	n	80.0-120	108			
Surrogale: 2-Bromopropene	11	20,0		19.4	"	80.0-120	97.0			-
Surrogate: 1,2-DCA-d4		20.0		22.7	-	80.0-120	114			
Surrogate: Tolu <b>ene-d8</b>	-	20.0		20.1	"	80.0-120	101			
Surrogate: 4-BFB	*	20.0		23.9	n	80.0-120	119			
Matrix Spike Dup	0870126-MS	DI	<u> B707501-01</u>							
Benzene	8/5/97	10.0	ND	11.2	ug/l	80.0-120	112	15.0	0.897	
Chlorobenzenc		10.0	ND	10.7	"	80.0-120	107	15.0	0	
l, l-Dichloroethene		10.0	ND	10.9		80.0-120	109	15.0	2.71	
Foluene	₽	10.0	ND	10.7	•	80.0-120	107	15.0	0.930	
Trichloroethene	•	10.0	ND	10.9	*	80.0-120	109	15.0	0.922	
Surrogale: 2-Bromopropene		20.0		18.9		80.0-120	94.5		·	-
Surrogate: 1,2-DCA-d4	•	20.0		22.9	· <b>#</b>	80.0-120	114			
Surrogate: Toluene-d8	-	Z0.0		20.1	~	80.0-120	101			
Surrogate: 4-BFB	•	20.0	-	23.4	-	80.0-120	117	•		

North Creek Analytical, Inc.

Kirk Gendron, Project Manager

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132

*Refer to end of report for text of notes and definitio

Page



÷

	Parametrix Inc	Project	Lab Water Analysis	Sampled:	7/25/97
ļ	5808 Lake Washington Blvd	Project Number:	124C7541 BI	Received:	
	Kirkland, WA 98033	Project Manager:	Dayle Ormerod	Reported:	8/25/97 13:43

#### Semivolatile Organic Compounds by EPA Method 8270B/Quality Control North Creek Analytical - Bothell

	Date	Spike	Sample	QC		Reporting Limit Recov	RPD	RPD	5
Analyte	Analyzed	Levei	Result	Result	Units	Recov. Limits %	Limit	%	
<u>Batch: 9708193</u>	Date Prepa				*				-
Blank	9708193-BI		<u>, , , , , , , , , , , , , , , , , , , </u>		LATAC	tion Method: EPA 3510/	<u>600 Scrie</u>	5	
Accnaphthene	8/6/97	<u>-11</u>		200					
Acenaphthylene	0/0/37			ND ND	ug/l	5.00			
Aniline						5.00			
Anthracene				ND		5.00			
Benzoic Acid	R			ND		10.0			
Benzo (a) anthracene				ND		5.00			
Benzo (b) fluoranthene				ND	M	5.00			
Benzo (k) fluoranthene	•			ND		5.00			
Benzo (ghi) perylene				ND		5.00			
Benzo (a) pyrene	4			ND	*	5.00			
Benzyl alcohol				ND	н н	5.00			
Bis(2-chloroethoxy)methane	•			ND		10.0			
Bis(2-chloroethyl)ether	-			ND	M	10.0	•		
Bis(2-chloroisopropyl)ether				ND	81	10.0			
	-			ND	•	10.0			
Bis(2-ethylhexyl)phthalate	•			ND		20.0			
4-Bromophenyl phenyl ether	-			83		10.0			
Butyl benzyl phthalaic Carbazole				ND		5.00			
	•			ND	•	10.0			
Chloroaniline	•			ND	•	5.00			
2-Chloronaphthaicne				ND	•	10.0			
4-Chloro-3-methylphenol	*			ND		10.0			
2-Chlorophenol	. *			ND	ri -	10.0			
-Chlorophenyl phonyl ether	•			ND		10.0			
Chryscne	3			ND		5.00			
Dibenzo (a,h) anthracene				ND	н	5.00			
Dibenzofuran	•			· ND	*	10.0			
Di-n-buryl phthalate	•			ND	n	5.00			
1.3-Dichlorobenzene	<b>•</b>			ND	•	5.00	_		
,4-Dichlorobenzene	• .			ND	•	5.00	•		
1,2-Dichlorobenzene	•			ND	•	5.00			
,3'-Dichlorobenzidine	•			ND	•	20.0			
4-Dichlorophenol	•			ND		10.0			
Dicthyl phthalate				ND	<b>a</b> .				
2,4-Dimethylphenol	-			ND	-	10.0			
Dimethyl phthalate	-			ND	w	10.0			
4,6-Dinitro-2-methylphenol	•			ND		10.0			
2,4-Dinitrophenol	•			ND		10.0 10.0			

North Creek Analytical, Inc.

Laura L Dutton, Director, Analytical Services 8939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 East 11115 Montpomery, Suite B, Spokane, WA 99206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132

1 ...

*Refer to end of report for text of notes and definiti



BOTHELL	8	(425)	481-9200	FAX 485-2992
SPOKANE	٠	(509)	924-9200	FAX 924-9290
PORTLAND	•	(503)	643-9200	FAX 644-2202

Parametrix Inc	Project	1 - L 117		
5808 Lake Washington Blvd		Lab Water Analysis	Sampled:	7/75/07
	Project Number:	174C7541 BL		
Kirkland, WA 98033			Received:	7/25/97
	Project Manager:	Dayle Ormerod	Passad.	8/25/97 13:43
1		the second se	Reported.	0/22/9/13:43

#### Semivolatile Organic Compounds by EPA Method 8270B/Quality Control North Creek Analytical - Bothell .

Analyte	Date	Spike	Sample	QC		<b>Reporting Limit</b>	Recov.	RPD	RPD
	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%) %)
Black (continued)	9708193-BI	7/1							
2,4-Dinitrotoluene	8/6/97	<u></u>							
2,6-Dinitrotoluene	•			ND	ug/I	10.0			
Di-n-octyl phthalate	•			ND		10.0			
Fluoranthene	•			ND	11	5.00			
Fluorene	•			ND	-	5.00			
Hexachlorobenzenc	•			ND	*	10.0			
Hexachlorobutadicne	•			ND		10.0			
Hexachlorocyclopentadiene	•			ND	*	5.00			
Hexachloroethane				ND	*	5.00			
Indeno (1,2,3-cd) pyrcne				ND		10.0			
Isophorone	*			ND	-	5.00			
2-Methyinaphthalene	H			ND	•	10.0			
2-Methylphenol				ND	*	10.0			
3 & 4-Mcthylphenol	•			ND	-	10.0			
Naphthalenc				ND	•	10.0			
2-Nitroaniline				ND	•	10.0			
-Nitroaniline			•	ND	•	20.0			
I-Nitroanilinc				ND	•	10.0			
Vitrobenzene				ND	-	10.0			
-Nitrophenol			•	ND	•	10.0			
-Nitrophenol				ND	•	5.00			
-Nitrosodiphenylamine				ND	•	10.0			
-Nitrosodi-n-propylamine				ND	•	10.0			
entachlorophenol				ND	-	10.0			
henanthrene				ND	•	10.0			•
henol				ND	11	10.0			
yrcne	-			ND	N	10.0			
.2,4-Trichlorobenzene	•			ND		5.00			
,4,5-Trichlorophenol	•			ND	•	5.00			
4,6-Trichlorophenol				ND		10.0			
urrogate: 2-FP		·		ND	•	· 10.0		-	
urrogate: Phenol-d6	<b>~</b>	50.0		44	<i>w</i>	21-110		·	
urrogate: 2,4,6-TBP		50.0		77	*	10-110			
urrogate: Nitrobenzene-d5		50.0		83	*	35-114			
urrogale: Nilrobenzene-d5 urrogale: Z-FBP	•	50.0		90	-	43-116			
	*	50.0		27	-	10-123			
progate: p-Terphenyl-d14	~	50.0		67		33-141			

North Creek Analytical, Inc.

*Refer to end of report for text of notes and definitie

Laura Dutton Director, Analytical Services 8939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 9405 S.W. Nimbus Avenue, Beaventon, OR 97008-7132

AR 023515

Page



Parametrix Inc	Project:	Lab Water Analysis	Sampled:	7/25/97
5808 Lake Washington Bivd	Project Number:		Received:	7/25/97
Kirkland, WA 98033	Project Manager:	Dayle Ormerod	Reported:	8/25/97 13:43

Sémivolatile Organic Compounds by EPA Method 8270B/Quality Control North Creek Analytical - Bothell

Analyte	Date	Spike	Sample	QC		Reporting Limit		RPD	RPD
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%
LCS	9708193-B	51							
Acenaphthene	8/6/97	100		95	ug/l	42.0-110	95.0		
4-Chloro-3-methylphenol	n	200		170		35.0-110			
2-Chiorophenol	M	200		160		45.0-110			
1,4-Dichlorobenzene		100		85		43.0-110	80.0		
2,4-Dinitrotoluene	•	100		86			85.0		
4-Nitrophenol	•	200		180		51.0-110	86.0	•	
N-Nitrosodi-n-propylamine	•	100		98	-	16.0-110			
Pentachlorophenol	ta .	200		200		34.0-115	98.0		
Phenol	*	200		170		30.0-124	100		
Pyrene	*	100			-	39.0-110	85.0		
1,2,4-Trichlorobenzene	*	100		83	-	49.0-113	83.0		
Surrogate: 2-FP	#			100		17.0-110	100		
Surrogaie: Phenol-do						21-110	69		
Surrogate: 2,4,6-TBP	"					10-110	89		
Surrogate: Nitrobenzene-d5	n					35-114	91		
Surrogate: 2-FBP	*					43-116	97		
Surrogate: p-Terphenyl-d]4	7					10-123 33•14]	69 66		
LCS Dup	9708193-BS	SD1							
Acenaphihene	8/6/97	100		90	ug/l	42.0-110	~~ ~	~~ ~	
4-Chloro-3-methylphenol		200		150	u Evi		90.0	23.0	5.41
2-Chlorophenol	•	200			•	35.0-110	75.0	25.0	12.5
1,4-Dichlorobenzene	**	100		150	., R	45.0-110	75.0	26.0	6.45
2,4-Dinitrotolucne	•			80	ж ж	23.0-110	80.0	35.0	6.06
4-Nitrophenol	•	100		83		51.0-110	83.0	17.0	3.55
N-Nitrosodi-n-propylamine		200		170		16.0-110	85.0	20.0	· <b>5.71</b>
Pentachlorophenol		100		89		34.0-115	89.0	26.0	9.63
Phenoi	•	200		190	•	30.0-124	95.0	31.0	5.13
Pyrcne		200		160	•	39.0-110	80.0	27.0	6.06
1,2,4-Trichlorobenzene		100		76	64	49.0-113	76.0	21.0	8.81
Surrogate: 2-FP		100		100		17.0-110	100	36.0	0
. –	*				7	2]-110	66		· .
Surrogate: Phenol-d6	-				-	10-110	82		•
Surrogale: 2,4,6-TBP					"	35-114	86		
Surrogate: Nitroberzene-d5	-		-		•	43-116	90		
Surrogate: 2-FBP	H					10-123	61		
Surrogaie: p-Terphenyl-d]4	<b>n</b>				-	33-141	61		

North Creek Analysical, Inc.

*Refer to end of report for text of notes and definit.

Laura L Ditton, Director, Analytical Services 8939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132

AR 023516

Pa



Parametrix Inc	Project:	Lab Water Analysis	Sampled:	7/25/97
5808 Lake Washington Blvd Kirkland, WA 98033	Project Number:		Received;	
Kirkiand, WA 98033	Project Manager:	Dayle Ormerod	Reported:	8/25/97 13:43

#### Notes and Definitions

-	Note
	The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the recovery for this analyte does not represent an out-of-control condition for the batch.
ET	Analyte DETECTED
D	Analyte NOT DETECTED at or above the reporting limit
R	Not Reported
у	Sample results reported on a dry weight basis
cov.	Recovery
מי	Relative Percent Difference

North Creek Analytical, Inc.

Kirk Gendign, Project Manager

18938 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132

Par

Due to a clerical error this number has been omitted.

# APPENDIX G

# HEALTH AND SAFETY PLAN



An Employee-Owned Company

#### APPENDIX A

#### HEALTH AND SAFETY PLAN HAMM CREEK AND KENCO MARINE SEDIMENT/SOIL CHARACTERIZATIONS

June 13, 1996

Submitted to:

U.S. Army Corps of Engineers Seattle District 4735 East Marginal Way South Seattle, WA 98124

Submitted by: Science Applications International Corporation Environmental Sciences Division 18706 North Creek Parkway, Suite 110 Bothell, WA 98011

INTRODUCTION SCOPE AND APPLICABILITY SITE HISTORY AND DESCRIPTION	A-1
PROJECT WORK SCOPE OVERVIEW	A-2
PROJECT ORGANIZATION AND RESPONSIBILITIES	A-3
TASK DESCRIPTION	A-4
HAZARD ANALYSIS AND CONTROLS CHEMICAL HAZARDS PHYSICAL HAZARDS	A-4
HAZARD MONITORING AND CONTROL TRAINING PERSONAL PROTECTIVE CLOTHING AND EQUIPMENT MEDICAL SURVEILLANCE MONITORING AND SAMPLING PLAN SITE CONTROL MEASURES DECONTAMINATION PLAN INVESTIGATION DERIVED WASTE MANAGEMENT PLAN OTHER HAZARD CONTROL MEASURES ENFORCEMENT OF THE HSP	A-5 A-6 A-6 A-6 A-6 A-6 A-6 A-6 A-6 A-6
SPILL CONTAINMENT PLAN	A-7
RECORDKEEPING	A-7
EMERGENCY RESPONSE PLAN	A-8
EMERGENCY MEDICAL CARE AND PROCEDURES	A-9
SIGNATURE PAGE	A-10
PEFERENCES	

#### TABLE OF CONTENTS

# THIS HEALTH AND SAFETY PLAN APPLIES TO THE EMPLOYEES OF SAIC AT THE INVESTIGATION SITES. THE SAIC SITE SAFETY OFFICER, SAIC PROJECT TEAM LEADER, AND EVERY MEMBER OF THE FIELD INVESTIGATION TEAM ARE RESPONSIBLE FOR THE IMPLEMENTATION OF THIS HEALTH AND SAFETY PLAN. SAIC WILL PROVIDE A COPY OF THE HEALTH AND SAFETY PLAN TO ALL SAIC PERSONNEL AND REQUIRES ALL PERSONNEL TO FOLLOW THESE PROTOCOLS.

#### INTRODUCTION

#### SCOPE AND APPLICABILITY

The information provided in this plan was developed for use by Science Applications International Corporation (SAIC) in support of the Hamm Creek and Kenco Marine sediment/soil characterization studies for the purpose of assigning responsibilities, establishing personal protection standards and mandatory safety procedures, and to provide for contingencies that may arise while SAIC operations are conducted at the Hamm Creek and Kenco sites. SAIC disclaims responsibility for any other use of this information other than the express purpose for which it is intended and assumes no liability for the use of this information for any other purpose. The evaluation of potential hazards and their controls reflect professional judgments subject to the accuracy and completeness of information available when this plan was prepared.

Hazards are associated with the equipment and supplies used in this program, as well as the general rigors of work at sea. The purpose of a health and safety plan (HSP) is to identify the potential hazards, institute procedures for minimizing them, and make this information known to all personnel.

#### SITE HISTORY AND DESCRIPTION

As part of the Hamm Creek restoration project, Hamm Creek will be realigned and 7 acres of a 22-acre piece of land adjacent to the Seattle City Light substation will be converted into a combined saltwater/freshwater wetland. Approximately 80,000 cubic yards will be dredged in providing a new outlet for Hamm Creek to the Duwamish River, creating a saltwater marsh in the riverside area and excavating upland for a freshwater wetland. This material is proposed for open-water disposal at the Elliott Bay site or for beneficial use, and will therefore be characterized under Puget Sound Dredged Disposal Analysis (PSDDA) and Sediment Management Standards (SMS) guidelines.

The study area along the Duwamish estuary was originally a mudflat, and was subsequently filled and developed. A portion of the Seattle City Light property was filled and developed for use as a substation location. The remaining portion, upon which the proposed habitat restoration project will be located, was never developed for industrial or commercial purposes, although it was used a dredged material stockpiling area. A detailed description of the site is included as part of the Quality Assurance Sampling and Analysis Plan (QASAP).

The Kenco Marine, Inc. property is located within a quarter mile of the Hamm Creek project along the Duwamish waterway, at the third turning basin (about river mile 6.1). The Kenco Marine site has the potential of being purchased and developed as a habitat restoration site. The project at this site is a preliminary level two site assessment and requires sediment chemistry analyses of surficial sediments.

#### PROJECT WORK SCOPE OVERVIEW

John Lunz

Patrick Cagney

(206) 764-6577

DACW67-95-D-1020

PROJECT NAME:

Hamm Creek Restoration Project. and Phase II Site Assessment Sampling at Kenco Marine, Inc., Duwamish Turning Basin No. 3, Tukwila, King County, Washington

SAIC CONTRACT NUMBER:

PROJECT MANAGER:

CLIENT:

CLIENT CONTACT:

**CLIENT PHONE NUMBER:** 

SITE LOCATION:

Duwamish Waterway, Tukwila. Washington (see Figure 1 of the QASAP)

U.S. Army Corps of Engineers. Scattle District

SITE PHONE NUMBER:

915-5267 (SAIC Cellular)

**OBJECTIVES:** 

Sediment and soil sampling at the Hamm Creek and Kenco Marine, Inc. sites for the purpose of determining if material is suitable for open water disposal (Hamm Creek) and assessing the sediment chemistry as part of a Level 2 site assessment (Kenco Marine). For the Hamm Creek project, the USACE and its drilling subcontractors will collect the samples by auger drill/split-spoon, and SAIC will process the samples in the field. Sampling for the Kenco Marine project will occur on the University of Washington's Boston whaler. Full description of the activities of this program may be found in the QASAP.

**PROPOSED DATES OF OPERATION:** 

June 16, 1997 Hamm Creek June 12, 1997

WORK TIME LIMITATIONS:

**Daylight Hours** 

SOURCE OF SITE INFORMATION:

Weston, 1990

#### PROJECT ORGANIZATION AND RESPONSIBILITIES

#### SAIC ORGANIZATION AND RESPONSIBILITIES

**Project Manager:** 

John Lunz

Has overall responsibility for the safe performance of the project and is the central point of contact with the client.

Site Health and Safety Officer:

John Nakayama, Lisa Roach

Responsibilities include that the requirements of the HSP are followed by all SAIC and subcontractors personnel. They are to ensure that all necessary personal protective equipment and supplies are available to the field team. They are also responsible for ensuring that subcontractors are informed and applicable provisions of the HSP and that they have an adequate health and safety program that will protect their employees. If he determines that site conditions are unsafe, he has the authority to suspend field operations until the problem is corrected.

None

Field Team Leader:

See field team members.

Field Team Members:

Lisa Roach John Nakayama Hamm Creek Kenco Marine

SAIC Subcontractors on site:

Government Agency Representatives on site:

USACE scientists and representatives

#### TASK DESCRIPTION

A complete description of the tasks undertaken for this program is given in the QASAP.

#### HAZARD ANALYSIS AND CONTROLS

Hazards encountered during sampling are generally classified as either chemical or physical. Chemical hazards are twofold: (1) chemicals used to decontaminate sampling gear and preserve samples, and (2) contaminants or hazardous materials potentially present within the sediments sampled. Physical hazards are associated with sampling gear, vessel, and work conditions at sea.

#### CHEMICAL HAZARDS

A 1990 site assessment conducted by Boeing or the dredge fill at the Hamm Creek site indicated cadmium and mercury concentrations above the PSDDA SL, with maximum concentrations of 1.3 and 0.51 mg/kg, respectively. No organics were detected above the PSDDA SL, although some of the detection limits (e.g., PCB for PCB Aroclor 1254) were above the PSDDA SL. Some of the sampling locations at Kenco Marine may be contaminated with petroleum products. For the most part, stations to be sampled at both locations are not expected to contain hazardous materials or require extraordinary precautions. During field operations, if evidence of contaminated sediments is observed by odor, color, presence of debris, petroleum products, or excessive organic enrichment, suitable protective measures for the crew will be instituted immediately.

Precautions employed in the handling of chemicals include restricting their use to the deck when sampling on the boat, storing and dispensing them from narrow-mouth bottles, and exercising care in their use. Solvent rinsing of sampling equipment is conducted over a stainless steel basin or plastic bucket, so that the excess solvent is not spilled and vapors escape freely. All waste chemicals will be stored in clearly labeled buckets, and securely stored until properly disposed. Gloves and safety glasses are worn when handling the acid and solvents. For the Kenco Marine project, all crew members should remain aware of the sea state and the presence of wakes or other disturbances that could cause spills.

Zinc acetate: a 2 Normal (2N) solution of zinc acetate is used to preserve sediment samples for sulfide analysis. Zinc acetate is dispensed from a narrow-mouth bottle with a plastic eyedropper. This procedure is conducted on deck to ensure adequate ventilation and reduce the severity of any spills.

Nitric acid (1 Normal) and methanol: These chemicals are used to decontaminate sampling equipment. Both are clear, colorless liquids with strong odors; methanol is a volatile solvent. Nitric acid will burn exposed skin on contact. Personnel are required to wear protective gloves and evewear whenever handling the decontaminating agents. These liquids are used in the open air or under a hood. Respirators are optional, if desired by crew members.

#### PHYSICAL HAZARDS

Gear deployment and retrieval present hazards because of the heavy weight of the sampling gear and the risk of accidental and premature closure. During field operations, van Veen grab sampler  $(0.025 \text{ or } 0.1 \text{ m}^2)$  will be used for the Kenco Marine project, and auger drill with split-spoon sampler will be used for the Hamm Creek project. SAIC personnel will not be involved with drilling operations.

A small boat will be used during sampling events. Some small boats can be unstable in the water; therefore, field personnel will wear Coast Guard-approved life vests or life jackets. Prior to coming on site, all persons will be trained on the operation of the vessel including boat safety, how to start/stop the motor, forward/reverse, fuel requirements, etc. Personnel should be aware of, and not exceed the limits for weight capacity and number of persons on the boat. A hand-held radio or cellular phone will be onboard to allow for direct communication to shore. Under circumstances of potentially dangerous waves or winds, the field team leader will employ best professional judgment to ensure safe field operations.

The physical hazards associated with the deployment and retrieval of sampling equipment are due to their weight, the method of deployment, and the risk of accidental and premature closure. During deployment and retrieval in rough waters or strong winds, this equipment may shift on deck or swing (if at the end of the winch wire). During gear deployment and retrieval, personnel should pay close attention to the position of the gear, the motion of the boat, mobility depending on obstructions on deck, and actual or potential fouling of the gear. Hands and feet must never be placed underneath sampling gear.

To avoid injuries from deck gear and equipment, sample handling equipment, containers, and deck lines not in immediate use will be kept clear of work areas until needed. To the extent possible, the crew will attempt to minimize the amount of sediment accumulating on deck in order to prevent slipping.

While working over water on the research vessel, using heavy equipment or during stormy weather, there is a potential for a man-overboard situation. If this situation occurs, the vessel will be stopped immediately. Flotation devices will be thrown to the victim from the vessel. The victim will then be brought aboard the vessel or towed to shore, whichever is quicker; wet clothes will be removed and replaced with dry clothing. The victim may need to be treated for cold stress. No other person(s) shall enter the water except if the victim is unconscious or seriously injured. Rescuers must wear life preservers and be tethered to the research vessel or shore.

#### HAZARD MONITORING AND CONTROL

#### TRAINING

While not specifically required, all personnel involved in the conduct of this program have completed the 40-hour hazardous waste site training, annual 8-hour refresher course, and appropriate medical monitoring in accordance with CFR 1910.120.

#### PERSONAL PROTECTIVE CLOTHING AND EQUIPMENT

All crew members are required to wear hard hats when working near the drill rig. Latex or nitrile gloves are required when sampling and when using nitric acid, methanol, or zinc acetate. All crew members will have access to respirators, but are not required to use them during operations, unless otherwise instructed by the site health and safety officer. Flotation vests are required on the small boat.

Each crew member is expected to bring clothing appropriate to the weather and task to minimize the hazards of exposure and heat stress. Boots and rain gcar or other waterproof clothing are recommended, particularly when processing sediment samples on deck.

#### MEDICAL SURVEILLANCE

All on-site personnel have had the appropriate medical monitoring in accordance with CFR 1910.120 for this program. No site-specific medical monitoring is required.

#### MONITORING AND SAMPLING PLAN

No specific direct reading air monitoring equipment is planned for this operation.

#### SITE CONTROL MEASURES

As sampling operations for the Kenco Marine project are to be conducted on-board the Boston whaler, access to the work site is controlled and only authorized personnel are on board. As this is not a hazardous waste sampling operation, there are not designated exclusion zones. However, the back deck of the whaler is designated as the work zone. A processing table and decontamination area (for processing gear and split-spoons) will be set up for the Hamm Creek sampling. Work operations will incorporate the use of the buddy system on deck at all times. No operations will be undertaken without line-of-sight or direct communication for all work.

#### **DECONTAMINATION PLAN**

Formal sampling personnel decontamination procedures are not necessary under this program.

#### INVESTIGATION DERIVED WASTE MANAGEMENT PLAN

All sediments, wash water, or other site-derived materials (e.g., wood debris) will be discarded overboard. Waste solvents from decontamination procedures will be captured, placed in appropriate sealed containers, and properly disposed of through a private waste management firm.

#### OTHER HAZARD CONTROL MEASURES

Site- and situation-specific hazard control measures shall be identified and incorporated as revisions or addenda to this HSP as required.

#### **ENFORCEMENT OF THE HSP**

To protect all personnel visiting SAIC site activities from any adverse health effects that may result from those site activities, all employees, contractors, and visitors to the SAIC work site are required to follow the requirements of this plan. All personnel involved with the investigation will check in with the Field Team Leader prior to site entry. All personnel must provide their own necessary PPE as specified in this HSP or by the Site Health and Safety Coordinator. All personnel visiting the investigation area will be briefed on this HSP, and all SAIC field personnel are required to sign their acknowledgment of the requirements herein.

#### SPILL CONTAINMENT PLAN

Site- and situation-specific spill containment measures shall be identified and incorporated as revisions or addenda to this HSP as required.

#### RECORDKEEPING

All revisions or addendums to this HSP will be documented in the project file and copies of all modifications will be maintained on the job site at all times.

#### EMERGENCY RESPONSE PLAN

# For all Health and Medical Emergencies, Notify the On-site SAIC Health and Safety Officer or Site Supervisor

SAIC PROJECT MANAGER:	John Lunz. (206) 485-5800
SAIC SITE HEALTH AND SAFETY OFFICER:	John Nakayama, Lisa Roach
CLIENT CONTACT:	Patrick Cagney
CLIENT PHONE NUMBER:	(206) 764-6577
SITE PHONE NUMBER:	915-5267 (SAIC Cellular)
Personal Injury or Illness:	Administer First Aid; Call Ambulance; If necessary, transport to hospital. See Emergency Medical Care.

Fire or Explosion: Turn off all motorized equipment: evacuate the work area: meet at designated upwind assembly area.

Hazardous Material Spill or Release: Turn off all motorized equipment: evacuate the work area in a direction upwind of the spill or release: meet at designated upwind assembly area: contact appropriate response personnel as necessary.

**Person Overboard:** Turn off all motorized equipment, and cease all non-rescue activities. Flotation devices attached to lines will be thrown to the victim from the vessel. No other person(s) shall enter the water except if the victim is unconscious or seriously injured. Rescuers must wear life preservers and be tethered to the research vessel. The victim will then be brought aboard the vessel; wet clothes will be removed and replaced with dry clothing. In the event the victim is injured or unconscious, activate the emergency medical alert system (911) and/or notify the U.S. Coast Guard.

Equipment Failure: If any other equipment on-site fails to operate properly, the project team leader and site safety officer shall be notified and they shall determine the effect of this failure on continuing operations on site. If the failure affects the safety of personnel or prevents the proper completion of the tasks described in the work plan, all operations will be secured and all personnel shall cease activities until the situation has been evaluated and appropriate actions taken.

A-8

#### EMERGENCY MEDICAL CARE AND PROCEDURES

# For all Health and Medical Emergencies, Notify the On-site SAIC Health and Safety Officer or Site Supervisor

SAIC PROJECT MANAGER: SAIC SITE HEALTH AND SAFETY OFFICER: CLIENT CONTACT: CLIENT PHONE NUMBER: SITE PHONE NUMBER: John Lunz, (206) 485-5800 John Nakayama, Lisa Roach Patrick Cagney (206) 764-6577 915-5267 (SAIC Cellular)

#### Nearest Emergency Medical Facility:

Harborview Medical Center 325 Ninth Avenue Seattle, Washington 98104 (206) 731-3074 (emergency) (206) 731-3000 (information)

Group Health Cooperative 201 16th Ave East 98112 (206) 326-3000 (ambulatory and urgent care)

Highline Riverton Community Hospital 12844 Military Road, South Tukwila, Washington (206) 244-0180

#### **Emergency Phone Numbers:**

Police Department, Emergency911Fire Department, Medical Emergency911U.S. Coast Guard1-800-592-9911Shephard Lifefleet Ambulance Service(206) 322-0330

#### **Emergency First Aid Procedures for Substances Present:**

See attached data sheets for specific symptoms and treatments.

First Aid Equipment On-Site: (Placed in accessible area outside of the Work Zone)

First Aid KitCellular TelephoneFire ExtinguisherCool water/fluids (2 gallons/person/day)

#### SIGNATURE PAGE

Prepared by:			
Name (Print)	Signature	Title	Date
Approved by:			
Name (Print)	Signature	Title	Date

We, the undersigned, have read this Site Health and Safety Plan and will institute the provisions and abide by the regulations contained herein for the duration of this program.

Name (Print)	Signature	Title	Date
ł			
		·····	
		· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	·	
· · · · · · · · · · · · · · · · · · ·			
			<u>,</u>

#### REFERENCES

Weston. 1990. Baseline Soil and Groundwater Quality Assessment. Seattle City Light Long-Term Lease Option, Seattle, Washington. Prepared for Boeing Environmental Affairs, Seattle, Washington by Roy F. Weston, Inc., Seattle, Washington.

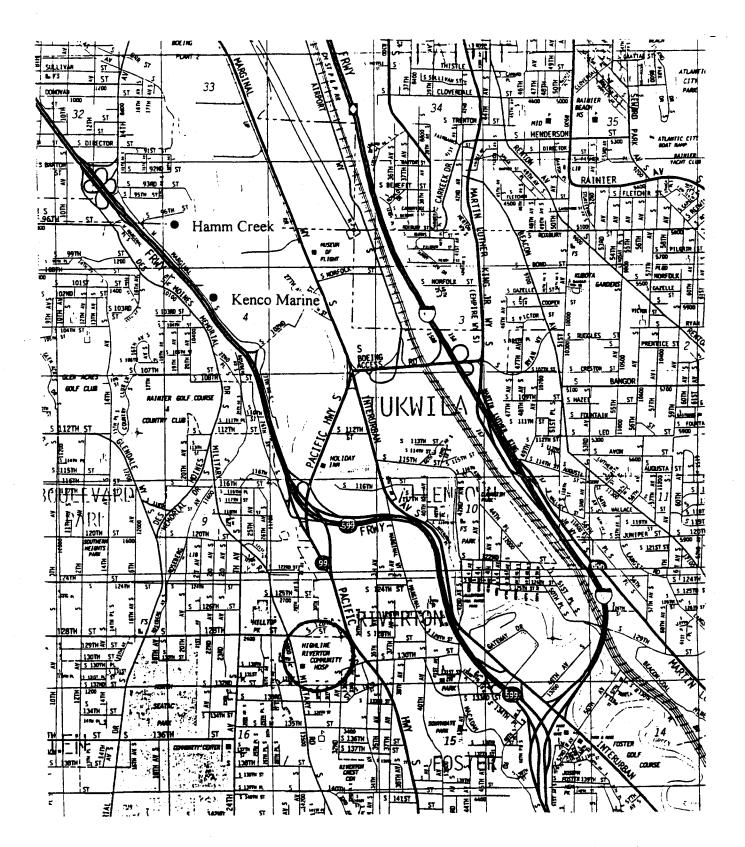



Figure A-1. Nearest emergency medical facility.