Lappala, E.G., Healy, R.W. and Weeks, E.P., 1987. Documentation of computer program VS2D to solve the equations of fluid flow in variably saturated porous media: U.S. Genlogical Survey Water-Resources Investigations Report 83-4099.

Description Variable Card B-14--Continued Logical variable = T if evapotranspir-ETSIM ation (plant-root extraction) is to besimulated at any time during the simulation; otherwise = F. Line B-15 is present only if BCIT = T or ETSIM = T. Number of ET periods to be simulated. B-15 NPV NPV values for each variable required for the evaporation and/or evapotranspiration options must be entered on the following lines. If ET variables are to be held constant throughout the simulation code, NPV = 1.Length of each ET period, T. ETCYC Note: For example, if a yearly cycle of ET is desired and monthly values of PEV, PET, and the other required ET variables are available, then code NPV = 12 and ETCYC = 30 days. Then 12 values must be entered for PEV, SRES, HA, PET, RTDPTH, RTBOT, RTTOP, and HROOT. Actual values, used in the program, for each variable are determined by linear interpolation based on time. Line B-16 to B-18 are present only if BCIT = T. Potential evaporation rate (PEV) at PEVAL B-16 beginning of each ET period. Number of entries must equal NPV, LT⁻¹. To conform with the sign convention used in most existing equations for potential evaporation, all entries must be greater than or equal to 0. The program multiplies all nonzero entries by -1 so that the evaporative flux is treated as a sink rather than a source. Surface resistance to evaporation B-17 RDC(1,J)(SRES) at beginning of ET period, L^{-1} . For a uniform soil, SRES is equal to the reciprocal of the distance from the top active node to land surface, or 2./DELZ(2). If a surface crust is present, SRES may be decreased to account for the added resistance to water movement through the crust. Number of entries must equal NPV. B-18 RDC(2,J)Pressure potential of the atmosphere (HA) at beginning of ET period; may be estimated using equation 6, L. Number of entries must equal NPV.

Table 3. -- Input data formats -- Continued

Table 3. -- Input data formats -- Continued

-

Card	Variable	Description
Lines B-19 B-19	to B-23 are present of PTVAL	Potential evapotranspiration rate (PET at beginning of each ET period, LT ⁻¹ Number of entries must equal NPV.
		As with PEV, all values must be greathan or equal to 0.
B-20	RDC(3,J)	Rooting depth at beginning of each ET period, L. Number of entries must equal NPV.
B-21	RDC(4,J)	Root activity at base of root zone at beginning of each ET period, L ⁻² . Number of entries must equal NPV.
B-22	RDC(5,J)	Root activity at top of root zone at beginning of each ET period, L ⁻² . Number of entries must equal NPV.
typical varies distribu general	ly range from 0 to 3.0 c linearly from land surfa ution with depth at any	enerally are determined empirically, but m/cm ³ . As programmed, root activity ce to the base of the root zone, and its time is represented by a trapezoid. In e greater at land surface than at the
B-23	RDC(6,J)	Pressure head in roots (HROOT) at beginning of each ET period, L. Number of entries must equal NPV.
Line group	C read by subroutine VS	TMER, NRECH sets of C lines are required]
C-1	TPER DELT	Length of this recharge period, T. Length of initial time step for this period, T.
C-2	TMLT DLTMX DLTMIN TRED	Multiplier for time step length. Maximum allowed length of time step, T Minimum allowed length of time step, T Factor by which time-step length is reduced if convergence is not obtained in ITMAX iterations. Value usually should be in the range 0.1 to 0.5. If no reduction of time- step length is desired, input a valu of 0.0.
C-3	DSMAX	Maximum allowed change in head per time step for this period, L.
	STERR	Steady-state head criterion; when the maximum change in head between successive time steps is less than STERR, the program assumes that steady state has been reached for this period and advances to next recharge period, L.

AR 020800

(

(

Table 3.--Input data formats--Continued

-

ς.

Card	Variable	Description
C-4	POND	Maximum allowed height of ponded wate for constant flux nodes. See text for detailed discussion of POND, L.
C-5	PRNT	Logical variable = T if heads, moistu contents, and/or saturations are to be printed to file 6 after each tim
	· ·	<pre>step; = F if they are to be written to file 6 only at observation times and ends of recharge periods.</pre>
C-6	BCIT	Logical variable = T if evaporation is to be simulated for this recharg period; otherwise = F.
	ETSIM	Logical variable = T if evapotrans- piration (plant-root extraction) is to be simulated for this recharge period; otherwise = F.
	SEEP -	Logical variable = T if seepage faces are to be simulated for this rechar; period; otherwise = F.
	are present only if	
	NFCS	Number of possible seepage faces.
C-8	JJ	Number of nodes on the possible seepage face.
• :	JLAST	Number of the node which initially represents the highest node of the seep; value can range from 0 (bottom of the face) up to JJ (top of the face).
C-9	J,N	Row and column of each cell on possible seepage face, in order from the lower to the highest elevation; JJ pairs of values are required.
C-10	IBC	Code for reading in boundary con- ditions by individual node (IBC=0) or by row or column (IBC=1). Only one code may be used for each rechar period, and all boundary conditions for period must be input in the seq- uence for that code.
Line set C-11 is	read only if IBC = C	. One line should be present for each
node for which	new boundary conditi	ons are specified,
	JJ	Row number of node.

•

.

Variable	Description
	Note that identifier for boundary
NTX	Node type identifier for boundary conditions.
	= 0 for no specified boundary (needed
	for resetting some nodes after initial
	recharge period);
	= 1 for specified pressure head;
	= 2 for specified flux per unit hori-
	zontal surface area in units of LT ⁻¹ ;
	= 3 for possible seepage face;
	= 4 for specified total head;
	= 5 for evaporation;
	= 6 for specified volumetric flow in units of L ³ T ⁻¹ .
	Specified head for NTX = 1 or 4 or
PEDUM	specified flux for NTX = 2 or 6. If
	codes 0, 3, or 5 are specified, the
	line should contain a dummy value for
	PFDUM or should be terminated after
	NTX by a blank and a slash.
	All by a blank and a present for each IOW
only if IBC = 1	. One card should be present for each row
which new bound	lary conditions are specified, Top node of row or column of nodes
JJT	TOD HODE OF TOW OF COLUMN OF TOPOLO
	sharing same boundary condition. Bottom node of row or column of nodes
JJB	Bottom node of row or condition Wil
	having same boundary condition. Wil
	equal JJT if a boundary row is being
	read.
NNL	Left column in row or column of nodes
_	having same boundary condition.
NNR	Right column of row or column of nodes
	having same boundary condition. Wil
	equal NNL if a boundary column is
	being read in.
NTY	Same as line C-11.
	Same as line C-11.
FEDON	Designated end of recharge period. Mus
	be included after line C-12 data for
	each recharge period. Two C-13 line
	must be included after final recharg
	period. Line must always be entered
	NTX PFDUM only if IBC = 1 which new bound JJT JJB

Table 3.--Input data formats--Continued

(

(

(

-

•	4.	VSTMER	 Controls the time sequence of simulation: a. At the start of each period having new boundary conditions or source/sink strength values, reads them, and adjusts material properties at the affected boundaries. b. Saves heads and moisture contents from previous time step. c. Computes proper time-step length to: (1) minimize oscillations; (2) end precisely at specified times when results are to be saved; and (3) end precisely at the end of the current recharge or evapotranspiration period.
	5.	VSCOEF	end of the current recharge of evapotralispilation period. Computes values of nonlinear coefficients using current values of pressure head.
			Computes intercell conductances for each node.
	6.	VSHCMP	Computes intercerif conductances for each hode. Computes values of coefficients in matrix form of flow
	7.	VSMGEN	Computes values of coefficients in matrix form of flow
			equation and calls the solution routine.
	8.	VSSIP	Uses the Strongly Implicit Procedure (SIP) to solve matrix equation.
	9.	VSFLUX	Computes a fluid mass balance for each time step including
	•		flux rates across Dirichlet and Neumann boundaries, and
			prints the results to fil <u>es 6</u> and 9.
	10.	VSFLX1	Computes intercell mass flux rates for Dirichlet boundary nodes.
1	11.	VSOUTP	Controls output of arrays to file 6, 8, and 11.
7		VSOUT	General output of array data to file_6. Prints a header and
L	***		desired array to file 6.
	13	VSEVAP	Computes evaporation from land surface as a function of
	10.	TOLTA	potential evaporation, the hydraulic conductivity of the
			surface layer, the pressure-potential difference between the
			soil and the air, and a surface-resistance factor.
	• /		Computes transpiration by plants as a function of potential
`	14.	VSPLNT	evapotranspiration, root-activity function, hydraulic
			conductivity of the soil, and the difference in pressure
			head between the roots and the soil.
		VSPOND	Checks to see if ponding has occurred during infiltration.
		VSSFAC	Computes the position of the top of seepage-face boundaries.
	17.	VSPET	Computes the potential evaporation rate, potential evapotrans-
			piration rate, and other variables required for calculation
			of evaporation and/or evapotranspiration.
	18.	VSRDF	Computes root activities by interpolating between the activity at land surface and that at the maximum depth at rooting.
		Separate	groups of function subprograms are required to evaluate the soil
	hvd	raulic prop	
		rearre brob	
	10	Eunction -	ubprograms for soil hydraulic properties are:
		VSTHNV:	Pressure head as a function of volumetric moisture content:
	a.	<u>A91004</u> :	$h(\theta)$.
	•		$\Pi(\nabla).$

- b. <u>VSTHU</u>: Volumetric moisture content as a function of pressure <u>head</u>: $\Theta(h)$.
- c. <u>VSDTHU</u>: First derivative of volumetric moisture content as a function of pressure head, or specified moisture capacity:

 $\frac{d[\Theta(h)]}{dh}.$

d. <u>VSHKU</u> Relative hydraulic conductivity as a function of pressure head: K₁(h).

Four sets of function subprograms are listed separately with VS2D: Brooks-Corey, van Genuchten, Haverkamp, and tabular interpolation. Only one of these should be compiled and loaded with VS2D for any given problem. These sets are listed in Attachment I.

File Definition

I. INPUT FILE: File 5.

II. OUTPUT FILES: File 6, printer file:

Echo all input data, initial conditions, boundary conditions; write pressure heads, total heads, moisture contents, and/or saturations, as selected by user for all time steps or user-selected times. Optional mass balance for each time step, but mass balance and pressure head profile at end of simulation. Written to from VSEXEC, VSREAD, VSTMER, VSOUT, and VSOUTP.

File 7:

Time step number, elapsed simulation time, and maximum head change for each iteration. Written to from VSOUTP if F7P = T.

File 8:

Pressure head at all nodes at selected observation times; written to from VSOUTP if F8P = T; includes one header record per observation time. Format is 8E10.4.

Note: File 8 may be used to provide initial conditions for restarting a simulation. The pressure-head profile for the selected time should be placed in file IU, and read using option 1 for initial head conditions (see input data description).

File 9:

Mass-balance summary as a function of elapsed time written to from VSFLUX if F9P = T; this summary contains evaporation, and evapotranspiration rates from each time step; includes 3 header records. File 11:

Total head, pressure head, moisture content, and saturation at selected observation points for each time step; written to from VSOUTP if F11P = T.

Note: All header records include problem title, file identification, and column headings.

MODEL VERIFICATION

The computer code was verified on five test problems. Owing to the nonlinearity of the descriptive flow equation (equation 13) closed-form analytic solutions are not available for most problems to which the code might be applied. Two tests of linear forms of equation 13 were made to verify the code for rectangular and radial coordinates. The third verification test involves the comparison of simulated results to an analytical solution for a steady-state nonlinear problem. Finally, two nonlinear simulations are compared to experimental data.

When the conductance and storage terms in equation 13 are constant, it can be written in the horizontal direction as the linear diffusion equation:

$$\frac{\partial H}{\partial \tau} = D \frac{\partial^2 H}{\partial x^2}$$
(53)

where:

$$=\frac{K}{S_s};$$

D

K = saturated hydraulic conductivity LT^{-1} ; and S_e = specific storage, L^{-1} ;

with the initial condition $H = H_o$ at t = 0; and the boundary conditions $H = H_i$ at x = 0, and $H = H_o$ at x = L, where L is the length of the system. If L is large enough that it can be considered infinite for the problem of interest, the solution to equation 53 is (Carslaw and Jaeger, 1959):

$$\frac{H - H_o}{H_i - H_o} = erfc \left(\sqrt{\frac{x^2}{4Dt}}\right), \tag{54}$$

where erfc is the complementary error function.

The computer code was applied to a one-dimensional column for which $D = 0.3118 \text{ cm}^2/\text{min}$, with a grid spacing of $\Delta x = 0.05 \text{ cm}$. Results are shown in figure 19 for an elapsed time of 5 minutes. The boundary conditions used were $H_{\downarrow} = 0 \text{ m}$; $H_{\downarrow} = 3 \text{ m}$.

The second linear test of the computer code was designed to evaluate the adequacy of the cylindrical geometry option. By making the hydraulic properties constant, equation 13 can be written as the radial diffusion equation:

$$\frac{\partial H}{\partial t} = \frac{D}{r} \frac{\partial H}{\partial r} + D \frac{\partial^2 H}{\partial r^2} .$$
 (55)

With the Neumann boundary conditions due to withdrawal of water at the origin at the rate, \hat{q} :

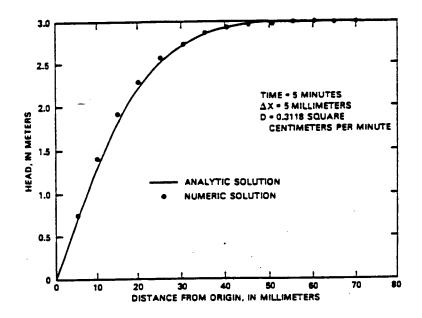


Figure 19.--Comparison of analytical and numerical solutions for one-dimensional linear diffusion.

$$\lim_{r\to 0} r \frac{\partial H}{\partial r} = \frac{\hat{q}}{2\pi Kb} , \qquad (56)$$

where b is the thickness of the aquifer, L; with the Dirichlet condition at $r = \infty$ of H_o and the initial condition, $H = H_o$, the solution to this problem is (Theis, 1935):

$$H_{o} - H = \frac{\hat{q}}{4\pi Kb} \int_{\frac{r^{2}S_{s}}{4K t}}^{\infty} \frac{e^{-u}}{u} du$$
 (57)

The exponential integral was evaluated by series expansion using constants given by Abramowitz and Stegun (1964).

AR 020806

The computer code was applied to the problem described by equation 55, subject to the following conditions:

- $H_{2} = 100 \text{ meters};$
- K = 0.03472 meters per minute;
- b = 10 meters.
- \hat{q} = 13.369 cubic meters per minute; and
- $S_{2} = 3.0 \times 10^{-5}$ per meter.

The comparison between the analytic and numerical solutions is shown in figure 20 for r = 3.94 m. For the numerical solution, a variable time step was used, computed with $\Delta t^{i} = 1.5 \Delta t^{i^{-1}}$. The initial time step size was 0.001 minute. A variable radial grid spacing (Δr) was used starting with 0.05 m at the origin and increasing Δr by a factor of 1.2 with each radial increment.

The third verification problem involved the comparison of steady upward flux to the atmosphere as determined by simulation to that computed by an analytical equation. That equation is based on a Haverkamp-type equation relating unsaturated hydraulic conductivity to pressure head (equation 26) with the restriction that the exponent B' is an integer varying from 2 to 5.

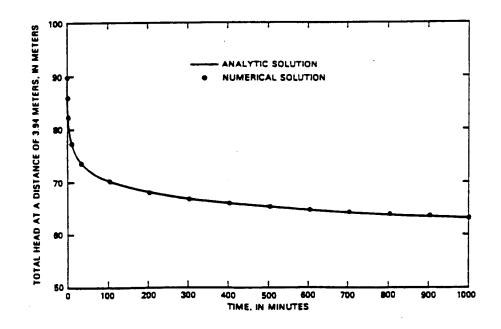


Figure 20.--Comparison of analytical and numerical solutions for one-dimensional radial flow to a well in a confined aquifer.

Based on this relation, the steady evaporation rate is given by the equation (Ripple and others, 1972):

$$\frac{E_{\infty}}{K} = \left(\frac{A'}{L}\right)^{B'} \left[\frac{\pi}{B'\sin\frac{\pi}{B'}}\right]^{B'},$$
(58)

where

 E_{∞} = evaporation rate at land surface when the pressure head is equal to minus infinity, LT^{-1} ; and

L = distance from the water table to land surface, L.

This equation is strictly valid only when $E_{m}^{<< K}$.

The following fixed parameters were used in the verification problem:

K = 0.10 m/day; L = 1.00 m; A' = -0.10 m; B' = 3; andSRES = 2./ ΔZ

Results of several simulations are listed in table 4. Only three-place accuracy is listed because the analytical equation itself may be in error in the fourth place, due to an approximating assumption in its evaluation.

Other runs, not listed, showed that the program could achieve about 1-percent accuracy using arithmetic mean weighting and a variable grid spacing starting with a vertical increment of 5 mm at land surface.

Grid spacing, mm	Weighting scheme	Pressure head in atmosphere, m	Evaporation rate mm/dayx10 ⁻¹
20	Geometric	-100	1.77
20	Do	-500	1.73
20	Do	-1,000	1.71
40	Do	-100	1.77
40	Do	-500	1.70
20	Arithmetic	-100	1.92
20	Do	-500	1.96
20	Do	-1,000	1.97
20	Upstream	-100	2.23
20	Do	-1,000	2.11
nalytical solu	Ition		1.77

Table 4.--Simulation results for steady evaporation

[mm, millimeters; m, meters]

Table 4 illustrates some of the problems involved in numerically simulating highly nonlinear equations. Under some conditions, the simulated flux matched that computed using the analytical equation exactly, indicating that the program is performing correctly. However, the results are highly dependent on the node spacing, weighting scheme, and imposed pressure head in the atmosphere. The results suggest that use of the geometric mean weighting scheme with a fairly small grid spacing, at least at the land-surface boundary, is advisable.

For the fourth verification problem, simulation results were compared to experimental results by Haverkamp and others (1977) for vertical infiltration of water into sand. The hydraulic properties and Haverkamp function values listed for soil in table 1 were used to simulate the sand.

The initial and boundary conditions are as follows:

1

t < 0	0 < z < 0.70 m	h = -0.615 m
t ≧ 0	z = 0	Infiltration rate at top of column = 0.1369 m/h.
t ≧ 0	z ≧ 0.70 m	h = -0.615 m.

The geometric mean was used to determine the interblock relative hydraulic conductivity. Vertical grid spacing was uniformly set at 1 cm. As figure 21 shows, the model-computed results match reasonably well with the experimental data, especially at larger times.

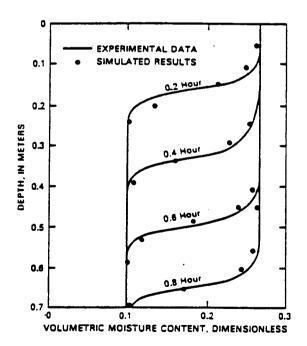


Figure 21.--Comparison of moisture content profiles with those measured by Haverkamp and others (1977, p. 285) for one-dimensional vertical infiltration.

Use of upstream weighting, arithmetic mean, and geometric mean to compute the interblock relative hydraulic conductivity are compared for this problem in figure 22. Unlike the problem involving bare soil evaporation, the results are not significantly affected by the weighting scheme. In fact, results are virtually identical for the geometric and arithmetic means. Both show a sharper front than that determined using upstream weighting.

Verification problem 5 illustrates the seepage face option. The problem was based on an experiment reported by Duke (1973) and Hedstrom and others (1971). This experiment was also simulated by Davis and Neuman (1983). For the experiment, a 12.20 m long flume was packed to a height of 1.22 m with Poudre Sand. A constant rate of infiltration was applied to the soil surface and water levels were kept equal to the bottom of the flume at its ends. The objective of the experiment was to determine the location of the free-water surface once steady-state conditions were achieved.

The hydraulic properties of the Poudre Sand are described by functions of the Brooks-and-Corey-type (equations 18, 23, and 27) with the values:

 $\Theta_{s} = 0.348;$ $h_{b} = -.19 m;$ $\lambda = 1.6;$ $\Theta_{r} = 0;$ K = 5.564 m/d;

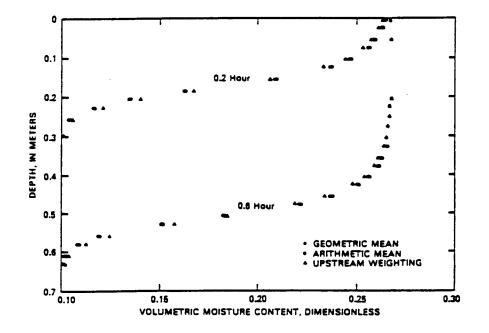


Figure 22.--Comparison of effects of using different methods for determining interblock relative hydraulic conductivity in vertical infiltration problems.

AR 020810

72

The simulated cross section was 1.22 m high and 6.10 m long (because of symmetry, it was necessary to simulate only one-half of the flume). The bottom and right hand boundaries were impermeable. The soil surface nodes were assigned a constant flux of 0.1035 m/d. The left-hand boundary was specified as a possible seepage face. Initial heads were set at static equilibrium.

A total of 1,344 nodes (42 rows by 32 columns) was used for the simulation. Grid spacing was variable in both dimensions, being fine (a minimum of 0.01 m) near the soil surface and near the seepage fact.

The simulation was run until steady state was reached, as determined by specifying that the maximum head change between sequential time steps be less than 10^{-6} m. Steady state was reached at approximately 5.89 days (136 time steps). Figure 23 shows the steady state location of the free-water surface as simulated by VS2D and as measured by Duke (1973). The simulation results match the experimental data closely, but not exactly. According to Duke (1973), local nonhomogeneity may have added some scatter to the experimental data. Figure 24 shows the vertical distribution of pressure heads at the left hand boundary as computed by VS2D and by Davis and Neuman (1983). Agreement is good between the two simulations, with VS2D producing slightly higher pressures throughout the vertical.

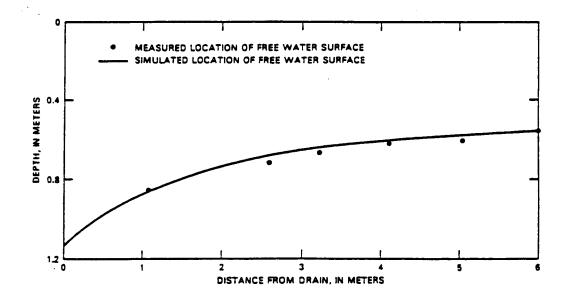


Figure 23.--Comparison of simulated and measured location of the free-water surface for the drainage problem of Duke (1973).

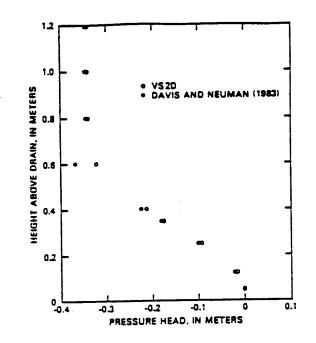


Figure 24.--Comparison of pressure head profiles at the left hand boundary as computed by VS2D and Davis and Neuman (1983) for the drainage problem of Duke (1973).

Example Problems

Two example problems follow. These are designed to check out the program after it has been installed on a particular computer system. Complete listings of input data and partial listings of program output are given for each example.

Example Problem 1

Example 1 is a problem of one-dimensional vertical infiltration into a medium of uniform initial pressure head (Baca and King, 1978). The porous medium is Glendale clay loam; its hydraulic properties are described by the Brooks and Corey equations with the following constants:

 $h_{b} = -0.054 \text{ m};$ $\lambda = 0.2;$ $\theta_{s} = 0.52;$ $\theta_{r} = 0.0; \text{ and}$ K = 0.0375 m/h.

Initial pressure head is uniformly set at -1.31 m. At 0 hours a constant pressure head, equal to -0.054 m, is applied to the uppermost node. The simulation then proceeds for 3.0 hours. The length of the simulated column is 0.60 m. A uniform grid spacing of 0.01 m is used. Time step size is

constant at 0.1 hours. Depth profiles of saturation are computed at four times, and time profiles of heads, saturations and moisture contents are output for six points in the profile.

Input data for this problem are listed in table 5. In addition to the input data, each line except the first is keyed to the input descriptions in table 3, followed by a short description on the line itself. This information does not interfere with the running of the program.

A partial listing of output to file 6 is given in table 6. The first pages of this table represent the echoed input data. These are followed by one-line summaries of each time step until the time designated for depthprofile output to files 6 and 8 is reached. The saturation profile (since SPNT is TRUE) is then printed to file 6. Had PPNT, HPNT, and/or PPNT been set to TRUE, moisture content and/or head profiles would also have been listed in file 6 at this point. Also printed out at this time is a table showing the mass balance. Mass balance summaries for each time step could have been obtained by setting F6P = TRUE. In general, this output would be designated only when the user was trying to diagnose the cause of convergence problems.

A partial listing of output to file 8 is given in table 7. Note that this table lists the pressure head values for all nodes, including the inactive ones, at the user-designated times. The main purpose of this file is to provide initial conditions for restarting a simulation. For example, assume that the simulation failed to converge shortly after an hour had been simulated, and a new shorter time step was desired after that time. In this case, the TIME = and the following blank line would be deleted, and the file renumbered for use as input to VSREAD, specifying the file number and format in card B-13.

A listing of output to file 9 is given in table 8. This file summarizes the mass balance for each time step in concise form. The meanings of the abbreviated column headings are as follows:

Heading	Description
FLXIN1	Flux into domain across specified pressure head boundaries.
FLXOUT1	Flux out of domain across specified pressure head boundaries.
FLXIN2	Flux into domain across specified flux boundaries.
FLXOUT2	Flux out of domain across specified flux boundaries.
TOTAL ET	Total evapotranspiration flux (the sum of plant transpiration and evaporation) into domain (thus negative).
TRANSP	Plant transpiration.
EVAP	Bare soil evaporation.
DELS	Time rate of change in storage in domain.
ERROR	Sum of fluxes (including evapotranspiration) minus the rate of storage change.
%ERROR	Error divided by the change in storage, the quotient multiplied by 100.

The main uses of file 9 are to provide data on total evapotranspiration, evaporation, and transpiration rates, and to provide a concise summary of the mass balance for each time step.

The output to file 11 for example problem 1 is shown in table 8. For this table, H signifies total head, P, pressure head; THETA, moisture content; and SAT, saturation. A major use of file 11 is to provide data for preparing g. sphic output.

Example problem 1 was selected as a relatively simple problem, both conceptually and for data input, that nonetheless provides a good demonstration of the ability of the code to solve severely nonlinear problems. However, simulation results have differed slightly, particularly in the number of iterations required and in the mass balance, between the Prime¹ Model 750 and Prime Model 9950 computers. Other slight differences occurred between object codes generated by the Prime F77 revision 19.2.10 and the F77 revision 19.4 that were run on the Prime Model 9950 computer. Thus, the user should not concern himself with small variations in the mass balance or in variations in the total number of iterations required so long as the mass balances, the generated profiles, and the time histories, are in reasonable agreement with the equivalent output generated by his machine.

¹Use of brand names in this report is for identification purposes only and does not constitute an endorsement by the U.S. Geological Survey.

Table 5.--Input data for example problem 1

ONE-DIMENSIONAL INFILTRATION	EXAMPLE 1
3.00 0.00	A2MAX SIMULATION TIME, INITIAL TIME
CN HRGRAM	A3UNITS
3.62	A4NO. OF COLUMNS, NO. OF ROWS
1 40	A5NO. OF RECHARGE PERIODS, NO. OF TIME STEPS
F T	A6RADIAL? ITSTOP?
	A7OUTPUT TO FILE 11? 7? 8? 9? MASS BAL TO 6?
FTFF	A8PRINT THETA? SATURATION? PRSS. HEAD? TOTAL HEAD?
	A9IFAC.FACX
1 1.0 1 1.0	AllJFAC.FACZ
- 4	AllSPAC, FACL AllNO. OF TIMES TO PRINT PROFILES
0.5 1.0 2.0 3.0	A14TIMES TO PRINT PROFILES
	A15NO. OF POINTS FOR OUTPUT DATA
б 5 2 10 2 16 2 22 2 20 2 40 2	
5 2 10 2 16 2 22 2 30 2 40 2 .002 .50 0.0	B1CLOSURE CRITERION, HMAX, WEIGHTING FOR KR
	B2FLUID DENSITY
1.0 2 200	B3MIN ITS, MAX ITS
	84HEADS READ AS INITIAL CONDITIONS?
T · · · · · · · · · · · · · · · · · · ·	B5NO. OF TEXTURES, NO. OF PROPERTIES FOR EACH TEXTURE
	B6TEXTURE CLASS
	0.20 B7ANIZ, KSAT,SS,POR,HB,RSAT,LMDA
	B8TEXTURE CLASS READ BY BLOCK
1 3 62 -1	
	BIOFIRST COL, LAST COL, LAST ROW, CLASS CODE
0130.0	B11HEAD CODE, INITIAL HEAD OR FACTOR
F,F	B14EVAPORATION ? PLANT TRANSPIRATION ? C1TPER.DELT
3.00 0.10 1.00 0.10 0.10	
	0.00 C2TMULT.DELTMAX.DELTMIN.TRED
100. 0	C3OSMAX,STERR C4POND
0 F	
FFF	C5RESULTS TO FILE 6 EVERY TIME STEP?
	C5EVAP? TRANSPIRATION? SEEPAGE FACES? C10BOUNDARY CONDITION BY POINT
2 2 1 -5.4	C11ROW COLUMN CODE PFDUM
999999 /·	C13 END OF BOUNDARY CONDITIONS FOR TPER C13 END OF FILE
999999 /	CIJ ENU UF FILE

1

•

				000	
+ + + + + + + + + + + + + + + + +				3	
+ + + + + + + + + + + + + + + + + + +			• •	II.000 1.000 1.000 1.000	
		· .		.NOILION	
RENCE				DIRECTION 1.000 1.000 1.000 1.000 1.000 1.000	
			STEP?,I		
++++++ ZD AL VAF SATURV INITE +++++			TIME S	IN VERTICAL 1.000 1.000 1.000 1.000 1.000 1.000 1.000	
WITH WITH WITH WITH WITH WITH WITH WITH SIMULATION OF SIMULATION OF SATURATED HEAD SATURATED HEAD BODY-CENTERED LUID SATURATION MITE BODY-CENTERED CELLS USEN USEN	алагоската стата ста Е X ANPLE 1 са стата с			SPACING 1 1.000 1.000 1.000 1.000 1.000 1.000	
2-DIME AND F AND F IMPLI CELLS		·	E I INE	0 SPA 1.0 1.0 1.0 1.0	
HEAD HEAD LIGNS.			ATTON XCEED XCEED TO F	GRD 000 000 000 000 000 000 000	
++++++++++++++++++++++++++++++++++++++		¥ 9	B AT OBSERVATION TIMES? T TERATIONS EXCEEDED IN ANY EACH ITERATION TO FILE 77 110N POINTS TO FILE 11? T 97 T 67 F 13 F		
SIMU SATU DIST B0DY B0DY	EXMPLE	.0000	E 8 AT (176771) R EACH NA EACH VVATION (VATION E 67 F E 67 F	000.000	
÷		··· •			
	RAT 10	1 TIME = 0.0000 0.0000 = PERIODS = 11ME STEPS = 62 62 = 3	05 10 14 NEAD 14 NEAD 14 NEAD 14 NEAD 16 08 10 61 11 6 67 11 6 67	000000000000000000000000000000000000000	
	ONE-DIMENSIONAL INFILTRATION SPACE AND TIME CONSTANTS	MAXIMUM SIMULATION TIME = STARTING TIME = 0.0000 NUMBER OF RECHARGE PERIODS MAXIMUM NUMBER OF TIME STEI NUMBER OF ROUS = 62 NUMBER OF COLUMNS = 3 SOLUTION OPTIONS	WRITE ALL PRESSURE HEADS TO FIL STOP SOLUTION IF MAXIMUM NO. OF WRITE MAXIMUM CHANGE IN HEAD FO WRITE MAXIMUM CHANGE IN HEAD FO WRITE MASS BALANCE RATES TO FIL WRITE MASS BALANCE RATES TO FIL WRITE MOISTURE CONTENTS TO FILE WRITE SATURATIONS TO FILE 67 T WRITE PRESSURE HEADS TO FILE 67 UNTIE FRESSURE HEADS TO FILE 67 UNTIE FRESSURE HEADS TO FILE 67 UNTIE FRESSURE HEADS TO FILE 67		
	UNAL T	LATIO E CHARG	ESSURI N IF I S AT ALANC ALANC ALANC ITIONS	000000000000000000000000000000000000000	000
	MENSI:	MAXIMUM SIMULATION TIM STARTING TIME = 0.0 NUMBER OF RECHARGE PER MAXIMUM NUMBER OF TIME NUMBER OF ROWS = 62 NUMBER OF COLUMNS = 50 SOLUTION OFTIONS	ALL PR MLUTIO MXIMU MXIMU MXIMU MXIMU MXIMU MXIMU MXIMU MIAN MIAN		
		SER NUM	VRLITE A SUOP SO SIOP SO WRLITE M WRLITE M WRLITE S WRLITE S URLITE S	00000	U UU

Table 6.--Partial listing of output to file 6, the main output file, for example problem l

AR 020816

(

(

Table 6.---Partial listing of output to file 6, the main output file, for example problem 1---Continued 5.2000-01 -5.4000+00 0.0000-01 2.0000-01 CONVERTE CALLER AND SOOR OF CONVERTE CONVERTE CONVERTER CONVERTER CONVERTER CONVERTINAL SCOOR OF CONV CONTRACTOR, MAX 2 CONSTRAT ZERO PRESSURE - 1.000E+00 GRAW/ CON+3 FLUID DENSITY AT ZERO PRESSURE - 1.000E+00 GRAW/ CONSTRATE CONDUCTIVITY ON THE CONSTRATE CONSTANTS FOR SOIL TEXTURAL CLASSES MAXIMUM PERMITTED NO. OF ITERATIONS/THE STEP - 200 CONSTANTS FOR SOIL TEXTURAL CLASSES 9 POROS I TY 2 TIMES AT MUICH H WILL BE WRITTEN TO FILE 08 0.5000 1.0000 2.0000 3.0000 Row And Column of Observation Points: 8 0.0000-01 SPECIFIC STORAGE MATRIX EQUATIONS TO BE SOLVED BY SIP 22 COORDINATE SYSTEM IS RECTANGULAR INITIAL MOISTURE PARAMETERS TEXTURAL CLASSES READ IN BY BLOCK 16 2 CONVERGENCE CRITERIA FOR SIP 3.1250+00 KSAT 1.000 TEXTURAL CLASS INDEX MAP 1.0000+00 1.000 10 **ANI SOTROPY** 111 _ -1.000 G CLASS / 1

79

7

4 - 00004-

AR 020817

	•	
	-	0.99945390+00
	X OR R DISTANCE, IN CH	50 56.500 50 55.500 50 57.500 50 58.500 50 59.500 50 59.500 50 59.500 50 59.500 50 59.500 50 59.500 5
	0.50 0.50 0.50 0.50 0.50 0.500 0.500 0.500 0.500 11.5000 11.5000 11.5000 11.5000 11.5000 11.5000 11.5000 11.5000 11.5000 11.5000 11.50000 11.5000 11.5000 11.50000 11.50000 11.50000 11.50000000000	6.50 56.500 7.50 55.500 8.50 57.500 9.50 58.500 9.50 58.500 9.50 58.500 9.50 58.500 9.50 58.500 9.50 58.500 9.50 58.500 9.50 59.500 1111AL PRESSURE HEAD OR MOISTU 1011AL ELAPSED TIME * 0.000E-01 101AL ELAPSED TIME * 0.000E-01
858889 858889	Z, IN CM 1.55 CM 1.55	56.50 57.50 58.50 59.50 59.50 531P 1 101AL 101AL

AR 020818

(

٩

(

	the main and the second of the second tille, for	r example	probl
2, IN CM			
0.50	0.529		
1.50	0.529		
2.50	0.529		
3.50	0.529		
4.50	0.529		
5.50	0.529		
6.50	0.529		
7.50	0.529		
8.50	0.520		
0.50			
10.50			
11 50			
12 50			
13 50			
02.01			
15.50	0.529		
56.50	0.520		
57.50	0.529		
58.50	0.529		
59.50	0.52		
DATA	FOR RECHARGE PERIOD 1		
	OF THIS PERIOD = 3. DF INITIAL TIME STEP		
	IEN FUN TIME STEP =].000E+00 INE STEP STZE =].000E-01 TIME STEP STZE =].000E-01		-
	EP REDUCTION FACTOR		
	MAXIMUM PRESSURE HEAD CHANGE ALLOWED IN ONE TIME STEP = 100.000		
	SIMULATE EVAPOTRANSPIRATION? F SIMULATE SEEPAGE FACES? F		
NODE	NODE TYPE AND INITIAL BOUNDARY CONDITIONS FOR PERIOD 1		
LEGENU:			

lem 1--Continued ċ Table 6

		66	Ŧ	36	E	32	
		HR REQUIRED ITERATIONS =	IN REQUIRED ITERATIONS -	HR REQUIRED ITERATIONS -	HR REQUIRED LIFERATIONS -	HR REQUIRED ITERATIONS =	
	. · ·	R REQUIRED	R REQUIRED	R REQUIRED	R REQUIRED	R REQUIRED	
		1.0006-01 H	2.000E-01 11	3.000£-01 HI	4.000E-01 M	5.000E-01 HI	
	·	- · · · · · · · · · · · · · · · · · · ·	- 2.00	- 3.00	- 4.00		
		IME				IME	
11160		I ELAPSED TIME	L ELAPSED TIME	I ELAPSED TIME	ELAPSED TIME	1 ELAPSED TIME *	
PERM		-	-	-	-		
SURE HEAD CELL Cell Age Face Node Evaporation is permitted		CHARGE PERIOD =	PER100 -	PER100 =	ECHARGE PERIOD -	ECHARGE PERIOD =	EXAMPLE 1
		RE CHARGE	RECILARGE PERIOD	RECHARGE PERIOD	RECHARGE	RECHARGE	NO
DR CELL IED PREI IED FLUS IED FLUS IAL SEE IAL SEE IAL SEE		. –	~	m	•	S	FILTR
INTERIOR CELL SPECIFIED PRES SPECIFIED FLUX POTENTIAL SEEP NODE FOR MILCH		*		= ~	• ~	1 64	IL IN
		NUMBER	STEP NUMBER	STEP NUMBER	STEP NUMBER	STEP NUMBER	ONE-DIMENSIONAL INFILTRATI
898-0		000 000 000 000 000 000 000 000 000 00	STEP	STEP	STEP	STEP	DIMEN
	-~~************************************	E INE E 1 INE E 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TIME	TIME	TIME	TIME	- JNO

led

AR 020820

ŧ

82

|--|

Table 6.--Partial listing of output to file 6, the main output file, for example problem 1--Continued

...

T 1115 CT

**************************	******	*****	***************************************	********	*******	*****	************	:
FLUX INTO DOMAIN ACROSS SPECIF FLUX OUT OF DOMAIN ACROSS SPECIF FLUX INTO DOMAIN ACRO FLUX OUT OF DOMAIN ACRO	TO DOMAIN ACROSS SPECIFIED PRESSURE HEAD of domain across specified pressure head flux into domain across specified flux total flux ou total flux ou total evapoir cliange in fluid store	IED PRESSURE HEAD IED PRESSURE HEAD SS SPECIFIED FLUX TOTAL FLUX OUT TOTAL FLUX OUT TOTAL EVAPOIR TOTAL EVAPOIR GE IN FLUID STORER	PRESSURE HEAD BOUNDARIES PRESSURE HEAD BOUNDARIES SPECIFIED FLUX BOUNDARIES Total Flux Boundaries Total Flux Boundaries Total Flux OUT OF DOMAIN Total Evaporation Transpiration In Fluid Stored in Domain Fluid Mass Balance	T0TAL MASS GRAM 2.05757E+00 0.00000E-01 0.00000E-01 0.00000E-01 2.05757E+00 0.00000E-01 0.00000E-01 0.00000E-01 0.00000E-01 2.30255E+00 -2.44982E-01	1	MASS TILLS TIME STEP GRAM 3.27883E-01 0.00000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.00000E-01 0.0000E-01 0.00000E-01 0.000E-01 0.0000E-01 0.000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.000E-01 0.000E-01 0.000E-01 0.0000E-01 0.000E-000E-000E-00 0.000E-000E-000E-00	RATE FOR THIS TIME STEP GRAM/ HR 3.279BB3E+00 0.00000E-01 0.00000E-01 0.00000E-01 0.00000E-01 0.00000E-01 0.00000E-01 0.00000E-01 0.00000E-01 0.00000E-01 0.00000E-01 0.00000E-01 0.00000E-01 0.00000E-01	
TIME STEP NUMBER = 20 RECH TIME STEP NUMBER = 20 RECH TIME STEP NUMBER = 29 RECH TIME STEP NUMBER = 30 RECH ONE-DIMENSIONAL INFILTRATION TOTAL ELAPSED TIME = 3.000EH TIME STEP 30	28 29 30 3.0	RECHARGE PERIOD - RECHARGE PERIOD - RECHARGE PERIOD - RECHARGE PERIOD - 1TION EXAMPLE 1 00E+00 HR	1 ELAPSED TIME = 1 ELAPSED TIME = 1 ELAPSED TIME =	2.800f+00 2.900f+00 3.000f+00	HR REQUIRED HR REQUIRED HR REQUIRED	HR REQUIRED ITERATIONS - HR REQUIRED ITERATIONS - HR REQUIRED ITERATIONS -	26 28 28	
2, IN CM 0.50 1.50 1.000 2.50 1.000 3.50 1.000 4.50 1.000 5.50 1.000	X OR R DISTA	ANCE, IN CH	SATURATION					

Table 6.---Partial listing of output to file 6, the main output file, for example problem 1--Continued

.

AR 020822

þ																																																								
for example problem 1Continued																																																								
JCo																																																								
roblem																																			•																					
iple pi																																																								
r exa																																																								
le, fo																									•																															
the main output fille,																																																								
n out																																																								
he mai																																																								
6,																																					•																			
to fil																																																								
output to file																																																								
2																																																								
listing																																																								
1																												•																												
Partial	1.000	000	000	000	000		200	000	UUU		000	000	200	000	000	200	000		000		000	000		200	000	000	666	000	966	797		07	16	101		187	AD O	2	171	150	661	10	2	60	00		27	27	56	16	DE	29		53	20	
<u> </u>																																																								
Tabl	6.50	1.51	8.51	9.5(10.50	11 50		12.21	13.50	14 50	15.5(16 SL		14.25	IR SC		19.50	20 50	21.50	33 EA	10.33	23.50	24 E.		25.50	26 50	27.50	28.50	00.42	30.50	31 60		32.50	31,50		14.50	35.50		Jo 0L	37.50	38.30	39.50		0c.0t	- 41.50	42 50		13.20	44.50	45 50	10.00	47.50	AB SO	10.00	49.50	

Table

Table 6.---Partial listing of output to file 6, the main output file, for example problem 1--Continued

53.50 0.520 55.50 0.530 55.50 0.530 55.50 0.530 55.50 0.530 55.50 0.530 55.50 0.530 56.50 0.530 56.50 0.530 56.50 0.530 56.50 0.530 56.50 0.530 56.50 0.530 50.500 0.530 101AL ELAPSED SIMULATION TIME = 3.000F400 NR TURE SITE TOTAL MASS ANTAKE SUMMARY FOR THE SITE TOTAL MASS ANTAKE SITE TOTAL MASS ANTAKE SUMMARY FOR THE SITE TOTAL MASS ANTAKE SITE TOTAL SITE TOTAL SITE TOTAL SITE TOTAL SITE TOTAL SITE TOTAL SITE TOTAL SITE TOTAL SITE TOTAL SITE TO	0.529 0.529 0.530 0.530 0.531 0.531 0.531 0.531 0.531 0.531 101AL ELAPSI FLUX INTO DOMAIN ACROSS SPECIF OUT OF DOMAIN ACROSS SPECIF FLUX INTO DOMAIN ACROSS SPECIF						
54:50 0.529 56:50 0.530 56:50 0.530 57:50 50 57:50	HPING PERI TAL ELAPSI TAL ELAPSI DISS SPECTO DIAIN ACRU DIAIN ACRU DIAIN ACRU						
55.50 0.530 55.51 0.530 55.50 0.530 59.50 0.531 FUNFING FRAIDD MIMER SUMMARY FOR TIME STEP 30 95.50 0.530 95.50 0.530 95.50 0.530 95.50 0.531 FUNFING FRAIDD MIMER SUMMARY FOR TIME STEP 30 101AL ELAPSED SIMULATION TIME - 3.000E+00 IN TELEVING FLUX INTO DOMAIN ACROSS SPECIFIED PRESSUME HEAD BOINDARIES - 9.00500E+01 FLUX UNIO DOMAIN ACROSS SPECIFIED FILX BOUNDARIES - 9.00000E+01 FLUX UNIO DOMAIN ACROSS SPECIFIED FILX BOUNDARIES - 0.00000E+01 101AL FLUX DUI OF DOMAIN ACROSS SPECIFIED FILX BOUNDARIES - 0.00000E+01 101AL FLUX DUI OF DOMAIN ACROSS SPECIFIED FILX BOUNDARIES - 0.00000E+01 101AL FLUX DUI OF DOMAIN ACROSS SPECIFIED FILX BOUNDARIES - 0.00000E+01 101AL FLUX DUI OF DOMAIN 2.00000E+01 101AL FLUX DUI OF DOMAIN 2.00000E+01 101AL FLUX DUI OF DOMAIN 2.00000E+01 101AL FLUX DUI OF DOMAIN 2.00	HPING PERI TAL ELAPSI HATING PERI HATING PERI DISS SPECTI DIAN ACRU DIAN ACRU DIAN ACRU						
56:00 0:530 0:530 95:50 0:530 58:50 0:530 95:50 0:530 58:50 0:530 95:50 0:530 58:50 0:530 95:50 0:530 58:50 0:530 95:50 0:530 58:50 0:530 95:50 0:530 84/46 1 101AL ELUX MMSS 1145 101AL ELUX MMSS 1145 101AL MMSS 1146 517 1146 517 1146 517 1141 100 942766+00 3.175006+00 1141 100 9492766+00 3.175006+00 1141 100 9492766+00 3.175006+00 1141 100 9492766+00 3.175006+00 1141 100 0.000006-01 0.000006-01 1141 101 9492766+00 3.175006+00 1141 1141 1100 940006-01 0.0000006-01	PPING PERI TAL ELAPSI PECIN DSS SPECIN DAAIN ACRO DHAIN ACRO						
57.50 0.530 59.50 0.531 95.50 0.531 PUNEING FERIOD NUMER 1 TOTAL ELAPSED SIMULATION TIME • 3.000E+00 IR FLUX UNTO DOWNIN ACROSS SPECIFIED PRESSURE HEAD BOUNDARIES • 0.00000E+01 0.00000E+01 FLUX UNTO DOWNIN ACROSS SPECIFIED PRESSURE HEAD BOUNDARIES • 0.00000E+01 0.00000E+01 FLUX UNTO DOMAIN ACROSS SPECIFIED PRESSURE HEAD BOUNDARIES • 0.00000E+01 0.00000E+01 FLUX UNIO DOMAIN ACROSS SPECIFIED PRESSURE HEAD BOUNDARIES • 0.00000E+01 0.00000E+01 FLUX UNIO DOMAIN ACROSS SPECIFIED PRESSURE HEAD BOUNDARIES • 0.00000E+01 0.00000E+01 FLUX UNIO DOMAIN ACROSS SPECIFIED PRESSURE HEAD BOUNDARIES • 0.00000E+01 0.00000E+01 FLUX UNIO DOMAIN ACROSS SPECIFIED PRESSURE HEAD BOUNDARIES • 0.00000E+01 0.00000E+01 FLUX UNIO DOMAIN ACROSS SPECIFIED PRESSURE HEAD BOUNDARIES • 0.00000E+01 0.00000E+01 FLUX NIO DOMAIN ACROSS SPECIFIED PRESSURE HEAD BOUNDARIES • 0.00000E+01 0.00000E+01 FLUX NIO DOMAIN ACROSS SPECIFIED PRESSURE HEAD BOUNDARIES • 0.000000E+01 <	HPING PER HPING PER						
58.50 0.530 59.50 0.531 PUBPING PERIOD NUMBER TOTAL ELAPSED SIMULATION TIME STEP 30 TOTAL ELAPSED SIMULATION TIME = 3.0006+00 IR TOTAL MASS TOTAL ELAPSED SIMULATION TIME = 3.0006+00 IR TOTAL MASS TOTAL MASS FEITER PRESSURE HEAD BOINDARTES TOTAL MASS TOTAL ELAPSED SIMULATION TIME = 3.0006+00 IR TOTAL MASS	HPING PERI TAL ELAPSI DIAL ELAPSI DIALIN ACRI DIALIN ACRI DIALIN ACRI DIALIN ACRI						
59.50 0.531	HPING PERI IAL ELAPSI 055 SPECIF 04AIN ACRO 0HAIN ACRO						
FUNFING FRAIDS UNMARY FOR TIME SIFP 30.006+00 IN 101AL ELAPSED SIMULATION TIME 3.0006+00 IN 101AL ELAPSED SIMULATION TIME 3.0006+00 IN 101AL LAPSED SIMULATION TIME 3.0006+00 IN 101AL FLUX MUD DOMAIN ACROSS SPECIFIED PRESSURE HEAD BOINNARIES 9.99276E+00 3.12500E+00 101AL FLUX DUI OF DOMAIN ACROSS SPECIFIED FRESSURE HEAD BOINNARIES 0.00000E-01 0.00000E-01 0.00000E-01 101AL FLUX DUI OF DOMAIN ACROSS SPECIFIED FRESSURE HEAD BOINNARIES 0.00000E-01 0.00000E-01 0.00000E-01 0.00000E-01 101AL FLUX DUI OF DOMAIN - 0.00000E-01 0.000000E-01 0.000000E-01 0.000000	MPING PERI MPING PERI DISS SPECIN DIVALN ACRO						
TOTAL MASS THK Found for Ansist MASS THK Found for TOTAL LAPSED SIMULATION THK = 3.0006400 IR MASS MASA MASS	IAL ELAPSI DIAL ELAPSI DIALN ACRO DIALN ACRO DIALN ACRO	MASS BALAN	CE SUMMARY FOR TIME STEP 3				
FLUX INT MASS THIS THIS MASS MASS THIS MASS	055 SPECIN 055 SPECIN 04AIN ACRO 04AIN ACRO	PUMPING PERIOD NUI TOTAL ELAPSED SIM	MBER 1 MLATION TIME = 3.000E+00	III			
	055 SPECI 055 SPECI 04AIN ACRO 04AIN ACRO	• • • • • • • • • • • • • • • • • • • •	*********************	*************	************	**************	+
	DSS SPECIA DAAIN ACRI DHAIN ACRI DHAIN ACRI CLIAN				MASS THIS	RATE FOR THIS	+ +
	DSS SPECIO DAAIN ACRO DMAIN ACRO CLIAN			TOTAL MASS	TIME STEP	TIME STEP	+
	CIAN CIAN CIAN CIAN CIAN			GRAM	GRAH	GRAM/ HR	+
	DHAIN ACRU	FLUX INTO DOMAIN ACROSS SPECIFIED PI	RESSURE HEAD BOUNDARIES	9.89276E+00	3.12500E-01	3.12500E+00	+
	CIAN ACR	FLUX OUT OF DUMAIN ACROSS SPECIFIED PI	RESSURE HEAD BOUNDARIES	0.000001	0.00000£-01	0.000006-01	+
	CLAT CLAT	FLUX INTO DOMAIN ACROSS SPI	ECIFIED FLUX BOUNDARIES	0.00000E-01	0.000005-01	0.000006-01	+
	CIA	FLUX OUT OF DOMAIN ACROSS SPI	ECIFIED FLUX BOUNDARLES	0°00000E-01	0.00000E-01	0.00000 -01	+
	CIA		TOTAL FLUX INTO DOMAIN	9.892765+00	3.12500E-01	3.12500E+00	+
	CIAN	10	OTAL FLUX OUT OF DOMAIN	0.00000E-01	0.00000E-01	0.000005-01	+
	CIIA		EVAPORATION	0.0000010	0.000001-01	0.000001-01	+
	CIIA	i	TRANSPIRATION	0.000006-01	0.00000E-01	0.000005-01	+
	CIA		OTAL EVAPOTRANSPIRATION	0.00000E-01	0.000005-01	0.000006-01	+
			FLUID STORED IN DOMAIN	1.01394E+01	3.12593E-01	3.12593f+00	+
			FLUID MASS BALANCE	-2.46647E-01	-9.278235-05	-9.278236-04	+
							+
			, , , , , , , , , , , , , , , , , , ,	********************	• • • • • • • • • • • • • • • • • • •	* * * * * * * * * * * * * * * * * * * *	+

AR 020824

(

Table 7Partial	listing o	f output	to file &	9 for es	rample problem 1

TIME =	0	.500	0E+00	ER
		•		
-1.300E	-02-1.	300E	+02-1.	300E+02
-1.300E4	02-5.	400E	+00-1.	300E+02
-1.300E4				
-1.300E4				
-1.300E+		-		
-1.300E+				
-1.300E+				
-1.300E+				· · · · · · · · · · · · · · · · · · ·
-1.300E+				
-1.300E+				
-1.300E+				
-1.300E+	02-1.	299E	+02-1.	300E+02
-1.300E+	02-1.	300E	+02-1.	300E+02
-1.300E+	02-1.	300E	+02-1.	300E+02
-1.300E+	02-1.	300E	+02-1.	300E+02
-1.300E+	02-1.	300E	+02-1.	300E+02
	•			
	•			
	•			
-1.300E+	02-1.	300E	+02-1.	300E+02
-1.300E+				
-1.300E+		293E+		300E+02
-1.300E+0	02-1.3	300E+	02-1.3	300E+02
TIME =	Ο.	.1000)E+01	ER
-1.300E+0	02-1.3	00E+	02-1.3	300E+02
-1.300E+0				
-1.300E+0				
-1 2008+0				

-1.300E+02-5.413E+00-1.300E+02 -1.300E+02-5.425E+00-1.300E+02 -1.300E+02-5.444E+00-1.300E+02 -1.300E+02-5.473E+00-1.300E+02 -1.300E+02-5.517E+00-1.300E+02 -1.300E+02-5.583E+00-1.300E+02

Table 7. -- Partial listing of output to file 8 for example problem 1-- Continued

-1.300E+02-5.683E+00-1.300E+02 -1.300E+02-5.835E+00-1.300E+02 -1.300E+02-6.068E+00-1.300E+02 -1.300E+02-6.431E+00-1.300E+02 -1.300E+02-7.011E+00-1.300E+02 -1.300E+02-7.974E+00-1.300E+02 -1.300E+02-9.677E+00-1.300E+02 -1.300E+02-1.300E+01-1.300E+02 -1.300E+02-2.056E+01-1.300E+02 -1.300E+02-4.053E+01-1.300E+02 -1.300E+02-8.322E+01-1.300E+02 -1.300E+02-1.182E+02-1.300E+02 -1.300E+02-1.280E+02-1.300E+02 -1.300E+02-1.297E+02-1.300E+02 -1.300E+02-1.300E+02-1.300E+02 -1.300E+02-1.300E+02-1.300E+02 -1.300E+02-1.300E+02-1.300E+02

-1.300E+02-1.300E+02-1.300E+02 -1.300E+02-1.300E+02-1.300E+02 -1.300E+02-1.300E+02-1.300E+02 -1.300E+02-1.300E+02-1.300E+02 -1.300E+02-1.299E+02-1.300E+02 -1.300E+02-1.299E+02-1.300E+02 -1.300E+02-1.295E+02-1.300E+02 -1.300E+02-1.289E+02-1.300E+02 -1.300E+02-1.300E+02

TIME = 0.3000E+01 HR

-1.300E+02-1.300E+02-1.300E+02 -1.300E+02-5.400E+00-1.300E+02 -1.300E+02-5.400E+00-1.300E+02

z - -

Table 7	'Partial	listing a	of output	to	file	8 for	erample	problem	IContinued
---------	----------	-----------	-----------	----	------	-------	---------	---------	------------

-1.300E+02-5.401E+00-1.300E+02
-1.300E+02-5.401E+00-1.300E+02
-1.300E+02-5.401E+00-1.300E+02
-1.300E+02-5.402E+00-1.300E+02
-1.300E+02-5.402E+00-1.300E+02
-1.300E+02-5.403E+00-1.300E+02
-1.300E+02-5.405E+00-1.300E+02
-1.300E+02-5.408E+00-1.300E+02
-1.300E+02-5.411E+00-1.300E+02
-1.300E+02-5.416E+00-1.300E+02
-1.300E+02-5.424E+00-1.300E+02
-1.300E+02-5.436E+00-1.300E+02
-1.300E+02-5.453E+00-1.300E+02
-1.300E+02-5.478E+00-1.300E+02
-1.300E+02-5.515E+00-1.300E+02
-1.300E+02-5.570E+00-1.300E+02
-1.300E+02-5.653E+00-1.300E+02
-1.300E+02-5.776E+00-1.300E+02
-1.300E+02-5.963E+00-1.300E+02
-1.300E+02-6.249E+00-1.300E+02
-1.300E+02-6.698E+00-1.300E+02
-1.300E+02-7.421E+00-1.300E+02
-1.300E+02-8.646E+00-1.300E+02
-1.300E+02-1.089E+01-1.300E+02
-1.300E+02-1.551E+01-1.300E+02
-1.300E+02-2.678E+01-1.300E+02
-1.300E+02-5.625E+01-1.300E+02
-1.300E+02-1.016E+02-1.300E+02
-1.300E+02-1.243E+02-1.300E+02
-1.300E+02-1.291E+02-1.300E+02
-1.300E+02-1.299E+02-1.300E+02
-1.300E+02-1.300E+02-1.300E+02
-1.300E+02-1.299E+02-1.300E+02
-1.300E+02-1.298E+02-1.300E+02
-1.300E+02-1.297E+02-1.300E+02
-1.300E+02-1.295E+02-1.300E+02
-1.300E+02-1.291E+02-1.300E+02
-1.300E+02-1.286E+02-1.300E+02
-1.300E+02-1.278E+02-1.300E+02
-1.300E+02-1.300E+02-1.300E+02

example problem 9 for to file output ---Partial listing of 8 Table

EXAMPLE INFILTRATION **ONE - DIMENSIONAL**

 13.2796(±00-7,5609(±04-2,3055(±02

 13.2796(±00-3,8695(±04-1,97)3(±02

 13.1599(±00-3,8695(±04-1,97)3(±02

 13.1599(±00-2,4276(±03-7,6824(±02

 13.1599(±00-1,1568(±03-3,6838(±02

 13.1382(±00-1,1568(±03-3,5696(±02

 13.1382(±00-1,1568(±03-3,5696(±02

 13.1311(±00-8,2179(±04-2,5291(±02

 13.1312(±00-1,2548(±04-2,3177(±02

 13.1312(±00-1,1193(±04-2,5291(±02

 13.1266(±00-1,1193(±04-2,11957(±03

 13.1256(±00-1,1193(±04-3,2013(±02

 13.1256(±00-1,2781(±04-1,1597(±02

 13.1266(±00-1,2781(±04-1,1597(±02

 13.1266(±00-1,2781(±04-1,1597(±02

 13.1266(±00-1,2781(±04-1,1597(±02

 13.1266(±00-1,2781(±04-1,1597(±02

 13.1266(±00-1,2781(±04-1,1597(±02

 13.1266(±00-1,2781(±04-1,1597(±02

 13.1266(±00-1,2781(±04-1,2506(±02

 13.1265(±00-1,2781(±03-4,705)(±02

 13.1265(±00-1,2781(±03-4,705)(±02

 13.1265(±00-1,2781(±03-4,705)(±02

 13.1265(±00-1,2781(±03-4,705)(±02

 13.1265(±00-1,2781(±03-4,705)(±02

 13.1265(±00-1,2781(±03-4,705)(±02

 13.1265(±00-1,2781(±03-4,705)(±02

 13.1265(±00-1,2781(±03-4,705)(±02

 13.1265(±00-1,2781(±03-4,705)(±02

 13.1265(±00-1,2781(±03-4,705)(±02
 3.6229E+00-8.1142E-04-2.2397E-02 3.3947E+00-6.2962E-04-1.8547E-02 3.2996E+00-7.5609E-04-2.3055E-02 3.1251E+00-1.3054E-04-4.1770E-03 3.12656+00-1.50676-03-4.81926-02 3.12596+00-9.27826-04-2.96826-02 1264E+00-1.4049E-03-4.4936E-02 .5593E+00-2.4466E+00-2.8584E+01 .1691E+00-1.0573E-03-2.5360E+02 **KE RROR** .1691E+00-1.0573E-03-2. ERROR 8 $\begin{array}{c} 10 - 30000 \\ 10 - 30000$ 0.00006-01 10-30000. 0.00006-01 0.00006-01 10-30000 0.00001-01 10- J0000 .0000E 0. **.** <u>.</u> 00 $\begin{array}{c} 10 - 30000 \\ 10 - 30000$ 0.00006-01 0.00006-01 0.00006-01 10-30000.0 10-30000.0 10-30000.0 0.00006-01 0.00006-01 0.00006-01 0000E-01 0.0000E-0 RANSP 0 0.00006-01 0.00006-01 0.0000E-01 0.0000E-01 0.00006-01 0.00006-01 0.00006-01 0.0000E-01 -0 0.00001-01 0.00006-01 0.00001-01 0.00006-01 0.00001-01 0.00001-01 0.00006-01 0.0000E-01 0.00006-01 0.00006-01 0.00006-01 0.0000f -01 0.00006-01 0.00001-01 0.00001-01 0.00006-01 ē 0.00006-0 0000E - 0 E **0000E** 0.0000E TOTAL ċ 10-30000.0 10-30000.0 10-30000.0 10-30000.0 10-30000.0 10-30000.0 10-30000.0 10-30000.0 10-30000.0 10-30000.0 0.00006-01 (0-) + -01 0.00006-01 0.00001-01 0.00006-01 ē 0,0000E-01 **FL XOUT2** 0.00001 0000 0.0000£-01 0.0000£-01 0.0000E-01 0.0000E-01 0.00006-01 10-30000. 0.00006-01 10-30000. 0.00006-01 0.0000E-01 0-00006-01 00006-01 0.0000£-01 0.00001-01 0.00001-01 .0000E-01 ē 0-30000. 0.0000E-01 .0000E-01 0.0000E-01 .00006-01 Ģ - **J0000**. .0000L 0000E 0000E FLXIN2 .0000E 0 Ö Ö 00 c 0 0 0.00006-01 0.00001-01 0.0000E-01 0.0000E-01 0.0000E-01 0.00006-01 0.00006-01 0.00006-01 0.00001-01 0.00006-01 0.00006-01 0.00001-01 0.00001-01 0.00001-01 0.0000E-01 0.00006-01 0-0.00006-01 0.00005-01 0.00001-01 0.00001.01 0.00005-61 0-30000. 0.00001-01 9 é 0.00006-01 FLXOUTI 0000E 0000E 0.0000E MASS BALANCE RATE COMPONENTS 0 0 1251E+00 1250E+00 1250E+00 1250E+00 12526+00 12516+00 12516+00 6.11276+00 4.16806+00 12666 + 00 1260E + 00 12566+00 1250E+00 1250E+00 12546+00 250E+00 250E+00 1250E+00 1250E+00 FLXINI " 2 m --11ME 18 1.0000E-01 2.0000E-01 3.0000E-01 4.0000E-01 5.0000E-01 7.0000E-01 9.0000E-01 1.0000E+00 1.2000E+00 1.2000E+00 1.3000E+00 1.3000E+01 1.3000E+00 1.3000E+000E+00 1.3000E+00 1.3000E+00 1.3000E+00 1.3000E+00 1.30 1.4000E+00 . 6000f +00 . 90001 +00 00+30000 20001+00 . 3000E + 00 . 7000f +00 1.8000E+00 . 10001 • 00 .4000E+00 5000£+00 .6000[+00 ./0001+00 B000f +00 00+30000 00+30006

9

1250E

. .

Table 9.---Partial listing of output to file 11 for example problem 1

	SAT	5.293E-01	5.293E-01	5.293E-01	5.293E-01	5.293E-01	5.293E-01	7.7216-01	5.294E-01	5.293E-01	5.2936-01	5.293E-01	5.293E-01	9.115E-01	5.360E-01	5.293E-01	5.293E-01	5.2936-01	5.2936-01	9.587E-01	6.139F-01	5.2936-01	5.2936-01	5.293E-01	5.293E-01	9.7816-01	7.654E-01	5.293E-01	5.293E-01	5.29JE-01	0.25JE-UI	9.8//E-UI	10-1000 9	5 2015_01	5 2035-01	10-362.5	9.928F_01	9 2216_01	5.3556-01
	THETA	2.752E-01	2.752E-01	2.752f-01	2.752E-01	2.752E-01	2.752E-01	4.015[-01	2.7536-01	2.7526-01	2.752E-01	2.752E-01	2.7526-01	4.740f-01	2.787E-01	2.7526-01	2.752E-01	2.7526-01	2.7526-01	4.985E-01	3.1926-01	2.7526-01	2.752E-01	2.7526-01	2.7526-01	5.0866-01	3.980f-01	2.752E-01	2.752E-01	10-376/.7	10-326/-3	4 505E-01	2.7556_01	2.752F-01	2.7525-01	. ^	5.1635-01	4.7955-01	2.7856-01
	P. CH	-1.300E+02	-1.300E+02	-1.3006+02	-1.300f+02	-1.300E+02	-1.300E+02	-1.968[+0]	-1.2986+02	-1.300E+02	-1.300£+02	-1.300E+02	-1.300E+02	-8.581E+00	-1.220E+02	-1.300£+02	-1.300E+02	-1.300E+02	-1.3006+02	-6.669E+00	-6.191E+01	-1.300£+02	-1.3006+02	-1.300E+02		-6.031E+00	-2.056[+0]	-1.3006+02				-1,107F+01	-1.294F+02	-1.300E+02			-5.598[+00	-0.43660.8-	-1.226E+02
	H, CH			-1.445£+02	-1.505E+02	-1.5856+02	-1.685E+02	-2.3181+01	-1.JUJE+02	-1.4456+02	-1.505£+02	-1.585£+02	-1.605E+02	-1.2086+01	-1.305£+02	-1.445E+02	-1.505£+02	-1.585£+02	-1.6856+02	-1.017E+01	-7.041E+01	-].445E+02	-1.505€+02	-1.585E+02	-1.685E+02	-9.531E+00	-2.9061+01	-1.445t+UZ	-1.505112	-1.5056+02	-9.246F+00	-1.957E+01	-1.4396+02	-1.505E+02	-1.5856+02	-1.685E+02	-9.0985+00	-1.660E+01	-1.371E+02
	Z. CH	3.500E+00	B. 500E+00	1.4506+01	7.0501+01	2.850L+01	3.850F+01	3. 500L +U0	00+100c.8	1.4501+01	2.050E+01	2.850t +UI	3.8501 +01	3.500t+00	8.500E+00	1.450£+01	Z. USUE +01	2.850f+01	10+3058-E	3.500E+00	B. 500E+00	1.450[+0]	2.050f+01	2.850t+01	3.850E+01	3.500E+00	8.500E+00	10+30CP.1	2 B50F+01	3.850F+01	3.500f+00	8.500E+00	1.4506+01	2.050E+01	2.850f+01	3.8506+01	3.500E+00	B. 500E+00	1.450£+01
DINT FILE	XR. CH	5.000E-01	5.000E-01	5.000E-01	10-3000.5	10-3000.c	10-1000 S	5 000C 01		5.000E-01	10-1000.c	10-3000.c	10-3000.c	10-1000.c	5.000t-01	10-3000.c	10-3000.c	5 0001 01	5.000t -01	5.000t-01	5.000t-01	5.000E-01	5.0001-01	5.000E-01	10-1000.c	5.000f -01		5 000F-01	5.000F-01	5.000E-01	5.000E-01	5.000E-01	5.0006-01	5.0006-01	5.000E-01	5.0006-01	5.000E-01	5.0006-01	5.0006-01
MONTIORING POINT FILE	TIME. NR	0.0001-01	0.0001-01	0.0005.01			10-3000-0			10-3000.1		10-3000.1	2 0005 01	10-3000.5	2 0005 01	2 000E -01	10-3000.3	2 000F 01	2 000r 01	3.000r 01	3.000t-01	3.000t -01	3.000r 01	3.000C 01	3.000r 01	4.0001-01		4.000F-01	4.0006-01	4.0006-01	5.000E-01	5.000E-01	5.0006-01	5.0006-01	5.000E-01	5.0001-01	6.000f-01	6.000f -01	6.0001-01

Table 9.--Partial listing of output to file 11 for example problem 1--Continued

1.000E+00 1.000E+00 9.999E-01 9.748E-01 5.307E-01	1.000000000000000000000000000000000000	1.0006+00 9.9986-01 9.9986-01 8.3946-01 1.0006+00 1.0006+00 1.0006+00 1.0006+00 1.0006+00 1.0006+00 1.0006+00 9.9996-01 9.9876-01 9.3856-01
5.2006-01 5.2006-01 5.1996-01 5.1946-01 5.0696-01 2.7606-01	5.2006-01 5.2006-01 5.1966-01 5.1966-01 5.2006-01 5.2006-01 5.2006-01 5.2006-01 5.2006-01 5.2006-01 5.2006-01 5.2006-01 5.2006-01 5.2006-01 5.2006-01 5.2006-01	5.2006-01 5.2006-01 5.1996-01 5.2006-01 5.2006-01 5.2006-01 5.2006-01 5.2006-01 5.2006-01 5.2006-01 5.2006-01 5.2006-01 5.2006-01 5.2006-01 5.2006-01 5.2006-01
-5.400E+00 -5.400E+00 -5.403E+00 -5.431E+00 -5.431E+00 -1.283E+00	-5.4000000000000000000000000000000000000	-5.4000000 -5.400000 -5.400000 -5.400000 -5.400000 -5.400000 -5.400000 -5.400000 -5.400000 -5.400000 -5.400000 -5.400000 -5.4000000 -5.4000000 -5.4000000 -5.4000000000000000000000000000000000000
-8.900E+00 -1.390E+01 -1.990E+01 -2.593E+01 -3.464E+02 -1.668E+02		-1.3906+01 -2.5906+01 -3.4006+01 -5.1466+01 -8.9006+00 -1.3906+01 -1.3906+01 -1.3906+01 -3.3966+01 -1.3906+01 -3.3966+01 -3.3946+01 -3.3946+01 -3.3946+01 -3.3946+01 -3.5906+01
3.5006+00 8.5006+00 1.4506+01 2.0506+01 2.8506+01 3.8506+01 3.8506+01	2.0506+00 1.4506+01 2.0506+01 3.8506+01 3.8506+01 3.8506+01 1.4506+01 3.8506+01 3.8506+01 3.8506+01 3.8506+01 3.8506+01 3.8506+01 3.5006+0000000000000000000000000000000000	3.8506+00 1.4506+01 2.0506+01 3.8506+01 3.8506+01 3.8506+01 3.8506+01 3.8506+01 3.8506+01 3.8506+01 3.8506+01 3.8506+01 3.8506+01 3.8506+01 3.8506+01 3.8506+01 3.8506+01 3.8506+01
5.0006-01 5.0006-01 5.0006-01 5.0006-01 5.0006-01 5.0006-01	5.0006-01 5.0006-0100000000000000000000000000000000	5.0006-01 5.0006-0100000000000000000000000000000000
2.4006+00 2.4006+00 2.4006+00 2.4006+00 2.4006+00 2.4006+00 2.4006+00 2.4006+00	2.5000 +00 2.5000 +00 2.5000 +00 2.5000 +00 2.5000 +00 2.5000 +00 2.5000 +00 2.5000 +00 2.7000 +00 2.70000 +00 2.7000 +0000 +00000 +00000000000000000000	2.8006+00 2.8006+00 2.8006+00 2.8006+00 2.9006+00 2.9006+00 2.9006+00 3.0006+00 3.0006+00 3.0006+00 3.0006+00 3.0006+00 3.0006+00

AR 020830

Example Problem 2

Example 2 is a complex two-dimensional problem involving infiltration, evaporation, and evapotranspiration. The simulated section (fig. 25) consists of a 1.5-m thick clay layer which overlies a 0.6-m thick gravel layer. A discontinuous 0.3-m thick sand lens is embedded in the clay at a depth of 0.4 m. The width of the simulated section is 3.0 m. The sand lens extends from the left-hand side boundary for a distance of 1.5 m. During the simulation, the lens acts as a capillary barrier, affecting infiltration, evaporation, and plant-root extraction rates.

Four recharge periods, totaling 77 days, are simulated. For the first period, rainfall, at a rate of 75 mm/day, is allowed to infiltrate for 1 day. The second period consists of bare-soil evaporation (PEV = 2.0 mm/day) for 30 days. This is followed in the third period by another 1-day long rainfall at the rate of 75 mm/day. The final period lasts for 45 days and consists of both evaporation and evapotranspiration. The user-defined variables that control evaporation and evapotranspiration are assumed to remain constant throughout the simulation, with the exception of PET, RTDPTH, and HROOT. The length of the line segments over which these parameters vary is 30 days.

Input data for this problem are listed in table 10. The grid contains 672 nodes (29 rows and 24 columns variably spaced). Initial conditions consist of an equilibrium head profile specified above a fixed water table at a depth of 2.0 m. The minimum pressure head is set at -1.00 m. The hydraulic properties of the three different lithologies are represented by the Brooks-Corey functions.

	1	1	i		į	-	-	T	1		4		-	Ι.,	1	Ţ	-				1			(
	1			1	÷	<u>.</u>	+	1	÷.,				$\frac{1}{1}$	İ.	t					İ.							
						-	-		÷	H	5	+	+	+	+	+	╉	_		+	1	.	-	711			
7777	<u> </u>						ţ,	F	Ľ	M		1	1	t.	Ť		1							111		FYP	
111		1	Ι.				L		L			T												1111			
(11)		1	ļ	Ī		_	╞	+	+	\square	+	+	+	┢	+	+	+			<u> </u>	+	+	{			111	
<u> :</u>	1	1		<u> </u>					L	Ц			1	┶		_	4			1					نيبيا - <u>ا</u>	<u> </u>	
[]/]																							6				CLAY
[]]]				Γ	Γ	I	Ì		T			Ĩ									1			1/17			
1111	1	1		1			T	T	T	Π	İ	1		Ì.	Ι	Î					1			////			SAND
111	1	1			İ.		I	1_		Π	1		Τ	ŀ	Ι		Τ				<u> </u>	1		111	_		
-		<u>.</u>			<u>_</u>	_	ŀ		1		- i	÷		İ.	t	+	1		_	-	<u> </u>					111	GRAVEL
	-	<u>.</u>	-			Į.	<u>-</u>	Į.	ł.	H	÷	+	R	<u>+</u>	+	+	÷			£	<u> </u>	$\frac{1}{1}$		111	-		
<u> </u>		$\sum_{i=1}^{n}$		<u>.</u>	\mathbf{k}	$\hat{\mathbf{x}}$	£`	£.	k	H	$\overline{\mathbf{t}}$	Ŧ	t		t	f.	$\overline{\mathbf{x}}$			1.1	$\overline{\mathbf{x}}$	- <u>-</u>		1:11			
		$\overline{\mathbf{f}}$	λ	<u> </u>	1	$\overline{\mathbf{x}}$	<u>k</u> .,	K.				Ť	Å.	Ŕ	f	R	-f	<u>,</u>			K	<u></u>	Ì.	111			
1111	$\overline{\mathcal{K}_{\infty}}$	K.	<u>k</u>	<u> </u>	1.		K.	5	1	Ħ	. T	1	t	Ŕ.	T.	K -	1		• 、	1.	1.	1.		111			
<u> </u>		1	5.5		K	$\mathbf{x}_{\mathbf{x}}$	1	K	N		$\overline{\mathcal{A}}$	1	1.	κ.	K.	1	J,		1	1.	$\overline{\mathbf{x}}$	1.		1111			

Figure 25.--Vertical section for example problem 1.

This problem illustrates some of the difficulties involved in simulation of highly nonlinear systems. During the second and fourth periods, when bare soil evaporation and transpiration are allowed, convergence was not achieved unless the initial time step for the period was about 10^{-5} day. Attempts were made to use a larger initial time step by first decreasing HMAX and then invoking upstream weighting. Neither approach was successful. Other simulation experiments have indicated that problems involving evaporation or evapotranspiration from fine-grained materials overlying coarse-grained materials that contain a water table are particularly difficult. Nonetheless, such problems generally can be solved by reducing the length of the initial time step and(or) by adjusting the value of HMAX.

Partial listings of output files 6, 7, 8, 9, and 11 are shown in tables 11, 12, 13, 14, and 15 respectively. The pressure-head profiles listed in table 11 show that by the end of the third recharge period, complicated flow patterns have developed in the vicinity of the right hand edge of the sand lens. This is further illustrated by figure 26, which shows the change in pressure head with respect to time at four of the observation nodes. These nodes are located at the same depth (0.33 m) and at horizontal distances of 0.11, 1.46, 1.54, and 2.89 m, respectively. The first two are in the sand lens and the last two are in the clay layer. After 60 days of simulated evapotranspiration the difference in pressure head between the node (at 0.11 m, 1.46 m) and the adjacent node (at 0.1 m, 1.54 m) is approximately 700 cm.

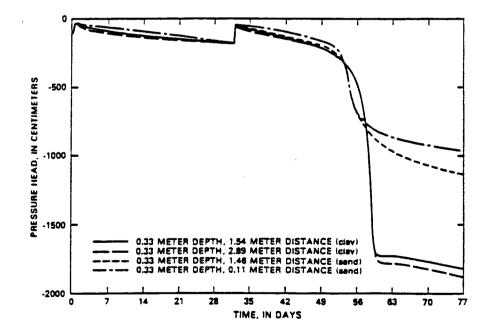


Figure 26.--Pressure-head profile at four locations for example problem 2.

AR 020832

Figure 27 shows evaporation and evapotranspiration rates at different times. During the second recharge period, evaporation occurs at the potential rate until about day 15, after which the rate is limited by the ability of the soil to conduct water to the surface. This same trend is shown in the fourth recharge period. The rate of evaporation is equal to the potential rate from day 32 to day 44, and decreases steadily thereafter. The evapotranspiration rate is equal to the potential rate from day 32 to day 54. The rate increases constantly during that time because PET was allowed to increase. After day 54 the evapotranspiration rate is limited by the ability of the soil to conduct water to the roots. At about day 57 there is a slight increase in this rate. This is somewhat of an anomaly and is related to the presence of the sand lens as well as the simplistic manner in which evapotranspiration is simulated.

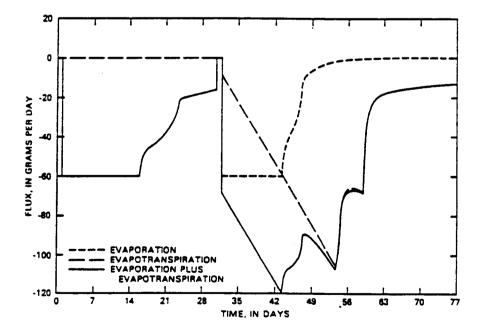


Figure 27.--Evaporation and evapotranspiration rates as functions of time for example problem 2.

A7--OUTPUT TO FILE 117 FILE 77 FILE 87 FILE 97 MASS BAL FILE 67 A8--PRINT MOISTURE CONT.7 SAT7 PRESS HEAD? TOTAL HEAD? A9--IFAC,FACX B7--ANIZ, KSAT, SS, POROSITY, HB, THETAR, LAMBDA BROOKS-COREY A4--NO. OF COLUMNS, NO. OF ROWS A5-- NO. OF RECHARGE PERIODS, MAXIMUM NO. OF TIME STEPS A6--RADIAL? ITSTOP? BIO--LEFT COL., RIGHT COL., BOTTOM ROW, TEXTURAL CLASS B4--READ HEADS AS INITIAL CONDITIONS? B5--NO. OF TEXTURES, NO. OF PROPERTIES PER TEXTURE B12--WÀTER TABLE DEPTH, MIN. HEAD ALLOWED B14-- EVAP AND TRANSP TO BE SIMULATED ? B15--MPV.ETCVC NUMBER AND LENGTH OF ET PERIODS --CLOSURE CRITERION, HMAX, WEIGHTING FOR KR B11--EQUILIBRIUM HEAD PROFILE SPECIFIED A13--NO. OF TIMES TO PRINT PROFILES A15--NO. OF NODES FOR TIME PLOTS A16--ROW AND COLUMN FOR EACH NODE B7--BROOKS-COREY PROPERTIES **B7--BROOKS-COREY PROPERTIES BB--TEXTURES READ BY BLOCK** A10--HORIZONTAL SPACING V14--TIMES FOR PROFILES B10--LAST OF B10 CARDS A12--VERTICAL SPACING A2--THAX, START TIME 36--TEXTURE CLASS 3 **B6--TEXTURE CLASS 1** 36--TEXTURE CLASS 2 32--FLUID DENSITY B3---MINIT, IIMAX B15--NPV,ETCYC A11--JFAC FACZ **B17--SRES** B16---PEV **211NU--EA** 818--HA **B10** 810 **B10** A10 EXAMPLE PROBLEM 2 -- 20 INFILTRATION AND EVAPOTRANSPIRATION 77. 0.00 a 8 13 8 23 9 2 9 12 9 13 9 23 20 2 0.5,1.0,2.0,5.0,16.,31.,31.5,32.,33.,40.,50.,60.,77. э.0 1.0 .05 1.2 80. -100000,-100000,-100000,-100000 5. 1.00-06 .45 -50. .15 3.0 -15. 1.00-06 .42 -8. .40 200 28 -100. 100. 1.00-06 82812 0.6 .005 .750 0.0 .0 2.0 1000 CMDAYSGRAM 1.0 28 2 300. 1.0 ¢, 2.0 2 2 0.6. 2.0

3 Table 10. -- Input data for example problem

AR 020834

		Table 101	-Input data for example problem 2Continued	
0.0.0.0.4560			B19PET	
0.0,35.,35.,35.			B20RTDPTH	
0.2.0.2.0.2			B21R[B0]	
.9.0.9.0.9			B22KI10P	
- 8000 8000 12000.	2000 15000.		B23FFRUUI C1 TBED DELT	
	010	0.20	CT-TTER, DELT C2TWHIT DITWY DITWIN TRED	
100. 0.			C3DSMAX,STERR	
0.			C4POND	
			C5HEADS PRINTED EACH TIME STEP?	
لد. ند :			C6BCIT? ETSIM? SEEP?	
· · · · · · · · · · · · · · · · · · ·			CIOBOUNDARY CONDITIONS READ BY LINE	
e. / Z EZ Z Z Z Z			CIZIUP KUN, BUI KUN, LI CUL., KI CUL., CUDE, PEDUN	
U.P. I C2 Z IZ IZ				
/ 66666			CI3END OF BUUNDARY CUNULITON LIST FOR RELIMAGE FERIUU 1.	
	0 10000			
		0.7	C2IMULI,ULIMA,ULIMIN,INCU F3 DCUAY STEDD	
0				
			C5PRINT HEADS EVERY TIME STEP?	
1 5 5			C6BCI17 EISIM? SEEP?	
1			CIOBOUNDARY CONDITIONS BY LINE	
2 2 2 23 5 /			CI2EVAP BOUNDARY AT TOP OF MODEL	
/ 666666			CI3END OF BOUNDARY CONDITION LIST FOR RECHARGE PERIOD 2.	
1010			C1IPER,DELT FOR PERIOD 3	
1 .10	0.010 0	0.20	C2TMULT, DLTMY, DLTMIN, TRED	
<u> </u>			C3DSMAX,STEAR	
0.0			C4PUND C6 UCAPE DRIVIED2	
1 1 1			C3IICAU3 FKITU ECED	
			CIOBUUNKAN CUNTIINNA ALAU BI LINE	
nc'/ 7 f7 7 7 7	_		CI2IUT NUM STELITEU FLUX CI3 Euro ar Bouurnany fountion itst fon brundof arbian 3	
			CLU-TEND OF BOUNDARY CUNUTION LIST FOR RELIMINGE FENTUR 3.	
45. <u>.</u> 00001			CIIFLK, DELL FOR FEK. 4	
c.1	10000.	0.20	CZIMULI, DLIMIN, IKED	
100. 0.			C3DSMAX,STERR	
0.			C4 POND	
ا : نفہ ۱			PRINTED?	
			CIUBOUNDARY CONDITIONS BY LINE	
			CIZEVAPUKATION ALONG TUP BOUNDARY	
/ 666666			CI3END OF BOURDARY CUMPTION LIST FOR RECHARGE FERIOU 4.	

.

2 Table 11.---Partial listing of output to file 6, the main output file, for example problem

SIMULATION OF 2-DIMENSIONAL VARIABLY Saturated Head and Fluid Saturation Distributions. Implicit Finite Difference Body-centered Cells USED VS2D

SPACE AND TIME CONSTANTS

1000 77.0000 DAYS MAXIMUM NUMBER OF TIME STEPS = 0.0000 NUMBER OF RECHARGE PERIODS MAXEMUM SIMULATION TIME = 24 28 SOLUTION OPTIONS NUMBER OF ROWS = 28 NUMBER OF COLUMNS = STARTING TIME * * * • • • • • • • •

IN VERTICAL DIRECTION. IN WRITE ALL PRESSURE HEADS TO FILE 8 AT OBSERVATION TIMES? T Stop solution if maximum no. Of iterations exceeded in any time step?.T URITE MAXIMUM CHANGE IN HEAD FOR EACH ITERATION TO FILE 77 T **GRID SPACING** WRITE RESULTS AT SELECTED OBSERVATION POINTS TO FILE 117 1 4.500 WRITE MASS BALANCE RATES TO FILE 97 T WRITE MASS BALANCE RATES TO FILE 67 F 3.000 WRITE MOISTURE CONTENTS TO FILE 67 T 67 I WRITE SATURATIONS TO FILE 67 F WRITE PRESSURE NEADS TO FILE 67 WRITE TOTAL NEADS TO FILE 67 F

7.500 6.000 6.000 OR RADIAL DIRECTION, IN 6.000 9.000 11.250 6.000 12.000 15.000 11.250 15.000 IN HORIZONTAL 6.000 15.000 12.000 15.000 00 4.500 00 15.000 00 9.000 GRID SPACING 1 15.000 11.250 9.000 15.000 7.500
 Z2:500
 Z2:500
 Z2:500
 15:000
 15:00
 15:00
 15:00
 2:50
 2:50
 2:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 1:50
 <th1:50</th>
 <th1:50</th2</th>
 <th1:50</th 000.6 9.000 3.000 9.000 9.000 3.000 9.000 6.000 N 3.000 9.000 6.000 **TIMES** 22.500 7.500 15.000

3

3

problem 2Continued							
example problem	40.0000 20 2						
file, for	9 23			6.0000-01	1.0000+00	1.2000+00	
the main output fille,	000 32.0000 2 9 13	SSES		1.5000-01	8.0000-02	5.0000-02	
6,	31.0000 31.5000 9 2 9 12	000E-03 CM .000E+00 GRAM/ CM++3 NDUCTIVITY LASS = 6 LASS = 6 TIME STEP = 200 CONSTANTS FOR SOIL TEXTURAL CLASSES		-5,0000+01	-1.5000+01	-8,0000+00	
of output to file	16.0000 3 8 23 9	3 CN 00 GRAM/ CN VITY 3 6 TEP = 6 TEP = 1 NTS FOR SOIL	POROSITY	4.5000-01	4.0000-01	4.2000-01	
	5.0000 POINTS: B 13 BY STP ERS	ONS/CO -01-5	SPECIFIC STORAGE	1.0000-06	1.0000-06	1.0000-06	X2
ial listing	5000 1.0000 2.0000 0000 60.0000 77.0000 ND COLUMN OF 065FRVATION PO 2 8 2 8 1 1MATE SYSTEM IS RECTANGULAR 1MATE SYSTEM IS RECTANGULAR 1MATE AUATIONS TO BE SOLVED BY INITIAL MOISTURE PARAMETERS	E CRITERIA FOR SIP = (CTOR, HMAX = 7.500E- (ITY AT ZERO PRESSURE = HEAN USED FOR INTERCELL SOIL TEXTURAL CLASSES = SOIL PARAMETERS FOR EAC SOIL PARAMETERS FOR EAC EMMITTED NO. OF ITERATIO	KSAT	5.0000+00	1.0000+02	3.0000+02 Idex MAP	L CLASSES READ IN BY BLOC 111111111111111111111111111111111111
Table 11Partial	0.5000 1.0000 2.0000 5.00 50.0000 60.0000 77.0000 804 AND COLUMN OF OBSERVATION POINTS: 2 2 8 2 8 12 8 13 COORDIMATE SYSTEM IS RECTANGULAR MATRIX EQUATIONS TO BE SOLVED BY SIP IMITIAL MOISTURE PARAMETERS	CONVERGENCE CRITERIA FOR SIP = 5.0006- DAMPING FACTOR, HMAX = 7.5006-01 FLUID DENSITY AT ZERO PRESSURE = 1.0000 GEOMETRIC MEAN USED FOR INTERCELL CONDUCT NUMBER OF SOIL FEXTURAL CLASSES = NUMBER OF SOIL PARAMETERS FOR EACH CLASS NUMBER OF SOIL PARAMETERS FOR EACH CLASS NUMBER OF SOIL PARAMETERS FOR FACH CLASS	ANISOTROPY	1.0000+000 1.0000+000	1.0000+00	TEXTURAL CLASS INDEX MAP	TEXTURAL CLASSES READ IN BY 2 111111111111111111111111111111111111

99

r

.

AR 020837

_	
be	
2	
1	
Š.	
Ĭ	
á	
6	
14	
2	
9 .	
) le	
х.	
54	
fo.	
ing of output to file 6, the main output file, for example problem 2Contin	
le	
L.	
ų	
Ľ þí	
n	
2	
a l	
đ	
he	
÷	
°,	
0	
Ξ	
0	
ų	
ut	
tp	
10	
-	
0	
č	
St.	
11	
-	
La.	
- L	
-Partial	
-	
-	
Je	
Tat	
-	

	Ш	-						EEEEEEEEEEEEEEEEEEEEEEE			EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE			I E E E E E E E E E E E E E E E E E E E	
=	15	16	11	18	61	20	21	22	23	24	25	26	27	28	ŇI

DEPTH FROM SURFACE

	36 136	c7.101		0.000		3.000		6.000		000.6		13.500		18.000		24.000		30.000		36.000		42.000		51.000		60.000	
	163.26	c/.fcl		0.000		3.000		6.000		000.6		13.500		18.000		24.000		30.000		36.000		42.000		51.000		60,000	
	110 00	62.011		0.000		3.000		6.000		000.6		13.500		18.000		24.000		30.000		36.000		42.000		51.000		60.000	
	75 000	c/.861		000.0		3.000		6.000		9.000		13.500		18.000		24.000		30.000		36.000		42.000		51.000		60.000	
		62.1E1	288.75	0000	0.000	3.000	3.000	6.000	6.000	000.6	9.000	13.500	13.500	18.000	18.000	24.000	24.000	30.000	30.000	36.000	36.000	42.000	42.000	51.000	51.000	60.000	60.000
		121.8/	266.25	0.000	0.000	3.000	3.000	6.000	6.000	9.000	9.000	13.500	13.500	18.000	18.000	24.000	24.000	30.000	30.000	36.000	36.000	42.000	42.000	51.000	51.000	60.000	60.000
																						42.000					
		97.50	232.50	0.000	0.000	3.000	3.000	6.000	6.000	000.6	000.6	13.500	13.500	10.000	18.000	24.000	24.000	30.000	30.000	36.000	36.000	42.000	42.000	51.000	51.000	60.000	60.000
Į																						42.000					
																											60.000 60.000
		52.50	189.37	0.000	0.000	3.000	3.000	6.000	6.000	000.6	000.6	13.500	13.500	18.000	18.000	24.000	24,000	30,000	30.000	36.000	36.000	42.000	42.000	51.000	51.000	60.000	60.000
2	X	33.75	178.12	0.000	0.000	3.000	3.000	6.000	6.000	000.6	000.6	13.500	13.500	18.000	18,000	24.000	24,000	30.000	30.000	36.000	36.000	42.000	42.000	51.000	51,000	60.000	60.000
		11.25	168.75	0.000	000 0	3.000	3.000	6.000	6.000	000.6	000.6	13.500	13.500	18.000	18,000	24,000	24.000	30,000	30,000	36.000	36.000	42.000	42.000	51.000	51,000	60.000	60.000
Z. 1N	3			1.50	•	4.50		7.50	•	11.25		15.75		21.00	}	27,00		00.00		00°6E		46.50		55,50		64.50	

AR 020838

(

2Continued
problem
example pro
for e
file,
main output
main
the
6,
file
to
output
of
bu
listi
1
parti
11
Table

	69.000		/8.000	90.000	•	105.000		120.000		132.000		141.000		147.000		153.000		159.000		168.000		177.000		186.000		195.000					
	69.000		78.000	90.00		105.000		120.000		132.000		141.000		147.000		153.000		159.000		168.000		177.000		186.000		195.000					
	69.000		78.000	90.000		105.000		120.000		132.000		141.000		147.000		153.000		159.000		168.000		177.000		186.000		195.000		BELON ORIGIN			
	69.000		78.000	90.000		105.000		120.000		132.000		141.000		147.000		153.000		159.000		168.000		177.000		186.000		195.000		CN BELO			
	69.000	69.000	78.000	90.000	000°06	105.000	105.000	120.000	120.000	132.000	132.000	141.000	141.000	147.000	147.000	153.000						177.000		186.000	186.000	195.000	195.000	200.00			
	69.000	69.000	78.000	900.00 000.00	90.000	105.000	105.000	120.000	120.000	132.000	132.000	141.000	141.000	147.000	147.000	153.000						177.000		186.	186.	195.	195.	TABLE AT	3		•
	69.000	69,000	78.000	000.06	90.000	105.000	105.000	120.000	120.000	132.000	132.000	141.000	141.000	147.000	147.000	153.000	153.000	159.000	159.000	168.000	168.000	177.000				195.000			•		
•	69.000	69.000	78,000	000.00	90.000	105.000	105.000	120.000	120.000	132.000	132.000	141.000	141.000	147.000	147.000	153.000	153.000	159.000	159.000	168.000	168.000	177.000	177.000	186.000	186.000	195.000	195.000	IEADS ABOVI	is Equal	<u>ں</u>	
	69.000	69.000	78.000	000.06	90.000	105.000	105.000	120.000	120.000	132.000	132.000	141.000	141.000	147.000	147.000	153.000	153.000	159.000	159.000	168.000	168.000	177.000	177.000	00 186.000 186.000	186.000	195.000	195.000	PRESSURE 1	PRESSURE HEADS	IVDROSTAT	
	69.000	69.000	78.000	000.00	90.000	105.000	105.000	120.000	120.000	132.000	132.000	141.000	141.000	147.000	147.000	153.000	153.000	159.000	159.000	168.000	168.000	177.000	177.000	186.000	186.000	195.000	195.000	ITIALIZE F	SED UNTIL PRES	-	
			78.000		000.06	105.000	105.000	120.000	120.000	132.000	132.000	141.000	141.000	147.000	•		153.000			168.000		177.000		186.000	186.	195.000	195.	ED 10 INI	LY US	200.00	
	69,000	69.000	78.000	000.00	000.06	105.000	105.000	120.000	120.000	132.000	132.000	141.000	141.000	147.000	147.000	153.000	153.000	159.000	159.000	168.000	168.000	177.000	177.000	186.000	186.000	0 195.000	195.000	ROFILE US		HEADS BELON	
	69.000		78.000	000.00	90.000	105.000	105.000	120.000	120.000	132.000		141.000	141.000	147.000	147.000	153.000	153.000	159.000	159.000	168.000	168.000	177.000	177.000	186.000	186.000	195.000	195.000	EQUILLIBRIUM P	MOIN		
	73.50		84.00	97.50		112.50		126.00		136.50		144.00		150.00		156.00		163.50		172.50		181.50		190.50		201.00		EQUIL	EQUIL	PRESSURE	

NUMBER OF EVAPORATION AND/OR EVAPOTRASPIRATION PERIODS = 4 LENGTH OF EACH PERIOD = 30.0000 DAYS

SURFACE ATMOSHERIC	0.60000E+00 -0.10000E+06
RESISTANCE PRESSURF	0.60000E+00 -0.10000E+06
CM++(-1) CM	0.60000E+00 -0.10000E+06
SURFACE	0.60000E+00
RESISIANCE	0.60000E+00
CM**(-1)	0.60000E+00
POTENTIAL	0.20000E+00
RATE	0.20000E+00
CM/DAYS	0.20000E+00
EVAPORATION PERIOD	- ~ m

.....

4	0. 600006 400	n, buudet 100	-0.100000 +00						
TRANSPIRATION PERIOD	PÖTENTIAL Rate CM/DAYS	ROOT DEPTH CM	ACTIVITY AT 80110M CM**(-2)	ACTIVITY AT TOP CH**(-2)	ROOT PRESSURE CM				. ·
-~~	0.00000E+00 0.00000E+00 0.45000E+00 0.45000E+00	0.00000E+00 0.35000E+02 0.35000E+02 0.35000E+02	0.20006+00 0.20006+00 0.20006+00 0.20006+00	0.90000E+00 0.90000E+00 0.90000E+00 0.90000E+00	-0.80000E+04 -0.80000E+04 -0.12000E+05 -0.15000E+05				
551P ITERATION PAR Example Problem 2 10tal Elapsed IIME IIME STEP 0	METE 2	0.1 NF 141 00E-C	4210850-13 0.80530700+00 0. Pation and evapotranspiration. 11 days	+00 0.96209461 RATION	0.9620946D+00 0.9926201D+00 10N	0.99856320+00	8		
3			PRESSURE HEAD	E NEAD					
CH 11.2	g	R DISTAN 52.50	CH 82.50		121.87	138.75 14	146.25	153.75	161.25
1.50-1.00f+02-	178.12 .001.02-1.	189.37 202.50 .00f+02-1.00f+02	•	232.50 247.50 00E+02-1.00E+02-1	266.25 .00f+02-1	.00E+02-1.00E+02-1.00E+02-1.00E+02-1.00E+02	0E+02-11.(00E+02-1.	00€+02
-1,006+02-1 4.50-1,006+02-1	.00£+02-1 .00£+02-1	.00E+02-1.00E+02-1 .00E+02-1.00E+02-1	• •		.00E+02-1	.00E+02 .00E+02-1.00E+02-1.00E+02-1.00E+02-1.00E+02	0E+02-1.(00E+02-1.	006+02
-1.00E+02-1 7.50-1.00E+02-1	.00E+02-1 .00E+02-1	.006+02-1.006+02-1 .006+02-1.006+02-1	.00E+02-1		.00t+02-1 .00t+02-1	.006+02-1.006+02-1.006+02-1.006+02-1.006+02	0E+02-1.(00E+02-1.	00E+02
-1.00E+02-1 11.25-1.00E+02-1	.006+02-1	.00E+02-1.00E+02-1 .00E+02-1.00E+02-1	001+02-1	.001+02-1.001+02-1 .001+02-1.001+02-1	-1.00E+02-1.00E+02 -1.00E+02-1.00E+02-1.00E+02-1.00E+02-1.00E+02 -1.00E+02-1.00E+02-1.00E+02-1.00E+02-1.00E+02	-1.001+02-1.0	0[102-1.(001+02-1,	.001+02
-1.00£+02-1 15.75-1.00£+02-1	.006+02-1 .006+02-1		.001+02-1 .001+02-1		.006 +02 - 1	.006+02-1.006+02-1.006+02-1.006+02-1.006+02 006+02-1.006+02-1.006+02-1.006+02	OE +02-1.(006+02-1	.001+02
-1.006+02-1 21.00-1.006+02-1	.006+02-1 .006+02-1		.006+02-1		.006+02-1	.006+02-1.006+02-1.006+02-1.006+02-1.006+02	0E+02-1.	00E+02-1	.001+02
-1.00E+02-1 27.00-1.00E+02-1	.006+02-1 .006+02-1		.00E+02-1 .00E+02-1		.00£+02-1	.00E+02-1.00E+02-1.00E+02-1.00E+02-1.00E+02	0E+02-1.	00E+02-1	.00£+02
	.00f+02-1 .00f+02-1	.00E+02-1 .00E+02-1	.006+02-1 .006+02-1		.00E+02-1	.006+02-1.006+02-1.006+02-1.006+02-1.006+02-	OE+02-1.	00E+02-1	.006+02
-1.00E+02-1 39.00-1.00E+02-1	.00E+02-1	.00E+02-1 .00E+02-1	.006+02-1 .006+02-1	.00E+02-1.00E+02-1 .00E+02-1.00E+02-1	.00E+02-1 .00E+02-1	.00f + 02 .00f + 02 - 1 .00f + 02 - 1 .00f + 02 - 1 .00f + 02 .00f + 02	0E+02-1.	006+02-1	.00€+02
-1.00E+02-1 46.50-1.00E+02-1	.00E+02-1 .00E+02-1	.006+02-1.006+02-1.006+02-1.006+02-1.006+02-1		0E +02 - 1 , 00E +02	.00E+02-1	-1.006+02-1.0	OE+02-1.	006+02-1	.005+02

102

AR 020840

(

(

Ľ

nued																							
2Cont Inued	1.00E+02	1.00£+02	1.00€+02	1.006+02	1.00€+02	8.75£+01	7.406+01	6.35E+01	5.60£+01	5.006+01	4.406+01	3.65f +01	2.75£+01	1.85€+01	9.50€+00	1.00£+00		161 25			0.348	0.348	0.348
	.00€+02-	.00f +02 -	1.00£+02-	, 00£+02-	.001+02-	3.756+01-	.40€+01-		5.60E+01-	• 10+ 300. ŝ	1.406+01-	.65£+01-	. 756 +01 -	-10+358.1	.501+00-9	001+00		151.75			0.348	0.348	0.348
mple pr	.001+02-1	.00f+02-1	.001+02-1	.00E+02-1	.00f+02-1). 75E+01-6	.40E+01-7		- to+ Jo9 • g	- 10+ J00 · 9	1.401+01-4	1.65E+01-		- 10+ 358°	.50€+00-5	. 00+300		146.25	94F 0		0.348	0.348	0.348
for example problem	.00£+02-1	.001+02-1	.001+02-1	.00E+02-1	.001 + 02 - 1	1.756+01-8	.40E+01-7	.356+01-6	.601+01-5	.001+01-5	1.40E+01-4	1.65E+01- 3	75E+01-2	.85£+01-1	. 50£+00-9	1.00£+00 1.00£+00 1.00£+00 1.00£+00		138.75	0 14A		0.348	0.348	0.348
t file,	.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02	.006+02-1.006+02-1.006+02-1.006+02-1.006+02-1.006+02-1.006+02-1.006+02- .006+02-1.006+02-1.006+02-1.006+02-1.006+02-1.006+02-1.006+02-0.0000+02-0.00000-02-0.000000-02-0.00000-02-0.00000-02-0.00000-0000-0000-0000-0000-0000-0000-0000	.006+02-1.006+02-1.006+02-1.006+02-1.006+02-1.006+02-1.006+02	.005+02-1.006+02-1.006+02-1.006+02-1.006+02-1.006+02-1.006+02-1.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006+02-0.006	-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-100f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.00f+02-1.0	-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.75f+01-8.	-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.40E+01-7.	-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.55f+0-6.56f+0-6.56f+0-6.35f+00-6.35f+00-6.35f+00-6.35f+00-6.35f+00-6.35f	5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 - 5.60f+01 -	-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.00[+0]-5.	-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-4.40€+01-40	-3.656+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-5-005+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.655+01-3.65+01-3.655+01-3.65+01-3.655+01-3.655+01-3.655+01-3.65+01-3.65+	-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.75F+01-2.	-1.855+00-1.855+00-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.855+01-1.	50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.50E+00-9.5			131.25	288.75 0.348	0.348	0.348	0.348	0.348
main output file,	.00E+02-1.00E+02-1.00E+02-1.00E+02 00E+02-1.00E+02-1.00E+02		.00E+02-1.00E+02-1.00E+02 .00E+02-1.00E+02-1.00E+02	.00E+02-1.00E+02-1.00E+02-1.00E+02-1.00E+02-1.00E+02 .00E+02-1.00E+02-1.00E+02-1.00E+02-1.00E+02-1.00E+02 .00E+02-1.00E+02-1.00E+02-1.00E+02-1.00E+02-1.00E+02	.00E+02-1.00	-8.756+01-8.756+01-8.756+01-8.756+01-8.756+01-8.756+01-8.756+01 -8.756+01-8.756+01-8.756+01-8.756+01-8.756+01-8.756+01	406+01-7	-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01 -6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01-6.35f+01	-5.60f+01-5.	-5.00E+01-5.00E+00-5.00E+00-5.00E+000E+00-5.00E+00-5.00E+00-5.00E+00-5.00E+00-5.00E+	.40E+01-4.40E+01-4.40E+01-4.40E+01-4.40E+01-4.40E+01-4.40E+01 .40E+01-4.40E+01-4.40E+01-4.40E+01-4.40E+01	-3.656+01-3.556+01-3.656+01-566+01-3.656+01-3.656+01-3.656+01-3.656+01-3.656+01-3.65	-2.75f+01-2.		5-00+305.	1.00f+00 1.0		121.87	266.25 0.348	0.348	0.348	0.348	0.348
the malu	.00E+02-1	001+02-1	.00E+02-1	006+02-1	001+02-1	756+01-8	406+01-7	. 35E+01-6	60E+01-5	- 10+ 300- - 10+ 300-5	40E+01-4	- 10+ 359 - 10+ 359 - 10+ 359	. 756+01-2		50E+00-9	6-00+300 1 00+300	-	110.62	247.50 0.348	0.348	0.348	0.348	0.348
6,	.00E+02-1	006+02-1	006+02-1	00E+02-1	00E+02-1	756+01-8	406+01-7	.35f+01-6 35f+01-6	601+01-5 601+01-5	00E+01-5	40E+01-4	65E+01-3	75E+01-2	856+01-1 856+01-1	50E+00-9	00+300 00+00 1	TUDINUK CUMIENI	97.50	232.50 0.348	0.348	0.348 0.348	0.348	0.348
it to file				00E+02-1	00E+02-1.	75E+01-8.	40E+01-7.	35E+01-6, 35E+01-6,	60E+01-5, 60E+01-5,	-10+300	40E+01-4	65E+01-3.	756+01-2.	856+01-1. 856+01-1.	50E+00-9.	00E+00 1.		см 82.50	217.50 0.348	0.348	0.348 0.348	0.348 0.348	0.348
of output	.00£+02-1.00£+02-1 .00£+02-1.00£+02-1	.00f+02-1.00f+02-1 .00f+02-1.00f+02-1	.00E+02-1.00E+02-1 .00E+02-1.00E+02-1	.006+02-1.006+02-1 .006+02-1.006+02-1	00E+02-1.	75E+01-8. 75E+01-8.	10E+01-7.	35E+01-6. 35E+01-6.	50E+01-5. 50E+01-5.	00E+01-5.	06+01-4. 06+01-4.	656+01-3.	75E+01-2.	35E+01-1.	50E+00-9.	00+00	:	(LE, IN 67.50	202.50 0.348	0.348	0.348 0.348	0.348 0.348	0.348
listing c					0E+02-1.	5E+01-8.			1 1					56+01-1.1	00+00-0	.00+300.		1 05.		0.348	0.348 0.348	0.348 0.348	0.348
	0E +02 - 1 . C 0E +02 - 1 . C	0E+02-1.C	0f +02-1.0 0f +02-1.0	0E+02-1.0 0E+02-1.0	DE+02-1.C DE+02-1.C	56+01-8.7 56+01-8.7	0E +01 - 7. 4 0E +01 - 7. 4	5E+01-6.3 5E+01-6.3	0E+01-5.6 0E+01-5.6	0E+01-5.0	0E+01-4.4	5E+01-3.6 5E+01-3.6	56+01-2.7	5E+01-1.8	00+30-9.5	00+300.1 00+300.	Ę	.75 UK				0.348 0.348	348
lPartlal	.006+02-1.006+02-1.006+02 .006+02-1.006+02-1.006+02	.00f+02-1.00f+02-1.00f+02 .00f+02-1.00f+02-1.00f+02	.00f+02-1.00f+02-1.00f+02 .00f+02-1.00f+02-1.00f+02	84.00-1.00E+02-1.00E+02-1.00E+02 -1.00E+02-1.00E+02-1.00E+02	97.50-1.00E+02-1.00E+02-1.00E+02 -1.00E+02-1.00E+02-1.00E+02	. 50 - 8. 75E +01 - 8. 75E +01 - 8. 75E +01 - 8. 75E +01 - 8. 75E +01 - 8. 75E +01	126.00-7.40£+01-7.40£+01-7.40E+01 -7.40£+01-7.40£+01-7.40E+01	136.50-6.35f+01-6.35f+01-6.35f+01 -6.35f+01-6.35f+01-6.35f+01-6.35f+01	144.00-5.60£+01-5.60£+01-5.60£+0 -5.60£+01-5.60£+01-5.60E+0	150.00-5.00E+01-5.00E+01-5.00E+01 -5.00E+01-5.00E+01-5.00E+01-5.00E+01	-4.40E+01-4.40E+01-4.40E+01 -4.40E+01-4.40E+01-4.40E+01	163.50-3.65£+01-3.65£+01-3.65£+01 -3.65£+01-3.65£+01-3.65£+01	.50-2.75E+01-2.75E+01-2.75E+01 -2.75E+01-2.75E+01-2.75E+01	-1.85E+01-1.85E+01-1.85E+01 -1.85E+01-1.85E+01-1.85E+01	190.50-9.50€+00-9.50€+00-9.50€+00-9.50€+00-9 -9.50F+00-9.50F+00-9.50F+00-9.50F+00-9	006 +00 1.00		.25	- 8F			0.348 (0.348 (
Table 11	55.50-1.00 -1.00	64.50-1.00 -1.00	73.50-1.00	.00-1-00	.50-1.00	.50-8.75 -8.75	.00-7.40	.50-6.35 -6.35	.00-5.60 -5.60	.00-5-00 -5-00	.00-4-40 -4.40	.50-3.65	-0 <u>5</u> -	181.50-1.851 -1.851	.50-9.50 -9.50	201.00 1.00€+00 1 1.00€+00 1	z	1	-50 16 8			7.50 0. 0.	11.25 0.
F	55	64	2	84	16	112.	126	136	144	150	156	163	172	181	190	201	Z. IN	5	-		F	~	Π

σ

Table 11.--Partial listing of output to file 6, the main output file, for example problem 2--Continued

0	-	0.348 0.348	0.348 0.348		-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.364 0.364 0.410 0.410 0.430 0.410 0.430 0.430 0.091 0.091 0.110 0.110 0.1134 0.134 0.185 0.185 0.351 0.351
•	-	0.348	0.128		0.128	0.128 0.128	0.128 0.128 0.128	0.128 0.128 0.128 0.348	0.128 0.128 0.128 0.348 0.348	0.128 0.128 0.128 0.348 0.348	0.128 0.128 0.128 0.348 0.348 0.348	0.128 0.128 0.348 0.348 0.348 0.348 0.348	0.128 0.128 0.128 0.348 0.348 0.348 0.348	0.128 0.128 0.128 0.348 0.348 0.348 0.387 0.387	0.128 0.128 0.128 0.348 0.348 0.348 0.348 0.348 0.387 0.387	0.128 0.128 0.348 0.348 0.348 0.348 0.348 0.387 0.387 0.387	0.128 0.128 0.128 0.348 0.348 0.348 0.364 0.364 0.364 0.364 0.369 0.430	0.128 0.128 0.348 0.348 0.348 0.348 0.387 0.387 0.430 0.430 0.430	0.128 0.128 0.348 0.348 0.348 0.364 0.364 0.387 0.387 0.387 0.387 0.387 0.387 0.387 0.387 0.387 0.430 0.430 0.430 0.098	0.128 0.128 0.348 0.348 0.348 0.348 0.387 0.387 0.387 0.387 0.387 0.387 0.387 0.387 0.387 0.387 0.387 0.398 0.098	0.128 0.128 0.348 0.348 0.348 0.364 0.364 0.364 0.364 0.364 0.364 0.369 0.410 0.098 0.110 0.110	0.128 0.128 0.348 0.348 0.348 0.348 0.387 0.387 0.364 0.387 0.364 0.364 0.364 0.364 0.368 0.310 0.098 0.110 0.1185 0.351	0.128 0.128 0.348 0.348 0.348 0.364 0.364 0.364 0.387 0.364 0.364 0.410 0.410 0.098 0.110 0.115 0.351 0.351
-	<u> </u>	8 8_0.348																					18 0.128 18 0.128 18 0.128 18 0.348 18 0.348 18 0.348 18 0.348 18 0.348 18 0.348 18 0.348 18 0.348 18 0.348 18 0.348 110 0.410 110 0.410 110 0.410 1110 0.410 1110 0.410 1110 0.110 1110 0.110 1110 0.110 1110 0.110 1110 0.110 1110 0.110 1110 0.110 1110 0.110 1110 0.110 1110 0.110 1110 0.110 1110 0.110
																							0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.364 0.348 0.364 0.364 0.348 0.364 0.364 0.361 0.364 0.364 0.361 0.364 0.364 0.430 0.430 0.430 0.110 0.110 0.091 0.112 0.110 0.110 0.351 0.351 0.351
				-	~																		0.128 0.348 0.348 0.348 0.348 0.348 0.387 0.387 0.387 0.387 0.387 0.388 0.388 0.388 0.348 0.388 0.388 0.388 0.348 0.388 0.348 0.388 0.388 0.348 0.348 0.388 0.03888 0.0388 0.0388 0.03888 0.03888 0.03888 0.03888 0.03888 0.03888 0.03888 0.03888 0.03888 0.03888 0.03888 0.03888 0.03888 0.03888 0.03888 0.03888 0.038888 0.03888 0.03888 0.03888 0.03888 0.038888 0.038888 0.038888 0.038888 0.0388888 0.038888 0.0388888 0.03888888 0.038888888 0.038888888 0.038888888 0.038888888 0.038888888888
																							0.128 0.348 0.0387 0.348 0.0387 0.348 0.0387 0.03970000000000000000000000000000000000
~ ~	~ ~						α	8 8 8		8888888		88888888888888		83488888888888888888888888888888888888		10000000000000000000000000000000000000							
0.348 0.348	0.348	0.348	0.348	0.348	0.348	0.348		0.348	0.170 0.348 0.348 0.348	0.348 0.348 0.348 0.348 0.348	0.148 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348	0.148 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348	0.148 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.364	0.148 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.364 0.368 0.387	0.148 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.387 0.387 0.387 0.387 0.387 0.387	0.148 0.3480 0.3480 0.3480 0.3480 0.3480 0.3480 0.3480 0.34800000000000000000000000000000000000	0.148 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.364 0.366 0.066 0.00000000	0.148 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.387 0.387 0.430 0.4400 0.4400 0.4400 0.4400 0.4400000000	0.148 0.348 0.0910 0.348 0.0910 0.09100 0.0910000000000000000000	0.1348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.410 0.430 0.440 0.348 0.0387 0.348 0.000 0.348 0.00000000000000000000000000000000000	0.128 0.348 0.0310 0.348 0.03100 0.0310000000000	0.1348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.410 0.098 0.134 0.134 0.110 0.110 0.1340 0.1340 0.1340 0.1340 0.1340 0.1340 0.1340 0.1340 0.1340 0.13400000000000000000000000000000000000	0.128 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.364 0.410 0.410 0.410 0.498 0.410 0.498 0.410 0.410 0.410 0.410 0.410 0.410 0.410 0.410 0.410 0.410 0.410 0.410 0.410 0.410 0.410 0.410 0.410 0.410 0.410 0.368 0.410 0.3680 0.3680 0.3680 0.3680 0.36800000000000000000000000000000000000
00											00000000											,6688888888888888888	
																							0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.364 0.364 0.364 0.369 0.110 0.134 0.110 0.134 0.110 0.134 0.110 0.3610
0.348	0.348	0.348	0.348	0.348	0.178	0.128 0.348	0.128	0.348	0.348 0.348 0.348	0.348 0.348 0.348 0.348 0.348	0.348 0.348 0.348 0.348 0.348 0.348 0.348	0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348	0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348	0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.364 0.387 0.387	0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.387 0.387 0.387 0.387 0.387	0.348 0.348 0.348 0.348 0.348 0.348 0.364 0.364 0.364 0.387 0.387 0.387 0.387 0.387 0.387	0.348 0.348 0.348 0.348 0.348 0.364 0.364 0.364 0.364 0.364 0.387 0.387 0.410 0.387 0.410 0.387 0.410 0.387 0.410 0.387 0.387 0.364 0.364 0.364 0.364 0.364 0.364 0.364 0.364 0.364 0.364 0.364 0.364 0.366 0.366 0.366 0.368 0.366 0.36800000000000000000000000000000000000	0.348 0.348 0.348 0.348 0.348 0.348 0.387 0.387 0.387 0.387 0.410 0.387 0.410 0.387 0.410 0.091 0.410 0.091 0.091 0.091 0.091	0.348 0.348 0.348 0.348 0.348 0.348 0.364 0.387 0.387 0.387 0.387 0.387 0.387 0.387 0.387 0.387 0.387 0.387 0.387 0.387 0.387 0.368 0.387 0.369 0.387 0.387 0.369 0.387 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.360 0.360 0.368 0.00000000000000000000000000000000000				0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.349 0.387 0.387 0.387 0.387 0.387 0.387 0.387 0.387 0.388 0.110 0.109 0.110 0.110 0.110 0.11100 0.11100 0.11100 0.11100 0.11100000000
16 76		21.00	27.00	00.66	39.00	46.50	55.50		64.50	64.50 73.50	64.50 73.50 84.00	64.50 73.50 84.00 97.50	64.50 73.50 84.00 97.50	64.50 73.50 84.00 97.50 112.50	64.50 73.50 84.00 97.50 112.50 126.00	64.50 73.50 84.00 97.50 112.50 126.00 136.50	64.50 73.50 84.00 97.50 112.50 126.00 136.50 136.50 136.50	64.50 73.50 84.00 97.50 112.50 126.00 136.50 136.00 150.00	64.50 73.50 84.00 97.50 112.50 136.50 136.00 156.00 156.00 156.00	64.50 73.50 84.00 97.50 112.50 136.50 136.50 136.50 156.00 156.00 163.50	64.50 73.50 84.00 97.50 112.50 126.00 126.00 156.00 156.00 156.00 156.00 156.00	64.50 73.50 84.00 97.50 112.50 136.50 136.50 136.00 156.00 156.00 163.50 163.50 181.50	64.50 73.50 84.00 97.50 112.50 126.00 136.50 156.00 156.00 163.50 181.50 190.50

AR 020842

Table 11.---Partial listing of output to file 6, the main output file, for example problem 2--Continued

0.420 0.420 MAXIMUM PRESSURE HEAD CHANGE ALLONED IN ONE TIME STEP = 100.000 0.420 LENGTH OF INITIAL TIME STEP FOR THIS PERIOD = 1.000E-02 DAYS 0.420 NODE TYPE AND INITIAL BOUNDARY CONDITIONS FOR PERIOD NODE FOR MIJCH EVAPORATION IS PERMITTED STEADY-STATE CLOSURE CRITERION = 0.000E-01 PRINT SOLUTION AFTER EVERY TIME STEP? F 0.420 MAXIMUM TIME STEP SIZE = 1.500E-01 DAYS MINIMUM TIME STEP SIZE = 1.000E-02 DAYS 0.000 1.000f+00 DAYS TIME STEP REDUCTION FACTOR = 2.000E-01 MULTIPLIER FOR TIME SIEP - 1.100E+00 - SPECIFIED PRESSURE HEAD CELL POTENTIAL SEEPAGE FACE NODE 0.420 SIMULATE EVAPOTRANSPIRATION? F MAXIMUM DEPTH OF PONDING = SIMULATE SEEPAGE FACES? F SIMULATE EVAPORATION? F SPECIFIED FLUX CELL 0.420 02222222222222222222222222222 LENGTH OF THIS PERIOD = - INTERIOR CELL DATA FOR RECHARGE PERIOD 0.420 0.420 10 . 0 2 3 LEGEND: 1008 ~ e

8765332

ŝ

ARGE PERIOD = 1 E ARGE PERIOD = 1 IARGE PERIOD = 1	MAGE PERIOD = 1 E MAGE PERIOD = 1 C MAGE PERIOD = 1 E	0000 00000 00000 00000 00000 00000 00000	ME = 1.100E-02 DAVS REQUIRED ITERATIONS = 8	ME = 2,310E-02 DAYS REQUIRED ITERATIONS = 23	IME = 3.641E-02 DAYS REQUIRED ITERATIONS = 8	IME = 5.105E-02 DAYS REQUIRED ITERATIONS = 8	IME = 6.716E-02 DAYS REQUIRED ITERATIONS = 8	H	<pre>.258E-01 DAYS</pre>	TME = 1.494E-01 DAYS REQUIRED ITERATIONS = 9	IME = 1.753E-01 DAVS REQUIRED ITERATIONS = 9	THE = 2.038E-01 DAYS REQUIRED ITERATIONS = 9	TIME = 2.352E-01 DAYS REQUIRED ITERATIONS = 9	TIME = 2.697€-01 DAYS REQUIRED ITERATIONS = 10	= 3.0776-01 DAYS REQUIRED ITERATIONS =	1 = 2001100 LICENSING STOULDER LICENSING
ARGE PERIOD - MAGE PERIOD - MAGE PERIOD - MAGE PERIOD - MAGE PERIOD MAGE PERIOD MAGE PERIOD MAGE PERIOD MAGE PERIOD MAGE PERIOD MAGE PERIOD MAGE PERIOD MAGE PERIOD	000000000 000000000 000000000 00000000		a LAPSED TIME	* 1 ELAPSED TIME	* 1 ELAPSED TIME					N					Ħ	The second second second second second second second second second second second second second second second se

AR 020844

(

(

(_

۰.

Table 11.--Partial listing of output to file 6, the main output file, for example problem 2--Continued CH 11.25 33.75 52.50 67.50 82.50 97.50 110.62 121.87 131.25 138.75 146.25 153.75 161.25 158.75 0.006-01 0.00 1 ELAPSED TIME = 4.460E-01 DAYS REQUIRED ITERATIONS = 123 2 5.000E-01 DAYS REQUIRED ITERATIONS = 1 ELAPSED TIME = EXAMPLE PROBLEM 2 -- 2D INFILTRATION AND EVAPOTRANSPIRATION TOTAL ELAPSED TIME * 5.000E-01 DAYS **PRESSURE HEAD** 1 18 PONDING ENDED AT NODE 2 8 DURING TIME STEP TIME STEP NUMBER = 18 RECHARGE PERIOD = 1 EL PONDING ENDED AT NODE 2 5 DURING TIME STEP TIME STEP NUMBER = 17 RECUMRGE PERIOD = 1 E 18 18 1 18 1 17 17 18 **3 DURING TIME STEP** 4 DURING TIME STEP 6 DURING TIME STEP B DURING TIME STEP **2 DURING TIME STEP** 5 DURING TIME STEP 5 DURING TIME STEP 7 DURING TIME STEP PONDING ENDED AT NODE ~ 2 ~ ~ ~ ~ 2 ~ PONDING AT NODE PONDING AT NODE PONDING AT NODE PONDING AT NODE PONDING AT NODE PONDING AT NODE PONDING AT NODE PONDING AT NODE 18 TIME STEP Z. IN CH

AR 020845

107

Table 11 Partial listing of output to file 6, the main output file, for example problem 2Continued 4:56.6 Bit 01.5 Yr 01.2 Yr 00.1 Yr 00.1 Ar	Inued		=
i of output to file 6, the main output file, for example problem (5.56:01 - 5.96:01 - 5.56:01 + 5.96:01 - 5.56:01 + 5.96:01 - 5.96:01 - 5.56:01 + 5.96:01 - 5.96:01 - 5.96:01 - 5.56:01 + 5.96:01 - 5.96:01	-Cont	99E+01 52E+01 87E+01 35E+01 35E+01 94E+01 69E+01 59E+0 91E+0 91E+0 91E+0 91E+0 91E+0 91E+0 91E+0 .54E+0 .54E+0 .33E+0 .33E+0 .33E+0 .33E+0	. 506 + 0
7 of output to fJ 6.565-01-6.705-01-7.7 7.315+00-1.315+00-1.7 7.315+00-2.165+00-2.7 7.315+00-3.115+00-1.4 7.315+00-3.115+00-3.375+00-4 7.315+00-5.375+01-5.375+00-5 5.505+01-5.375+01-5.375+01-5 5.515+00-5.375+01-9 5.515+00-5.375+01-9 7.475+01-9.565+01-9 7.475+01-9.565+01-9 9.515+01-9.555+01-9 9.525+01-9.555+01-9 9.525+01-9.555+01-9 9.525+01-9.555+01-9 9.525+01-9.555+01-9 9.525+01-9.555+01-9 9.525+01-9.556+01-9 9.525+01-9.556+01-9 1.005+02-1.005+02-1 9.525+01-9.556+01-9 1.005+01-7.326+01-9 5.506+01-5.005+01-5 5.506+01-5.005+01-5 5.506+01-5.005+01-5 1.2.506+01-2.506+01-2.506+01-2 1.2.506+01-2.506+01-2.506+01-2 1.2.506+01-2.506+01-2.506+01-2.506+01-2 1.2.506+01-2.506+01-2.506+01-2.506+01-2.5000000000000000000000000000000000000		01-3.(01-3.) 01-3.) 01-4. 01-4. 01-5. 01-6. 01-6. 01-9. 01-9. 01-9. 01-1. 01-1. 01-1. 01-1. 01-1. 01-1.	(+01-2
7 of output to fJ 6.565-01-6.705-01-7.7 7.315+00-1.315+00-1.7 7.315+00-2.165+00-2.7 7.315+00-3.115+00-1.4 7.315+00-3.115+00-3.375+00-4 7.315+00-5.375+01-5.375+00-5 5.505+01-5.375+01-5.375+01-5 5.515+00-5.375+01-9 5.515+00-5.375+01-9 7.475+01-9.565+01-9 7.475+01-9.565+01-9 9.515+01-9.555+01-9 9.525+01-9.555+01-9 9.525+01-9.555+01-9 9.525+01-9.555+01-9 9.525+01-9.555+01-9 9.525+01-9.555+01-9 9.525+01-9.556+01-9 9.525+01-9.556+01-9 1.005+02-1.005+02-1 9.525+01-9.556+01-9 1.005+01-7.326+01-9 5.506+01-5.005+01-5 5.506+01-5.005+01-5 5.506+01-5.005+01-5 1.2.506+01-2.506+01-2.506+01-2 1.2.506+01-2.506+01-2.506+01-2 1.2.506+01-2.506+01-2.506+01-2.506+01-2 1.2.506+01-2.506+01-2.506+01-2.506+01-2.5000000000000000000000000000000000000	oble	2.556+ 2.946 3.236 4.226 5.346 5.346 5.346 6.416 6.416 6.416 6.416 6.416 6.346 6.346 6.326 6.326 6.326 6.326 6.326 6.326 6.326 6.326 6.326 6.326 6.326 5.006	-2.50
7 of output to fJ 6.565-01-6.705-01-7.7 7.315+00-1.315+00-1.7 7.315+00-2.165+00-2.7 7.315+00-3.115+00-1.4 7.315+00-3.115+00-3.3 5.005+01-5.045+01-4.1 7.315+00-5.375+01-4.1 7.315+01-5.375+01-9.5 5.515+01-5.375+01-9.5 5.515+01-9.565+01-9.5 7.4755+01-9.565+01-9.9 7.4755+01-9.555+01-9.9 9.1095+01-1.025+01-9.9 9.1095+01-9.555+01-9.5 9.525+01-9.555+01-9.5 9.525+01-9.555+01-9.5 9.525+01-9.555+01-9.5 9.525+01-9.555+01-9.5 9.525+01-9.555+01-9.5 1.005+02-1.005+02-1.005+02-1.0 9.525+01-9.555+01-9.555+01-5 -1.005+01-9.555+01-9.556+01-9.5 -2.586+01-9.556+01-9.556+01-5 -2.596+01-5.005+01-5.005+01-5 -5.506+01-5.005+01-5.005+01-5 -5.506+01-5.005+01-5.505+01-5 -5.506+01-5.005+01-5.505+01-5 -5.506+01-5.506+01-5.506+01-5 -5.506+01-2.506+01-5.506+01-5 -5.506+01-2.506+01-5.506+01-5 -5.506+01-2.506+01-2.506+01-5 -5.506+01-2.506+01-2.506+01-5 -5.506+01-2.506+01-5.506+01-5 -5.506+01-2.506+01-5.506+01-5 -5.506+01-2.506+01-5 -5.506+01-2.506+01-5 -5.506+01-2.506+01-2.506+01-5 -5.506+01-2.506+01-2.506+01-5 -5.506+01-5 -5.506+01-5 -5.506+01-5 -5.506+01-5 -5.506+01-5 -5.506+01-5 -5.506+01-5 -5.506+01-5 -5.506+01-5 -5.506+01-5		56 + 01 - 16 + 0	50E +01
7 of output to fJ 6.565-01-6.705-01-7.7 7.315+00-1.315+00-1.7 7.315+00-2.165+00-2.7 7.315+00-3.115+00-1.4 7.315+00-3.115+00-3.3 5.005+01-5.045+01-4.1 7.315+00-5.375+01-4.1 7.315+01-5.375+01-9.5 5.515+01-5.375+01-9.5 5.515+01-9.565+01-9.5 7.4755+01-9.565+01-9.9 7.4755+01-9.555+01-9.9 9.1095+01-1.025+01-9.9 9.1095+01-9.555+01-9.5 9.525+01-9.555+01-9.5 9.525+01-9.555+01-9.5 9.525+01-9.555+01-9.5 9.525+01-9.555+01-9.5 9.525+01-9.555+01-9.5 1.005+02-1.005+02-1.005+02-1.0 9.525+01-9.555+01-9.555+01-5 -1.005+01-9.555+01-9.556+01-9.5 -2.586+01-9.556+01-9.556+01-5 -2.596+01-5.005+01-5.005+01-5 -5.506+01-5.005+01-5.005+01-5 -5.506+01-5.005+01-5.505+01-5 -5.506+01-5.005+01-5.505+01-5 -5.506+01-5.506+01-5.506+01-5 -5.506+01-2.506+01-5.506+01-5 -5.506+01-2.506+01-5.506+01-5 -5.506+01-2.506+01-2.506+01-5 -5.506+01-2.506+01-2.506+01-5 -5.506+01-2.506+01-5.506+01-5 -5.506+01-2.506+01-5.506+01-5 -5.506+01-2.506+01-5 -5.506+01-2.506+01-5 -5.506+01-2.506+01-2.506+01-5 -5.506+01-2.506+01-2.506+01-5 -5.506+01-5 -5.506+01-5 -5.506+01-5 -5.506+01-5 -5.506+01-5 -5.506+01-5 -5.506+01-5 -5.506+01-5 -5.506+01-5 -5.506+01-5	dwpxa	11-1.96 11-2.11 11-2.21 11-2.6 11-2.6 11-2.6 11-2.6 11-2.6 11-9.7 10-9.1 10-9.4 10-5.6 10-	•01-2.
7 of output to fJ 6.565-01-6.705-01-7.7 7.315+00-1.315+00-1.7 7.315+00-1.315+00-1.4 7.315+00-2.165+00-2.7 7.315+00-3.115+00-3.315+00-4.5 5.315+01-5.315+00-4.195 7.315+01-5.315+01-5.315+01-5.5 5.555+01-9.345+01-9.345+01-9.5 7.495+01-9.365+01-9.345+01-9.5 7.315+01-2.505+01-9.355+01-9.5 7.315+01-9.355+01-9.365+01-9.5 7.315+01-9.355+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.556+01-9.556+01-9.5 7.315+01-9.556+01-9.556+01-9.5 7.315+01-9.556+01-9.556+01-9.5 7.315+01-5.005+01-5.005+01-5 7.325+01-9.556+01-5.566+01-5 7.325+01-9.556+01-5.005+01-5 7.326+01-5.005+01-5.005+01-5 7.356+01-5.005+01-5 7.356+01-5.005+01-5 7.356+01-2.506+01-2 7.356+01-2.506+01-5 7.356+01-2.506+01-5 7.356+01-2.506+01-2.506+01-5 7.356+01-2.506+01-2.506+01-2 7.356+01-2.506+01-2.506+01-2 7.356+01-2.506+01-2.506+01-5 7.356+01-2.506+01-2.506+01-2.506+01-2 7.356+01-2.506+01-2.5	for e	.406+0 .536+0 .676+0 	- 2.5 0E
7 of output to fJ 6.565-01-6.705-01-7.7 7.315+00-1.315+00-1.7 7.315+00-1.315+00-1.4 7.315+00-2.165+00-2.7 7.315+00-3.115+00-3.315+00-4.5 5.315+01-5.315+00-4.195 7.315+01-5.315+01-5.315+01-5.5 5.555+01-9.345+01-9.345+01-9.5 7.495+01-9.365+01-9.345+01-9.5 7.315+01-2.505+01-9.355+01-9.5 7.315+01-9.355+01-9.365+01-9.5 7.315+01-9.355+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.556+01-9.556+01-9.5 7.315+01-9.556+01-9.556+01-9.5 7.315+01-9.556+01-9.556+01-9.5 7.315+01-5.005+01-5.005+01-5 7.325+01-9.556+01-5.566+01-5 7.325+01-9.556+01-5.005+01-5 7.326+01-5.005+01-5.005+01-5 7.356+01-5.005+01-5 7.356+01-5.005+01-5 7.356+01-2.506+01-2 7.356+01-2.506+01-5 7.356+01-2.506+01-5 7.356+01-2.506+01-2.506+01-5 7.356+01-2.506+01-2.506+01-2 7.356+01-2.506+01-2.506+01-2 7.356+01-2.506+01-2.506+01-5 7.356+01-2.506+01-2.506+01-2.506+01-2 7.356+01-2.506+01-2.5	lle,		0E+01- 0E+01
7 of output to fJ 6.565-01-6.705-01-7.7 7.315+00-1.315+00-1.7 7.315+00-1.315+00-1.4 7.315+00-2.165+00-2.7 7.315+00-3.115+00-3.315+00-4.5 5.315+01-5.315+00-4.195 7.315+01-5.315+01-5.315+01-5.5 5.555+01-9.345+01-9.345+01-9.5 7.495+01-9.365+01-9.345+01-9.5 7.315+01-2.505+01-9.355+01-9.5 7.315+01-9.355+01-9.365+01-9.5 7.315+01-9.355+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.556+01-9.556+01-9.5 7.315+01-9.556+01-9.556+01-9.5 7.315+01-9.556+01-9.556+01-9.5 7.315+01-5.005+01-5.005+01-5 7.325+01-9.556+01-5.566+01-5 7.325+01-9.556+01-5.005+01-5 7.326+01-5.005+01-5.005+01-5 7.356+01-5.005+01-5 7.356+01-5.005+01-5 7.356+01-2.506+01-2 7.356+01-2.506+01-5 7.356+01-2.506+01-5 7.356+01-2.506+01-2.506+01-5 7.356+01-2.506+01-2.506+01-2 7.356+01-2.506+01-2.506+01-2 7.356+01-2.506+01-2.506+01-5 7.356+01-2.506+01-2.506+01-2.506+01-2 7.356+01-2.506+01-2.5		01-9.50 0-1.1.049 0-1.1.049 0-1.1.049 0-1.27 0-2.27 0-1.27 0-2.	01-2.9
7 of output to fJ 6.565-01-6.705-01-7.7 7.315+00-1.315+00-1.7 7.315+00-1.315+00-1.4 7.315+00-2.165+00-2.7 7.315+00-3.115+00-3.315+00-4.5 5.315+01-5.315+00-4.195 7.315+01-5.315+01-5.315+01-5.5 5.555+01-9.345+01-9.345+01-9.5 7.495+01-9.365+01-9.345+01-9.5 7.315+01-2.505+01-9.355+01-9.5 7.315+01-9.355+01-9.365+01-9.5 7.315+01-9.355+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.556+01-9.556+01-9.5 7.315+01-9.556+01-9.556+01-9.5 7.315+01-9.556+01-9.556+01-9.5 7.315+01-5.005+01-5.005+01-5 7.325+01-9.556+01-5.566+01-5 7.325+01-9.556+01-5.005+01-5 7.326+01-5.005+01-5.005+01-5 7.356+01-5.005+01-5 7.356+01-5.005+01-5 7.356+01-2.506+01-2 7.356+01-2.506+01-5 7.356+01-2.506+01-5 7.356+01-2.506+01-2.506+01-5 7.356+01-2.506+01-2.506+01-2 7.356+01-2.506+01-2.506+01-2 7.356+01-2.506+01-2.506+01-5 7.356+01-2.506+01-2.506+01-2.506+01-2 7.356+01-2.506+01-2.5	out,		2.50E+ 2.50E+
7 of output to fJ 6.565-01-6.705-01-7.7 7.315+00-1.315+00-1.7 7.315+00-1.315+00-1.4 7.315+00-2.165+00-2.7 7.315+00-3.115+00-3.315+00-4.5 5.315+01-5.315+00-4.195 7.315+01-5.315+01-5.315+01-5.5 5.555+01-9.345+01-9.345+01-9.5 7.495+01-9.365+01-9.345+01-9.5 7.315+01-2.505+01-9.355+01-9.5 7.315+01-9.355+01-9.365+01-9.5 7.315+01-9.355+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.556+01-9.556+01-9.5 7.315+01-9.556+01-9.556+01-9.5 7.315+01-9.556+01-9.556+01-9.5 7.315+01-5.005+01-5.005+01-5 7.325+01-9.556+01-5.566+01-5 7.325+01-9.556+01-5.005+01-5 7.326+01-5.005+01-5.005+01-5 7.356+01-5.005+01-5 7.356+01-5.005+01-5 7.356+01-2.506+01-2 7.356+01-2.506+01-5 7.356+01-2.506+01-5 7.356+01-2.506+01-2.506+01-5 7.356+01-2.506+01-2.506+01-2 7.356+01-2.506+01-2.506+01-2 7.356+01-2.506+01-2.506+01-5 7.356+01-2.506+01-2.506+01-2.506+01-2 7.356+01-2.506+01-2.5			0E +01 - 0E +01 -
7 of output to fJ 6.565-01-6.705-01-7.7 7.315+00-1.315+00-1.7 7.315+00-1.315+00-1.4 7.315+00-2.165+00-2.7 7.315+00-3.115+00-3.315+00-4.5 5.315+01-5.315+00-4.195 7.315+01-5.315+01-5.315+01-5.5 5.555+01-9.345+01-9.345+01-9.5 7.495+01-9.365+01-9.345+01-9.5 7.315+01-2.505+01-9.355+01-9.5 7.315+01-9.355+01-9.365+01-9.5 7.315+01-9.355+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.555+01-9.5 7.315+01-9.556+01-9.556+01-9.5 7.315+01-9.556+01-9.556+01-9.5 7.315+01-9.556+01-9.556+01-9.5 7.315+01-5.005+01-5.005+01-5 7.325+01-9.556+01-5.566+01-5 7.325+01-9.556+01-5.005+01-5 7.326+01-5.005+01-5.005+01-5 7.356+01-5.005+01-5 7.356+01-5.005+01-5 7.356+01-2.506+01-2 7.356+01-2.506+01-5 7.356+01-2.506+01-5 7.356+01-2.506+01-2.506+01-5 7.356+01-2.506+01-2.506+01-2 7.356+01-2.506+01-2.506+01-2 7.356+01-2.506+01-2.506+01-5 7.356+01-2.506+01-2.506+01-2.506+01-2 7.356+01-2.506+01-2.5			01-2.5 01-2.5
	ile 6	995-0 99	2.50E+ 2.50E+
	to f.		0E+01-
			11-2.5(11-2.5(
	of ou	566 -01 346 -01 346 -01 346 -01 346 -00 346 -0	2.50E+(
Table 11Partial 11st 4.50-6.81f-01-6.75f-01-6.64f -3.53f+01-3.93f+01-4.21f 7.50-1.36f+00-1.35f+00-4.36f 11.25-2.21f+00-2.20f+00-2.16f 5.5-3.23f+00-3.21f+00-4.32f 21.00-4.43f+00-4.39f+00-4.32f 21.00-4.43f+00-4.39f+01-5.76f 33.00-3.27f+01-5.76f+01-5.76f 33.00-3.27f+01-5.76f+01-7.741 46.50-9.93f+01-9.93f+01-9.55f 64.50-1.09f+02-1.00f+02-1.00f 73.50-7.66f+01-9.96f+01-9.66f 73.50-1.09f+02-1.00f+02-1.00f 73.50-1.00f+01-2.56f+01-5.56f+01-5.56f 112.50-2.56f+01-5.00f+01-5.56f+01-5.56f 172.50-2.50f+01-2.50f+01-2.50f+01-2.50f 73.50f+01-2.50f+01-2.50f+01-2.50f 74.01-2.50f+01-2.50f+01-2.50f+01-2.50f 75.00-5.00f+01-2.50f+01-2.50f+01-2.50f+01-2.50f 75.00-5.00f+01-2.50f+01-2			
Table 11Partial 4.50-6.815-01-6.755-01 -3.535001-3.935000 7.50-1.36500-1.35500 -3.71501-4.36500 -3.71501-4.36500 -3.71501-4.36500 -3.71500-2.20500 -4.32500-5.75100-2.20500 -4.32500-5.75100 -4.32500-5.75100 -4.32500-5.75100 -5.32501-9.93500 -5.32501-9.93500 -5.32501-9.93500 -7.0050-1.025050 -7.0050-1.025050 -7.0050-1.025050 -7.0050-1.025050 -7.34601-9.55760 -9.957601-9.55760 -9.957601-9.55760 -9.957601-9.55760 -9.957601-9.55760 -9.95601-9.55760 -9.55601-9.55760 -9.55601-9.55660 -7.34601-9.5560 -9.55601-9.5560 -9.55601-9.55660 -9.55601-9.55660 -9.55601-9.55660 -9.56601-9.32500 112.50-8.55601-9.55660 -9.56601-9.32600 126.00-7.34601-7.3460 -7.34601-7.34601 -2.56601-3.56601 -2.56600 -2.56600 -2.56600 -5.56601-2.5660 122.506401-5.0060 -5.56601-2.5660 122.506401-5.0060 -5.566401-5.5660 122.506401-5.5660 -5.566401-5.5660 122.506401-5.5660 -5.566401-5.5660 122.506401-5.56640 -5.566401-5.56640 -5.566401-5.56640 -5.566401-5.56640 -5.566401-5.56640 -5.566401-5.56640 -5.566401-5.56640 -5.566401-5.56640 -5.566401-5.56640 -5.566401-5.56640 -5.566401-5.56640 -5.566401-5.56640 -5.566401-5.56640 -5.566401-5.56640 -5.566401-5.56640 -5.566401-5.566401-5.56640 -5.566401-5.566401-5.56640 -5.566401-5.566401-5.56640 -5.566401-5.566401-5.566401-5.56640 -5.566401-5.566401-5.566401-5.566401-5.566401-5.566400 -5.566401-5.	list		1-2.50
Table 11Pa 4. 50-6.81E -01-6. -3. 51E +01-3. 7. 50-1.351E +00-1. -3. 71E +01-4. 11. 25 - 3. 23E +01-4. 15. 75 - 3. 23E +01-5. -4. 78E +01-5. 27. 00-5. 79E +00-5. 27. 00-5. 79E +01-6. -5. 32E +01-9. 64. 50-9.93E +01-9. -4. 76E +01-9. -5. 32E +01-9. 13. 00-5. 32E +01-9. 126. 00-7. 34E +01-9. 127. 50-2. 50E +01-5. 172. 50-5. 172. 50-5. 172. 50-	rtial	755-01 351-00 351-00 351-00 351-00 591-00 500-00 500-00 500-00 500-00 500-00 500-00 500-00 500-00 50	. 50E+0
Table 11 4.50-6.816 -3.536 -3.536 -3.536 -3.976 11.25-3.236 -4.786 -4.786 -4.786 -4.786 -4.786 -5.796 -5.796 -5.796 -5.796 -5.799 -7.000 -7.000 -7.000 -7.000 -7.000 -7.34 -9.550 -9.550 -9.550 112.50-8.551 126.00-7.34 136.50-6.32 112.50-8.551 126.00-7.34 136.50-7.34 136.50-6.32 144.00-5.56 156.00-7.356 156.00-7.356 156.00-7.350 156.00-7.350 156.00-7.350 156.00-7.350 156.00-5.500 156.00-1.350 157.50-2.50 156.00-2.350 157.50-2.50 156.00-2.350 156.00-2.50 172.50-50-50 172.50-50 1	Pa	-101 - 5. -101	101-2
Tab 4.50 7.50 7.50 11.25 11.25 11.25 27.00 27.00 64.55 64.55 64.55 73.56 84.06 1126.00	le 11		0-2.50
	Tabl	4.50 11.25 11.25 15.75 15.75 27.00 27.00 27.00 33.05 64.55 64.55 64.55 73.55 64.55 112.5	172.5

AR 020846

(

Inued				_			6	æ	2	2	Ś	~	6		1	88
2Continued	55E+01 50E+00 .00E+00	161.25	0.450	0.450	0.450	0.450	0.450	0.428	0.402	0.372	0.355	erc.u 946.0	0.349	0.354	0.367	0.388
problem 2-	55E+01-1. 50E+00-6. 30E+00-4	153.75	0.450	0.450	0.450	0.450	0.450	0.439	0.408	0.374	0.355	0.347	0.349	0.353	0.367	0.388
	56+01-1.1 06+00-6.1	146.25	0.450	0.450	0.450 0.450	0.450	0.450	0.165	0.135	0.129	0.127	0.345	0.348	0.353	0.367	0.388
for example	1.55E+01-1.55E+01-1.55E+01-1.55E+01 6.50E+00-6.50E+00-6.50E+00-6.50E+00 4.00E+00 4.00E+00 4.00E+00 4.00E+00	-	0.450 0.450	0.450	0.450 0.450	0.450	0.450	0.172	0.133	0.128	0.127	0.340	0.348	0.353	0.367	0.388
file, fo		131.25 288.75	0.450 0.450 0.450	0.450 0.450 0.450	0.450	0.450	0.437 0.450	0.180	0.134	0.128	0.127	0.339	0.349	0.349 0.353	0.36/	0.388
main output 1	55E+01-1.55E+01-1.55E+01-1.55E+01-1.55E+01-1.55E+01- 55E+01-1.55E+01-1.55E+01-1.55E+01-1.55E+01-1.55E+01 50E+00-6.50E+00-6.50E+00-6.50E+00-6.50E+00-6.50E+00- 50E+00-6.50E+00-6.50E+00-6.50E+00-6.50E+00-6.50E+00- 00E+00 4.00E+00 4.00E+00 4.00E+00 4.00E+00 4.00E+00 00E+00 4.00E+00 4.00E+00 4.00E+00 4.00E+00 4.00E+00		0.450 0.450 0.450	0.450 0.450	0.450	0.450	0.437 0.450	0.189	0.136	0.128	0.127	0.338 0.350	0.349	0.349	0.367	0.308
e main	.556+01-1.556+01-1.556+01-1.556+01-1 .556+01-1.551+01-1.556+01-1.556+01-1 .506+00-6.506+00-6.506+00-6.506+00-6 .506+00-6.506+00-6.506+00-6.506+00-6 .006+00-4.006+00-4.006+00-4.006+00-4 .006+00-4.006+00-4.006+00-4.006+00-4 .001510RE_CONTENT	~ ~ ~		000	2223	883	37	121					0.349	0.349	0.354	0.367
e, the	+01-1.556+01-1.51 +01-1.556+01-1.51 +00-6.506+00-6.51 +00-6.506+00-6.51 +00 4.006+00 4.01 +00 4.006+00 4.01 +00 4.006+00 4.01 +00 1010RE CONTENT		0.450 0.450 0.450					0.421	0.140	0.128 0.128 0.128	0.127	0.338 0.350	0.349	0.349 0.353	0.354	0.36/ 0.388
to file	+01-1.55 +01-1.55 +00-6.50 +00-6.50 +00 4.00	000	000	5050	2223	0.450									0.354 0.367	0.367 0.388
output	11-1,55£+01- 11-1,55£+01- 00-6,50£+00- 00-6,50£+00- 00 4.00£+00 00 4.00€+00 00 4.00€+00		150 0.4 150 0.4										0.349			
of		TANCE . 67. 202.		000		0.450		•								
listing	-1.55E+01 -1.55E+01 -6.50E+00 -6.50E+00 4.00E+00	08 8 DIST 52.50 189.37	0.450	0.450	0.450	0.450 0.450 0.450									0.354 0.367	
Partial	-1.55f+01-1 -1.55f+01-1 -6.50f+00-6 -6.50f+00-6 4.00f+00 4		0.450	0.450	0.450	0.450	0.447	0.430 0.209	0.410 0.142	0.389 0.128	0.127	0.338	0.343 0.349	0.349	0.354	0.367 0.388
11Pa	50-1,555+01-1,5555+01-1,5555+01-1 -1,555+01-1,5555+01-1,5555+01-1 50-6,505+00-6,505+00-6,505+00-6 -6,505+00-6,505+00-6,505+00-6 -00,4,005+00,4,005+00,4,005+00,4	11.25	0.450	0.450	0.450 0.450 0.450	0.450 0.450 0.450	0.450	0.439	0.418 0.142	0.395 0.128	0.369	0.338	0.343	0.349		0.367 0.388
Table	181.50-1.1 -1.1 190.50-6. -6. 201.00 4.	Z. IN CH	1.50	7.50	11.25	15.75	27.00	33.00	00.6 €	46.50	55.50	64.50	73.50	04.00 47 50	•	126.00

136 50	114 0	0.411	0.411	0.411		411	0.411	0.4		0.411	0.411	111.0	0.411	0.411	114.0	
	0.411	0.411	0.411	<u>.</u>		0.411	0.411	0.411		0.411	0.411	0.431	0.431	0.431	164.0	
144.00	0.431	0.431	164.0				0.431	0.0		0.431	164.0				100 0	
150.00	160.0	160.0	0.091				160.0	160.0		160.0	160.0	160.0	160.0	160.0	160'0	
ç	0.091	160.0	160.0				0.098	0.0		0.098	0.098	0.098	0.098	0.098	0.098	
00.001	0.090	060.0	0.098				0.098	0.0		0.098	0.098					
163.50	0.111	0.111	0.111				0.111	0.111		0.111	0.111	0.111	0.111	0.111	0.111	
	0.111	0.111	0.111			111	0.111			0.111		0 144	0 144	0.144	0.144	
172.50	0.144	0.144	0.144				0.144			0.144						
4	0.144	0.144	0.144			. 144	0.144			112 U	12.0	0.217	0.217	0.217	0.217	
181.50	0.21/	0.21/	112.0			112.	112.0			0.217	0.217					
5	0.21/	0.21/	0.420			117.	0.420			0.420	0.420	0.420	0.420	0.420	0.420	
06.061	0.4.0		0.420	je		0.420	0.420	Ö	0.420	0.420	0.420					
0	0.420	024.0	0.420			420	0.420			0.420	0.420	0.420	0.420	0.420	0.420	
201.00	0.120	•	0.420			0.420	0.420		0.420	0.420	0.420					
	071.0		MASS	BALA	23	HHARY FOR	TIME STEP		8							
		101	PUMPING PERIOD N TOTAL ELAPSED SI		NO	1 1 ME =	5.000E-01 DAYS	0 IO-	AYS		•			_		
++++		*******	***************************************	******	+++++	*****	+++++++	++++	+++++	******	+++++++	***************************************		*****	******	÷ +
									•			MASS THIS	511	RATE FOR THIS	THIS	+
									TOTAL	NASC I		TIME STEP		TIME STEP	EP	+
									5			GRAM		GRAH/DAYS	YS	+
			10000 000		20022			U		1 50700F+07	02	1.6744BF+0	IE+01	6.903	6.0355E+02	+
FLUX	OC OLNI	FLUX INTO DOMAIN ACRUSS			PRESSURE HEAD		BOUNDARIES BOUNDAPIES			0 00000F-01	50	0.00000F-01	10-JU	0.000	0.000001-01	+
FLUX OUT OF	UT OF DO	DOMAIN ACKUSS		۰ د	PRESSURE HEAD		DUUNUARIES			050726+		7.89871E+0	10+01	1.462	1.46250[+03	+
	FIU FIU	X INTO DA	FLUX INTO DOMAIN ALKUSS	USS SPEC	SPELIFIED FLUX					10.13/6C0.1	52	0 00000F-01	10-JU	0.00	10-300	+
	FLUX	FLUX OUL OF DC	UHAIN ACK	ž		LLUA DI	UUNUARIC			1 41051F+03	58	1 15732F+02	PE+02	2.142	2.14286E+03	+
						LUA IN	TOTAL FLUA INTU DUMATIN TATAL FLUA INTU DUMATIN			10-300000 0	50	0 00000E -01	10-J0	0.000	0,000006-01	+
				õ	ואר גרנ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EVAPOPATION			0.00000E-01	56	0.000006-01	01-01	0.00	0.000006-01	٠
						TDAVE	TDAVEDIDATION				5	0.000006-01	001	0.00	0.000006-01	+
				101	TAL EVA	NANI ODTOANS	TOTAL EVADATEANCETON			0 00000F-01	50	0.000001	05-01	0.00	0.000006-01	+
					IAL EV		ULAL EVALUTION DUMAIN		, –	1. A 1 B 7 4 F 4		1.15/326+02	26+02	2.14	2055+03	+
			3			IID MAS	FILLED MASS BALANCE			7.765986-01	0	1.931216	1E-04	3.57	578E-03	٠
																+

PONDING ENDED AT NODE 2 7 DURING TIME STEP 19

(

(

,

and the standay deviation of output file 6 the main output file. for example problem 2Continued	GE PERIOD * 1 ELAPSED TIME * 5.594E-01 DAYS REQUIRED TTERATIONS * 45	PONDING ENDED AT NODE 2 6 DURING TIME STEP 20 TIME STEP NUMBER = 20 RECHARGE PERIOD = 1 ELAPSED TIME = 6.248E-01 DAVS REQUIRED ITERATIONS = 46	PONDING ENDED AT NODE 2 3 DURING TIME STEP 21	PONDING ENDED AT NODE 2 4 DURING TIME STEP 21	Ponding Ended at node 2 5 during time step 21	PONDING ENDED AT NODE 2 2 DURING TIME STEP 21 Time step number = 21 recharge period = 1 elapsed time = 6.966E-01 days required iterations = 61	TIME STEP NUMBER = 22 RECHARGE PERIOD = 1 ELAPSED TIME = 7.757E-01 DAYS REQUIRED ITERATIONS = 21	TIME STEP NUMBER = 23 RECUARGE PERIOD = 1 ELAPSED TIME = 8.627E-01 DAYS REQUIRED ITERATIONS = 18	TIME STEP NUMBER = 24 RECHARGE PERIOD = À ELAPSED TIME = 9.584E-01 DAYS REQUIRED ITERATIONS = 19	TIME STEP NUMBER = 25 RECHARGE PERIOD = 1 ELAPSED TIME = 1.000E+00 DAVS REQUIRED ITERATIONS = 25	EXAMPLE PROBLEM 2 2D INFILIRATION AND EVAPOTRANSPIRATION TOTAL ELAPSED TIME = 1.000E+00 DAYS TIME STEP 25	IN X OR R DISTANCE, IN CM II. 25 33.75 52.50 67.50 82.50 97.50 110.62 121.87 131.25 138.75 146.25 153.75 161.25 168.75 178.12 189.37 202.50 217.50 232.50 247.50 266.25 288.75 1.50-1.186.400-1.216.400-1.416.400-2.116.400-2.876.400-3.926.400-5.286.400-6.676.400-8.376.400-1.0376.401-1.216.401 -1.396.401-1.596.401-1.976.401-2.1376.401-2.1376.401-2.347.601-2.4776.01 -1.396.401-1.596.401-1.976.401-2.116.400-2.116.400-2.347.600-5.286.400-5.286.401-2.4776.01 4.50-2.686.400-2.716.400-2.916.400-3.146.400-3.566.400-5.386.400-6.7776.00-8.137.400-1.186.401-1.376.401 -1.546.401-1.746.401-1.946.401-2.126.401-2.286.401-2.496.401-2.496.401-2.6576.401-2.6576.401 7.50-4.186.400-4.2816.400-4.406.406-5.066.400-5.086.400-5.086.400-9.5386.400-1.136.401-1.337.401-1.5267.401
-+ - 		Ŭ.	AT NO	AT NO	AT NO	AT NC						33. 178. 21641 - 21641 - 21641 - 21641
5	UMBER	DED / UMBEF	DED /	10E0	1050	VDE D VUMBE	NUMBE	NUMBE	NUMBE	NUMBE	081.EM ED 11 25	25 25 00-1. 00-2. 00-4.
-	E P N		IG EN	IG EN	IG EN	NG EN	LEP N	IEP N	IEP N	TEP P	E PR(LAPSI	11 168 1186 1186 1186 1186 1186
-			NION	NION	. NIQNO	NDIN HE ST	łE ST	te si	ŧE SI	HE SI	EXAMPLE TOTAL ELA TIME STEP	0-1-0-2-0-2-0-2-0-2-0-2-0-2-0-2-0-2-0-2-
		PONE	PONC	PONI	PON	PON	TIME	TIME	TIME	TINE	EXAM OTAL INE	IN CM -1.50- 7.50- 7.50-

AR 020849

for example problem 2--Continued 190.50-6.50E+00-6.50E+00-6.50E+00-6.50E+00-6.50E+00-6.50E+00-6.50E+00-6.50E+00-6.50E+00-6.50E+00-6.50E+00-6.50E 1,556+01-1,556+01-1,556+01-1,556+01-1,556+01-1,556+01-1,556+01-1,556+01-1,556+01-1,556+01-1,556+01-1,556+01 172.50-2.476+01-2.476+01-2.476+01-2.476+01-2.476+01-2.476+01-2.476+01-2.476+01-2.476+01-2.476+01-2.476+01-2.476+01-2.476+01-2.476+01 156.00-4.36E+01-4.00-4.36E+01-4.36E+00-4.36E+01-4.36E+01-4.36E+01-4.36E+01-4.36E+01.51E+01-3.51E+01-3.51E+01-3.51E+01-3.51E+01-3.51E+01-3.51E+01-3.51E+01-3.51E+01-3.51E+01-3.51E+01-3.51E+01 .966+01-4.966+01-4.966+01-4.966+01-4.966+01-4.966+01 7,91E+01-7,96E+01-7,97E+01-8,15E+01-8,33E+01-8,44E+01-8,51E+01-8,56E+01-8,58E+01 -7,91E+01-9,45E+01-9,45E+01-9,45E+01-9,45E+01-9,45E+01-9,45E+01-9,37E+01-9,37E+01-9,17E+01-9,02E+01-8,90E+01 -8,83E+01-9,45E+01-9,45E+01-9,45E+01-9,45E+01-9,45E+01-9,00E+01-9,01E+01-9,37E+01-9,22E+01 -8,83E+01-8,80E+01-8,83E+01-8,42E+01-8,95E+01-8,98E+01-9,00E+01-9,01E+01-9,01E+01-9,38E+01-8,36E+01-8,33E+01-8,31E+01 126.00-7.24E+01-7.24E+01-7.24E+01-7.24E+01-7.24E+01-7.24E+01-7.24E+01-7.24E+01-7.24E+01-7.24E+01-7.23E+01-7.23E+01-7.22E+01-7.22E+01 136.50-6.24E+01-6.24E+01-6.24E+01-6.24E+01-6.24E+01-6.24E+01-6.24E+01-6.24E+01-6.24E+01-6.24E+01-6.24E+01-6.24E+01-6.23E+01-6.23E+01 .50E+01-5.50E+01-5.50E+01-5.50E+01-5.50E+01-5.50E+01-5.50E+01-5.50E+01-5.50E+01-5.50E+01-5.50E+01-5.49E+01 46. 50-2. 53f +01-2. 54f +01-2. 54f +01-2. 55f +01-2. 57f +01-2. 61f +01-2. 69f +01-3. 05f +01-3. 40f +01-3. 91f +01-3. 99f +01 -4. 07f +01-4. 19f +01-4. 33f +01-4. 47f +01-4. 56f +01-4. 63f +01-4. 53f +01-4. 82f +01 55. 50-3. 27f +01-4. 32f +01-3. 34f +01-3. 42f +01-3. 59f +01-4. 53f +01-5. 44f +01-5. 74f +01-4. 65f +01-4. 63f +01 56. 50-3. 27f +01-4. 74f +01-3. 30f +01-3. 42f +01-3. 59f +01-5. 32f +01-5. 34f +01-5. 74f +01-5. 74f +01-4. 65f +01-5. 52f +01 64. 50-8. 67f +01-8. 68f +01-8. 83f +01-5. 18f +01-5. 26f +01-5. 32f +01-5. 38f +01-5. 997f +01-7. 50f +01-5. 88f +01-5. 52f +01 896+01-9.916+01-9.966+01-1.006+02-1.026+02-1.036+02-1.036+02-1.006+02-9.306+01-8.186+01-7.066+01-6.586+01 84.00-1.00E+02-1.00E+02-1.00E+02-1.00E+02-1.00E+02-1.01E+02-1.01E+02-1.00E+02-9.86E+01-9.55E+01-9.03E+01-8.46E+01-8.08E+01 39.00-2.53E+01-2.53E+01-2.53E+01-2.53E+01-2.54E+01-2.55E+01-2.58E+01-2.62E+01-2.69E+01-2.78E+01-2.93E+01-3.34E+01-3.46E+01 .52E+01-2.52E+01-2.53E+01-2.53E+01-2.54E+01-2.56E+01-2.59E+01-2.64E+01-2.70E+01-2.80E+01-2.89E+01-3.04E+01 27.00-1.396+01-1.396+01-1.406+01-1.406+01-1.416+01-1.436+01-1.456+01-1.506+01-1.576+01-1.686+01-1.896+01-2.386+01-2.636+01 15.75-8.30f+00-8.32f+00-8.38f+00-8.48f+00-8.66f+00-9.01f+00-9.62f+00-1.05f+01-1.17f+01-1.50f+01-1.74f+01-1.96f+01-2.14f+01-2.53f+01-2.71f+01-2.86f+01-2.98f+01-3.07f+01-3.15f+01-3.19f+01 21.00-1.09E+01-1.09E+01-1.10E+01-1.11E+01-1.12E+01-1.15E+01-1.20E+01-1.27E+01-1.37E+01-1.51E+01-1.71E+01-2.02E+01-2.26E+01 -1.70E+01-1.90E+01-2.09E+01-2.28E+01-2.44E+01-2.55E+01-2.64E+01-2.72E+01-2.77E+01-2.77E+01 11.25-6.05E+00-6.08E+00-6.15E+00-6.26E+00-6.46E+00-6.87E+00-7.55E+00-8.51E+00-9.81E+00-1.12E+01-1.30E+01-1.51E+01 -3.51E+01-3.51E+01-3.51E+01-3.51E+01-3.51E+01-3.51E+01-3.51E+01-3.51E+01-3.51E+01 E+01-2.47E+01-2.47E+01-2.47E+01-2.47E+01-2.47E+01-2.47E+01-2.47E+01-2.47E+01 .55E+01-1.55E+01-1.55E+01-1.55E+01-1.55E+01-1.55E+01-1.55E+01-1.55E+01-1.55E+01 .96E+01-4.9EE+01-4.9EE+01-4.9EE+01-4.9EE+01-4.9EE+01-4.9EE+01-4.9EE+01 .36E+01-4.36E+01-4.36E+01-4.36E+01-4.36E+01-4.36E+01-4.36E+01-4.36E+01-4.36E+01 .496+01-5.496+01-5.496+01 *-1*,21E+01-7.21E+01-7.21E+01-7.21E+01-7.21E+01-7.22E+01-7.22E+01-7.22E+01-7.22E+01 -8.296+01-8.296+01-8.296+01-8.306+01-8.316+01-8.316+01-8.326+01-8.326+01-8.326+01 -6.41E+01-6.39E+01-6.52E+01-6.74E+01-6.96E+01-7.12E+01-7.22E+01-7.29E+01-7.33E+01 main output file, .43E+01-5.45E+01-5.57E+01-5.74E+01-5.91E+01-6.04E+01-6.13E+01-6.20E+01-6.24E+01].58E+01-3.72E+01-3.87E+01-4.02E+01-4.13E+01-4.22E+01-4.29E+01-4.37E+01-4.41E+01 . 00E+01-2, 99E+01-3, 16E+01-3, 33E+01-3, 47E+01-3, 57E+01-3, 65E+01-3, 73E+01-3, 78E+01 -3.19E+01-3.35E+01-3.51E+01-3.67E+01-3.00E+01-3.89E+01-3.97E+01-4.05E+01-4.09E+01 ._29f+01-2.47f+01-2.63f+01-2.75f+01-2.83f+01-2.91f+01-2.96f+01 -2,44E+01-2.64E+01-2.82E+01-3.00E+01-3.14E+01-3.25E+01-3.34E+01-3.42E+01-3.46E+01 .96E+01-4.96E+01-4.96E+01-4.96E+01-4.96E+01-4.96E+01-4. the 496+01-5,496+01-5,496+01-5. ý, Table 11.--Partial listing of output to file 496+01-5.496+01-5 231-101-6. 50[+0]-5 150.00-4.96£+01-4 163.50-3.51E+01-3 81.50-1.555+01-1 73.50-9.886+01-9. -6.23[+01-6. 496+01-5 144.00-5.50£+01-5 33.00-2.52[+01-2

AR 020850

2Cont Inued	-	'n	-		0	0	-	2	0	ç	2	0	e	2	09	2	20	U S	2	6	•0	2	2	62	11	-	16		2
Cont	.005+00	161.25	0 460		0.450	0.450		nc ŀ. n	0.450		nc + . n	0.450	4	UC4.U	0.450		0.450	0 460		0.433	0.404	ć	6/5.0	0.362	11L U		0.391	C 1 V	5
problem 2-	00E+00 4	153.75	1 460	064.0	0.450	0.450	0,000	0c+.U	0.450	0.10	UC1.U	0.450		0.450	0.450	0000	0.450	0.450		0.422	9 6E.0		60C.U	0.361	111 0		0.391	C 1 1 0	
	0E+00 4.	146.25		nc + .0	0.450	0.450		nc+.n	0.450		0.450	0.450		0.252	0 244		0.221	151 0		0.385	0.373		005.U	0.359	076 0	0/0.0	0.390	C 1 V	
for example	4.00E+00 4.00E+00 4.00E+00 4.00E+00	138.75		nc#.0	0.450	0.450		Nct.U	0.450		0.450	0.450		0.257	0 261	fr.7*A	0.237		/61.0	0.360	0.357		Pct.0	0.357		0.3/0	0.390		0.413
file, fo	6.50E+00 4.00E+00 4.0 4.00E+00			0.450	0.450	0.450	0.450	0.45U 0.450	0.450	0.450	0.450	0.450	0.450	0.262	0.450	0.450	0.249	0.450	0.436	0.348	0.348	0.389	0.350 0.367	0.356	0.361	0.270	0.390	0.391	0.413
output	-6.50E+00-6.5 4.00E+00 4.0 4.00E+00 4.0	~			00		0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.265	0.450	0.450	0.259	0.450	0.437	0.346	0.414	0.389	0.34/	0.355	0.361	0/6.0	0.390	0.391	0.413
main	6.50E+00-6.5 4.00E+00 4.0 4.00E+00 4.0 ENT	£3	20	0.450 0.450	150			0.450 0.450						0.267	0.450	0.450	0.264	0.450	0.439 0.439	0.351	0.416	166.0	0.347	0.355	0.361	0.3/0	0.390	0.391	0.413
s 6, the		C S	205	120		0 2 2 0																0.393	0.347 0.360	0.355	0.361	0.369	0.390	0.391	0.413
to file	+00-6.50E+00 +00 4.00E+00 +00 4.00E+00 M01STURE CON	ED	20.5	20	20	205	50															966	0.347	355					
output	00-6.50E+00- 00 4.00E+00 00 4.00E+00 00 4.00E+00 M01S	IN CM	50 217.		0		202	150	150																		0.390		
of	-6.50E+00 4.00E+00	LANCE,		00		5 6																							
listing	5.50£+00 1.00£+00	OR R DIST	16.96	0.450	0.450	0.450	0.450	0.450	0.450																				0.413 0.413
artial	506+00-1 006+00 006+00	×	1/8.12			0.450		0.450		0.450	0.450	0.450	0.450	0.270	0.450	0.270	0.1.0	0.450	0.226	0.365	0.435	0.409	0.348	0.355 0.355	0.364	0.369	2/F.0 06E.0	166.0	0.413
11Partial listing	-6.50E+00-6.50E+00-6.50E+00 4.00E+00 4.00E+00 4.00E+00 4.00E+00 4.00E+00 4.00E+00	:	11.23	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.270	0.450	0.270	024.0	0.450	0.227	0.366	0.435	0.409	0.348	0.3/8 0 355 0	0.363	0.369	1/6.0	0.391	0.413
Table	201.00 4.	CH.		1.50	4.50	7 60	nc./	11.25	15 75		21.00		00.72	33.00		39.00	A6 50	00.01	55.50	64.50		/3.50	84.00	07 50		112.50	126.00		136.50
	1	7 '											11:	3									A	R	0	20	85	51	

													+	+ +	+	+	+ ·	• •	• •	• •	+	+	÷	+	•	* =		
-	=		8	13	1	92	17	20		R				6		5	53	33	32	32	5	5	0	8	05	* * *		
0.434	160 0		0.098	0.113	•	0.146	0.217	0 420		0.420				Ëe	S	}•30{		÷ 100	- 300		006-	- 3000	J00E -	JEIE	3.618306-02	•••		
-	_		æ	-		9	17	0	2	20				RATE FOR THIS	GRAM/DAYS	1.316/0E+0	0.00000E-01	2.25000E+U3	0.JUUUUL-UI	0 00000 0000 0	0.000006-01	0.000001-01	0.000006-01	2.263136+03	3.61	*		
0.433	100 0		0.098	0.113		0.146	0.217	0.420		0.420				RATE F	3	-						. –	-			+	8	
33 0.433 0.43	1		96	13	1	46	17	, C	N 7	0.420			*****												_	+++++++++++++++++++++++++++++++++++++++	*	
0.433			0.098	0.113		0.146	0.217	-	n7 1 - 1	0.4				115		10-J	10-30		10-30			0- J0	0-30	1E+01	3E-03	++++	I I DN:	
18	2	-	86	11	2	46	0.217	00	N34CN	0.420				MASS THIS	GRAM	5.48043E-0	0.000001-01	9.36500E+01	0.00000E-01	10+368614 0	0.000001.01	0.00000F-01	0.000001	419745+01	. 50603E-03	****	ITERV	
0.433		5	0.098		;	0.146	0.2	ć	-	0				MAS	CRAM	3	0	<u>о</u> ,	Ö	ອ່ດ				σ			7.441E+01 DAVS REQUIRED ITERATIONS	
433		16	86	86 1	2	0.146	0.217	0.217	0.420	0.420			* *														REQUI	
	0.434	160.0	0.098	0.098	0.113			0		00	5					+02	5	÷03	5	Ę	şa	52		į	55	****	DAYS	
		5	86	860	11	0.146	0.140	0.217	0.420	0.420			÷ + + + + + + + + + + + + + + + + + + +		ΥΥΥ	ылын 4 44260F+02	0.00006-01	2.10786E+03	0.00000E-01	.552126+03	0.00000E-01	0.00000E-01	0.00000C-01	. 00000 - 01 551355 + 03	775426-0	+++	10+	
- 4	0.434		0.0	0.0	0.113	0	-	0			; ;		++++		TOTAL P		0	2.10	0.0	5 ~	5.0	53					.441E	
		16	.86	860		146	0.140	0.217	0.420	0.420	, i s	AYS	÷ • •		2													
	0.434	160.0	0.098	0.098		0.146		0	00			001							- s			: = =		; = 3	: = µ		= ¥	
- 1	25	16	86	860	25	0.146	146	0.217	0.420	0.420	U.42U THE STEP	1.000E+00 DAYS	++++				BOUNDARIES	BOUNDARIES	BOUNDARIES	DUMAI	DOMAIN	EVAPORATION	IKANSPIKATION		DUMA I	++++	ELAPSED TIME	
	0.434	0.0	0	0.0		0	00	0			_					INING	ROINN	BOUNT	BOUN	01N	5	VAPU					ELAPS	
		16	0.098	0.098	22	0.146	146	0.217	0.420	420	.420 0.420 MCE SUMMARY FOR	TIME	+++				HEAD	FLUX	FLUX	TOTAL FLUX INTO DUMAIN	TOTAL FLUX OUT OF		2	TOTAL EVAPOIKANSPIKATION	IN FLUID SIDKED IN DOMAIN FILLID MASS BALANCE	+++++++++++++++++++++++++++++++++++++++	4	
	0.434	160.0	160.0 860.0	0			00				O HAN	NOI	***					IED		AL F	EI.			E X			=	
our bur	404 404	160	160	860	113	115	146	.217	.420	120	420 MCE SI	UMBER MULATION	++++			0000	PRESSURE HEAD DOCKNOP HEAD	PECIFIED FLUX	SPECIFIED FLUX	0	TOIAL			NI01		+++++++++++++++++++++++++++++++++++++++	PERIOD	
	- 0	0.0					<u>.</u>				BALAN	00 NI D S II	+)								
1	0.433 0.434	0.091		860	113	0.146	146	0.217	0.420	0.420	0.420 0 . Mass Bala	PUMPING PERIOD N	**********************************				SPECTF1ED	FLUX OUT OF DUMAIN ALKOSS SFELTING STATE ALKOST ALKOSS SFELTING ALKOSS	FIUA INIU DURAIN ACROSS						CILANGE	+ + +	RECHARGE	
11SC1DG	00	0.0	00		00							PING	++++			i										• • • •	8 102	
1	0.433	160	160	0.098	E11	0.113	146	0.217	0.420	0.420 0.420	0.420	HIDI	++++				ACR		22	5						**		1
arti	••	0	00		0.0		0				o		++++				HAIN									• • • •		
Partial	0.433	5	0.091	0.098	113	0.113	146	0.21/	0.420	0.420	420		++++				FLUX INTO DOMAIN ACROSS									+++		
=	0.0	160.0	160.0	0.0				<i>.</i> -			ò						N N X									* * *	313	
Table	8	00	2	ß	50	172 60	2	. 50	190.50	201.00			++++				E	Xn1								••••		
Ta	144.00	150.00	23	00.0Cl	163.50	"		181.50	190	201			++										*	لم ا	*	, i		

AR 020852

(

(

•

114

		-					161.25	288.75 .051+04-1.095+04-1.085+04-1.045+04-1.045+04	.03±+04-1.04±+04-1.04±+04-1.04±+04 .53±+03-7.54±+03-7.55±+03-7.55±+03-7.54±+03-7.48±+03-7.19±+03-7.16±+03	[+03-7,16[+03-7,1/E+03-7,1/E+03-7,18E+03-7,17E+03-7,37E+03-7,30E+03-7,02E+03-6,99E+03 E+03-7,35E+03-7,36E+03-7,37E+03-7,38E+03-7,38E+03-7,37E+03-7,30E+03-7,02E+03-6,99E+03	+03-6.99f+03-7.00f+03-7.00f+03-7.00f+03-7.00f+03-7.00f+03-7.19f+03-7.13f+03-6.84f+03-6.82f+03 +03-7.17f+03-7.18f+03-7.19f+03-7.20f+03-7.20f+03-7.19f+03-7.13f+03-6.84f+03-6.82f+03	1103-6.82f+03-6.82f+03-6.03f+03-6.96f+03-6.96f+03-6.96f+03-6.89f+03-6.61f+03-6.59f+03 103-6.91f+03-6.95f+03-6.95f+03-6.96f+03-6.96f+03-6.96f+03-6.89f+03-6.61f+03-6.59f+03 103-6.555-03-6.565+03-6.50f+03-6.50f+03-6.50f+03-6.96f+03-6.89f+03-6.50f+03-6.59f+03-5.59f+03-6.59f+03-6.59f+03-6.59f+03-6.59f+03-6.59f+03-6.59f+03-6.59f+03-6.59f+03-6.59f+03-6.59f+03-6.59f+03-6.59f+03-5.59f+03-6.59f+03-6.59f+03-6.59f+03-6.59f+03-6.59f+03-6.59f+03-6.59f+03-6.59f+03-5	±+U3-0.59±+U3-0.59±+U3-0.00±+U3-0.00±+U3-0.00±+U3 ±+D3-6.62±+D3-6.63±+D3-6.64±+D3-6.64±+D3-6.664±+D3-6.64±+D3-6.57±+D3-6.30±+D3-6.28±+D3 ±-D3-6.62±+D3-6.63±+D3-6.64±+D3-6.64±+D3-6.65±+D3-6.64±+D3-6.57±+D3-6.30±+D3-6.28±+D3-	E+03-6.28E+03-6.28E+03-6.28E+03-6.29E+03-6.28E+03-6.29E+03 E+03-6.15E+03-6.16E+03-6.17E+03-6.17E+03-6.18E+03-6.17E+03-6.10E+03-5.59E+03-5.57E+03 E+03-6.15E+03-6.16E+03-6.17E+03-6.17E+03-6.18E+03-6.17E+03-6.10E+03-5.59E+03-5.57E+03-5.57E+03-5.57E+03-5.57E+03-5.57E+03-5.57E+03-5.57E+03-5.57E+03-5.57E+03-5.57E+03-5.57E+03-5.57E	[E+03-5.59E+03-5.59E+03-5.60E+03-5.60E+03-5.60E+03 [E+02-9.68E+02-9.70E+02-9.75E+02-9.84E+02-1.00E+03-1.04E+03-1.14E+03-1.82E+03-1.83E+03	1,88£+03-1,88£+03 1,54E+02-1,60£+02-1,70E+02-1,99E+02-2,19E+02-2,20E+02	.28E+02-2.29E+02-2.30E+02-2.31E+02-2.31E+02 .39E+02-1.40E+02-1.43E+02-1.43E+02-1.47E+02-1.55E+02-1.75E+02-1.86E+02-1.87E+02
8	8	8	8	~			153.75	04E+0	196+0	02E+00	84f+0	0+J19	306+0	.59£+0	.82£+0	.1964	.86£+0
~	-	_		-			25	04-1.	03-7.	03-7.	03-6.	03-6,	03-6	03-5	1-60	02-2	02-1
- SNG	- SNO	- SNO	* SNO	= SNO			146.25	.086+	486+	• 30E •	1361.	• 368 .	.5764	.106	.146	366.	.756
RATI	RATH	RATI	RATE	ERATI			75	04-1	03-7	03-7	03-7	03-6	·03-6	03-6	1-60	+02-1	•02-1
311 0	116	0 11E	JI O	0 11			138.75	+360	.54E+	.37E.	+ 361 .	+396.	.64E+	1764	.04E	.706	.55£
7.541E+01 DAYS REQUIRED ITERATIONS	7.591E+01 DAYS REQUIRED ITERATIONS	7.641E+01 DAYS REQUIRED ITERATIONS	7.691E+01 DAYS REQUIRED ITERATIONS	7.700E+01 DAYS REQUIRED ITERATIONS			22·	25 04-1.	03-7	2-60		03-6	9-E0	03-6	E0-	03 1-20	02-1
S REQ	S REQ	S REQ	S REC	S RE(131.25	288.75 09E+04	556	386	206+	- 109 - 1996	655			-98E	. 311E+UZ . 47E+02
DAY	DAV	DAY	DAY	DAY			87	25 04-1.				9-9-60 03-9	03-60	03-6	03-5	03-1	02-2
[[+0]	10+31	10+31	1E+01	0E+01			121.87	266.25 .09f+04-1	55E+1	306	206	+ 306	64E+	. 79E+	.60E+	. 546+	. 31E+ . 43E+ . 43E+
7.541	7.591	7.64	7.69	1.70			62	50 04-1.		03-7-		03-0'	99-90 03-90	03-6	03-5	03-1 02-1	02-2
и	H	Ħ	Ħ				110.62	247.50 .09£+04-1	.04L+04-1.04L+04-1.04L+04 .54L+03-7.55L+03-7.55L+03	376+1	19E+1	956+	646+	79F+	. 75E +	.88E+	
TIME	TIME	TIME	TIME	TIME	NOI	VD	0		1-1. 13-7.			03-6.	03-0.	03-0. 03-0.	03-5. 02-9.	03-1.	02-2
ELAPSED TIME	ELAPSED TIME	ELAPSED TIME	5E0	PSED	PIRAT	RE HE	97.50	232.50 .08£+04-1	. 53£+04-1	36E+(00E+ 18E+	95E+1	+ 369 (28t+	+30E+	.87E+	.296+02-2 .406+02-1
ELAF			4 ELAPSED TIME	A ELAPSED TIME	AND EVAPOTRANSPIRATION	PRESSURE HEAD	9		04-1. 03-7.	+03-7, 166 +03-7, 176 +03-7, 176 +03-7, 176 +03-7, 177 +03 +03-7, 356 +03-7, 366 +03-7, 376 +03-7, 386 +03 -03-7, 356 +03-7, 366 +03-7, 376 +03-7, 386 +03-8, 386 +03	03-7.	E 10 6. 82E 10 6. 82E 10 6. 83E 10 6. 83E 10 6. 95E 10 6. 95E 10 6. 95E 10 6. 95E 10 6. 95E 10 6. 95E 10 6. 95E 10 6. 95E 10 6. 95E 10 6. 95E 10 6. 95E 10 7. 5. 6. 7. 7. 7. 5. 7. 7. 7. 5. 7. 7. 7. 5. 7. 7. 7. 5. 7. 7. 7. 5. 7. 7. 7. 5. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	03-6.	E+03-6.28E+03-6.28E+03-0.28E+03-0.29E+03-0.29E+03 E+03-6.15E+03-6.16E+03-6.17E+03-6.17E+03-6.18E+03	03-5.	03-1	E+02-2.28E+02-2.29E+02-2.30E+02-2.31E+02-2.31E+02 E+02-1.39E+02-1.40E+02-1.41E+02-1.41E+02-1.41E+02 E+02-1.39E+02-1.40E+02-1.41E+02-1.41E+02-1.41E+02
•	4	•	•	•	VAPOT	P	CM 82.50	217.50 .08E+04-1	+04-1.03£+04-1 +03-7.52£+03-7	35E+(996+(176+(94E+128	59E +	28E+	59E+	87E+ 50E+	.286+02-2 .396+02-1
* 00	R100 -	R100 -	• 00	R100 =	ND E		1N .50		E+04-1. E+03-7.	03-7. 03-7.	03-6. 03-7.	03-6.	03-6.	03-6. 03-6.	03-5. 02-9.	03-1.	E+02-2
PERI	PERI	PERI	PERI	PERI						. 16E+I			59E+	27E+	58E+ 67E+	.86E+	.27F+ .39F+
RECHARGE PERIOD	RECHARGE PE	RECHARGE PE	RECHARGE PERIOD =	RECHARGE PE	TRAT 01 D		R DISTANCE 52.50 6	37-1-	04-1. 03-7.	03-7. 03-7.	03-6. 03-7.	03-6. 03-6.	03-6.	03-6. 03-6.	03-5.	03-1.	02-2
RECH	RECH	RECIL	RECH	RECH	20 INFILTRATION 7.7006+01 DAYS			189.37 .08f +04	-1.03E+04-1.03E+04-1.03E+04-1.03E+04-1.03 4.50-7.50E+03-7.50E+03-7.52	-7.15f+03-7.15f+03-7.15f+03-7.34f+03-7. 7.50-7.33f+03-7.33f+03-7.34f+03-7.	-6.98E+03-6.98E+03-6.98E+03-6.99E 11.25-7.15E+03-7.15E+03-7.16E	-6.91E+03-6.81E+03-6.81E+03-6.92E 15.75-6.91E+03-6.92E+03-6.92E+03-6.93	-6.58£+03-6.58±+03-6.58±+03-6.59±+03-6.59 21.00-6.60E+03-6.60E+03-6.60E+03-6.61	-6.27E+03-6.26E+03-6.27E+03-6.27 27.00-6.13E+03-6.13E+03-6.14E+03-6.14	-5,57E+03-5,57E+03-5,58E+03-5,58E+03-5,58E+03-5,59E+03-5,59E+03-5,60E+03-5,60E+03-5,60E+03-5,60E+03-3,00E+03-3, 33,00-9,65E+02-9,65E+02-9,66E+02-9,67E+02-9,68E+02-9,70E+02-9,75E+02-9,84E+02-1,00E+03	39.00-1.49E+03-1.84E+03-1.85E+03-1.86E+03-1.87E+03-1.87E+03-1.88E+03-1.88E+03-1.88E+03-1.88E+03-1.88E+03-39.00-1.49E+02-1.50E+02	-2,22E+02-2,24E+02-2,25E+02-2,27
705	706	707	708	601	20		X 0R	12	34-1. 33-7.	03-7. 13-7.	03-6.) 3-7.	03-6. 33-6.	03-6. 33-6.	03-6. 13-6.	03-5.	03-1.	02-2
				M	:" ₩2		33.7	178.12	03E+C 50E+C	15E+(33E+(98E+(15E+(81E+(92E+(58E+(26f+(13f+(57E+1	84E+1	24E+
I I HE STEP NUMBER =	TIME STEP NUMBER =	TIME STEP NUMBER =	TIME STEP NUMBER =	TIME STEP NUMBER	EXAMPLE PROBLEM 2 101al Elapsed TIME TIME STEP 709		<u>.</u>	75 14-1.(1-1.	13-7.)3-6.)3-7.)3-6.)3-6.	03-6. 33-6.	03-6.)3-6.	03-5. 32-9.	03-1.	02-2.
EP NL	EP NL	EP N	EP NI	EP N	PRO APSE P		11.2	168.75 1.50-1.08£+04-1	03E+C 50E+0	15E+C 33E+C	98E+C 15E+C	81E+(58E+C 60E+C	27E+(13E+(57E+1 65E+(83E+1 49E+1	22E+i 38E+i
IE STI	IE STI	IE STI	IE ST	₩E ST	EXAMPLE 101AL ELA 11ME STEP			0-1-0	-1.(-7.5	-7-0	-6.1	2-0-5	 	-9-0	S- 0-0	0	-2.
HIT	HI	NI I	H I	Ē			E x	1.5	4.5	7.5	11.2	15.7	21.0	27.0	11.0	0.9E	-2 46.50-1

115

4

2Cont inued	286.402 146.402 876.401 896.401 886.401 696.401 .916.401 .926.401 .556.401 .566.400 .506.400	161_25	0.162	0.165	0.165	0.166	0.166
	26E + 02 - 1 13E + 02 - 1 82E + 01 - 9 . 24E + 01 - 6 . 81E + 01 - 5 . .00E + 01 - 4 .32E + 01 - 4 .32E + 01 - 3 .55E + 01 - 1 .50E + 00 - 6 .00E + 00 - 6	153 25	0.162	0.165	0.165	0.166	0.166
example problem	256+02-1. 126+02-1. 776+01-9. 216+01-6. .846+01-6. .996+01-4 .996+01-4 .326+01-3 .326+01-2 .506+00-6 1.006+00 4	146 25	0.162	0.165	0.165	0.165	0.166
for exam	.23E+02-1.25E+02-1.26E+02-1.28E+02 .11E+02-1.12E+02-1.13E+02-1.14E+02 .72E+01-9.77E+01-9.82E+01-9.87E+01 5.17E+01-8.21E+01-8.24E+01-8.27E+01 5.81E+01-6.84E+01-6.86E+01-6.89E+01 5.76E+01-5.78E+01-5.81E+01-5.83E+01 5.01E+01-5.78E+01-5.06E+01-5.88E+01 3.98E+01-3.99E+01-4.00E+01-4.01E+01 3.98E+01-3.99E+01-4.00E+01-4.01E+01 3.32E+01-3.99E+01-4.00E+01-4.01E+01 3.32E+01-3.95E+01-1.55E+01-1.55E+01 1.55E+01-1.55E+01-1.55E+01-1.55E+01 1.55E+01-1.55E+01-1.55E+01-1.55E+01 4.00E+00-4.00E+00-6.50E+00-6.50E+00	110 75	0.162	0.165	0.165	0.165	0.166
file,	44F·O·1 . 14F·O·1 . 4F·O·1 . 4F·O·1 . 3F·O·0 . 1 . 3F·O·O·0 . 1 . 3F·O·O·0 . 1 . 3F·O·O·0 . 1 . 3F·O·O·0 . 1 . 1F·O·O·0 . 1 . 1F·O	131 96	288.75 288.75 0.162	0.162 0.165	0.165	0.165	0.166 0.166 0.166
output		191 07	266.25 0.162	0.162 0.165	0.165	0.165	0.166 0.166 0.166
the main output	4 (+02-1, 45f+02-1, 40f+02-1, 40f+02-1, 40f+02-1, 30f+02-1, 50f+02-1, 25f+02-1, 25f+02-1, 25f+02-1, 25f+02-1, 21f+02-1, 21f+01-9, 21f+01-9, 21f+01-9, 21f+01-1, 21f+01-2, 21f+01-5, 21f+0			0.162 0.165			0.166 0.166 0.166
	022-1.495+02-1.499 022-1.305+02-1.499 022-1.315+02-1.20 022-1.315+02-1.32 022-1.315+02-1.32 012-9.515+01-9.55 012-9.515+01-9.55 012-9.515+01-8.51 012-9.515+01-6.72 012-5.025+01-6.05 012-5.025+01-5.32 012-5.3275+01-5.32 012-5.3275+01-5.32 012-5.325+01-3.33 012-3.3315+01-3.33 012-3.3315+01-3.33 012-3.3315+01-3.33 012-3.3315+01-3.33 011-3.3315+01-3.33 011-3.3315+01-3.33 011-3.3315+01-3.33 011-3.3315+01-3.33 011-3.3315+01-3.33 011-3.3315+01-3.33 011-3.345+01-3.33 011-2.455+01-1.55 001-2.555+01-1.55 001-2.555+01-1.55 001-2.555+01-1.55 001-2.555+01-1.55 000-6.501+00-6.53 000-5.501+00-5.501+00-5.53 000-5.501+00-5.501+00-5.501+00-5.53 000-5.501+00-5.501+00-5.501+00-5.501+00-5.53 000-5.501+00-5.5	03 60	02.162 232.50 0.162	0.162 0.165	0.165	0.165	0.166 0.166 0.166
output to file 6,		CN 20	82.50 217.50 0.162	0.162	0.165 0.165	0.165	0.166 0.166 0.166
of outp	02-1.47f+02-1 02-1.18f+02-1 02-1.18f+02-1 02-1.18f+02-1 02-1.18f+02-1 02-1.10f+02-1 01-9.43f+01-9 01-1.7.96f+01-9 01-1.2.96f+01-9 01-1.2.96f+01-9 01-1.2.96f+01-9 01-1.4.81f+01-9 01-4.05f+01-9 01-3.30f+01-9 01-3.30f+01-9 01-3.30f+01-9 01-3.30f+01-9 01-1.55f+01-9 01-1.55f+01-9 00-1.2.4ff+01-9 00-1.2.4ff+01-9 00-1.2.5ff+01-9 00-1.2.5ff+01-9 00-1.2.5ff+01-9 00-1.2.5ff+01-9 00-1.006+00	ISTANCE, IN	6/.50 202.50 0.162	0.165	0.165 0.165	0.165	
listing		IN R DI	52.5 189		2.7 0.0	0.0	
		33.75 178.12				
11Partial	 1. 44f+472-1, 45f+402-1, 46f+402-1, 47f+402-1, 49f+402-1, 56f+402-1, 52f+402-1, 22f+402-1, 22f+402-1, 22f+402-1, 13f+402-1, 43f+401-9,		11.25 168.75	0.162	0.165 0.165		0.166 0.166 0.166
Table	73.50-1. 84.00-1. 97.50-9. 112.50-7. 112.50-7. 136.50-6. 136.50-6. 136.50-3. 144.00-4. 156.00-3. 156.00-3. 172.50-3. 172.50-3. 181.50-1. 190.50-6. 201.00 4. 201.00 H NJ	0	05.A	1.50	11.25	15.75	

AR 020854

(

Table 11.--Partial listing of output to file 6, the main output file, for example problem 2--Continued

.

21.00 0.105 <td< th=""><th></th><th></th><th>•</th><th>0 166</th><th>0 166</th><th>0 166</th><th>0 166</th><th>0 166</th><th></th><th></th><th></th><th></th><th>0, 00</th><th></th></td<>			•	0 166	0 166	0 166	0 166	0 166					0, 00	
0 0.10 0.	21.00	0.166	.	0.100	U. 1UU							2212		
		0.167		0.167	0.16/	0.16/	0.16/	0.10/	0.10/	0.100	0 167	167	0 168	0 16A
0 0	~	0.167		0.16/	0.16/ 0.16A	0.167	0.167 0.168	0.168	0.168	0.168	0.10/			
0.118 0.1184 </td <td>33.00</td> <td>0.085</td> <td>50</td> <td>0.085</td> <td>0.085</td> <td>0.085</td> <td>0.085</td> <td>0.085</td> <td>0.085</td> <td>0.005</td> <td>0.085</td> <td>0.084</td> <td>0.185</td> <td>0.185</td>	33.00	0.085	50	0.085	0.085	0.085	0.085	0.085	0.085	0.005	0.085	0.084	0.185	0.185
0.112 0.112 0.112 0.112 0.112 0.1111 0.111 0.111 <t< td=""><td></td><td>0.185</td><td>0</td><td>0.184</td><td>0.184</td><td>0.184</td><td>0.184</td><td>0.184</td><td>0.184</td><td>0.184</td><td></td><td></td><td></td><td></td></t<>		0.185	0	0.184	0.184	0.184	0.184	0.184	0.184	0.184				
0.113 0.114 0.114 0.114 0.114 0.111 0.112 <th< td=""><td>39.00</td><td>0.112</td><td>0</td><td>0.112</td><td>0.112</td><td>0.112</td><td>0.112</td><td>0.112</td><td>0.111</td><td>0.110</td><td>0.108</td><td>0.104</td><td>0.274</td><td>r/2.n</td></th<>	39.00	0.112	0	0.112	0.112	0.112	0.112	0.112	0.111	0.110	0.108	0.104	0.274	r/2.n
0.285 0.286 <th< td=""><td>VC 2V</td><td>0.273</td><td>. .</td><td>2/2.0</td><td>0.115</td><td>o e</td><td></td><td>0 111</td><td>0.114</td><td>0.113</td><td>0,111</td><td>0,107</td><td>0.287</td><td>0.286</td></th<>	VC 2V	0.273	. .	2/2.0	0.115	o e		0 111	0.114	0.113	0,111	0,107	0.287	0.286
0.116 0.116 0.116 0.116 0.116 0.116 0.111 0.112 <th< td=""><td>0c.04</td><td>0.11.U</td><td>jc</td><td>0 284</td><td>0.284</td><td>) c</td><td>0.283</td><td>0.283</td><td>0.282</td><td>0.282</td><td></td><td></td><td></td><td></td></th<>	0c.04	0.11.U	jc	0 284	0.284) c	0.283	0.283	0.282	0.282				
0.239 0.239 0.239 0.239 0.234 0.317 0.315 <th< td=""><td>55.50</td><td>911.0</td><td></td><td>0.116</td><td>0.116</td><td>0</td><td>0.116</td><td>0.115</td><td>0.115</td><td>0.115</td><td>0.114</td><td>0.112</td><td>0.300</td><td>0.299</td></th<>	55.50	911.0		0.116	0.116	0	0.116	0.115	0.115	0.115	0.114	0.112	0.300	0.299
0.1322 0.332 0.332 0.332 0.336 0.336 0.336 0.336 0.335 <t< td=""><td></td><td>0.298</td><td>0</td><td>0.297</td><td>0.296</td><td>0</td><td>0.295</td><td>0.295</td><td>0.295</td><td>0.294</td><td></td><td></td><td></td><td></td></t<>		0.298	0	0.297	0.296	0	0.295	0.295	0.295	0.294				
0.309 0.306 0.306 0.306 0.305 0.305 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.336 0.346 0.346 0.347 0.317 0.317 0.317 0.317 0.317 0.316 0.316 0.316 0.356 <td< td=""><td>64.50</td><td>0.322</td><td>Ö</td><td>0.322</td><td>0.322</td><td>0</td><td>0.321</td><td>0.320</td><td>0.319</td><td>0.318</td><td>0.317</td><td>0.315</td><td>0.312</td><td>0.310</td></td<>	64.50	0.322	Ö	0.322	0.322	0	0.321	0.320	0.319	0.318	0.317	0.315	0.312	0.310
0.330 0.330 0.339 0.316 0.316 0.316 0.316 0.316 0.316 0.316 0.316 0.316 0.317 <th< td=""><td></td><td>0.309</td><td>Ó</td><td>0.308</td><td>0.307</td><td>0</td><td>0.306</td><td>0.306</td><td>0.305</td><td>0.305 .</td><td>366 0</td><td></td><td>0 333</td><td>100 0</td></th<>		0.309	Ó	0.308	0.307	0	0.306	0.306	0.305	0.305 .	366 0		0 333	100 0
0.1370 0.1319 0.1316<	73.50	0.330	0	0.330	0.329	0.329	0.328	0.328	0.32/	0.120	c7f.0	1.361	776.0	176.0
0.332 0.331 0.331 0.335 <th< td=""><td></td><td>0.32.0</td><td>50</td><td>0.318</td><td>110.0</td><td>015.0</td><td>010.0</td><td>0.118</td><td>0.337</td><td>0.336</td><td>0.335</td><td>0.335</td><td>0.334</td><td>0.333</td></th<>		0.32.0	50	0.318	110.0	015.0	010.0	0.118	0.337	0.336	0.335	0.335	0.334	0.333
0.356 0.356 0.355 0.355 0.355 0.355 0.351 0.351 0.351 0.351 0.351 0.351 0.351 0.351 0.351 0.315 0.316 0.317 0.317 0.317 0.316 0.317 0.316 0.317 0.316 0.317 0.316 0.317 0.317 0.317 0.317 0.317 0.317 0.316 0.316 0.316 0.316 0.316 0.316 0.316 0.316 0.316 0.317 0.319 <td< td=""><td>00.10</td><td></td><td></td><td>166.0</td><td>0.130</td><td>0.329</td><td>0.329</td><td>0.329</td><td>0.328</td><td>0.328</td><td></td><td></td><td></td><td></td></td<>	00.10			166.0	0.130	0.329	0.329	0.329	0.328	0.328				
0.349 0.340 0.346 0.346 0.346 0.345 0.345 0.345 0.315 0.315 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.316 0.366 0.366 0.366 0.366 0.367 0.317 0.317 0.317 0.317 0.316 0.316 0.366 0.426 <td< td=""><td>97.50</td><td>0.356</td><td>0</td><td>0.355</td><td>0.355</td><td>0.355</td><td>0.354</td><td>0.353</td><td>0.353</td><td>0.352</td><td>0.351</td><td>0.351</td><td>0.350</td><td>0.350</td></td<>	97.50	0.356	0	0.355	0.355	0.355	0.354	0.353	0.353	0.352	0.351	0.351	0.350	0.350
0.378 0.371 0.376 0.376 0.376 0.374 0.373 0.373 0.373 0.373 0.373 0.373 0.373 0.373 0.373 0.374 0.373 0.374 0.373 0.374 0.373 0.374 0.374 0.374 0.374 0.373 0.374 0.374 0.374 0.399 0.399 0.399 0.399 0.399 0.394 0.394 0.394 0.394 0.394 0.394 0.394 0.394 0.394 0.394 0.392 0.392 0.426 <td< td=""><td></td><td>0.349</td><td>0</td><td>0.348</td><td>0.347</td><td>0.346</td><td>0.346</td><td>0.346</td><td>0.345</td><td>0.345</td><td></td><td></td><td></td><td></td></td<>		0.349	0	0.348	0.347	0.346	0.346	0.346	0.345	0.345				
0.371 0.371 0.370 0.369 0.368 0.368 0.367 0.397 0.399 <td< td=""><td>112.50</td><td>0.378</td><td>0</td><td>0.377</td><td>0.377</td><td>0.376</td><td>0.376</td><td>0.375</td><td>0.374</td><td>0.374</td><td>0.373</td><td>0.3/3</td><td>0.3/2</td><td>0.3/2</td></td<>	112.50	0.378	0	0.377	0.377	0.376	0.376	0.375	0.374	0.374	0.373	0.3/3	0.3/2	0.3/2
0.405 0.404 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.426 0.426 0.426 0.426 0.426 0.433 0.433 0.433 0.435 0.435 0.443 0.444 0.443 0.443 <th< td=""><td></td><td>0.371</td><td>0</td><td>0.370</td><td>0.369</td><td>0.369</td><td>0.368</td><td>0.368</td><td>0.367</td><td>0.367</td><td>000</td><td></td><td>000 0</td><td>000 0</td></th<>		0.371	0	0.370	0.369	0.369	0.368	0.368	0.367	0.367	000		000 0	000 0
0.397 0.396 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.396 0.396 0.397 0.396 0.395 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.476 <th< td=""><td>126.00</td><td>0.405</td><td>0</td><td>0.404</td><td>0.403</td><td>0.403</td><td>0.402</td><td>0.401</td><td>0.400</td><td>0.400</td><td>445.U</td><td>KKC.U</td><td>065.0</td><td>045.0</td></th<>	126.00	0.405	0	0.404	0.403	0.403	0.402	0.401	0.400	0.400	445.U	KKC.U	065.0	045.0
0.433 0.432 0.432 0.431 0.440 0.449 0.448 0.449 0.450 0.450 0.449 0.448 0.448 0.448 0.448 0.449 0.499 0.097 0.092 0.092 0.0420 0.420 0.420 0.420 0.420 0.420 0.420 0.420 0.420 0.420 0.420 0.420 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.090		0.397	0	0.396	0.395	0.394	0.393	0. 191	0.392	765.0	1 476	0 476	ACA 0	1 424
0.422 0.422 0.420 0.440 0.449 0.499 0.091 0.091 <td< td=""><td>136.50</td><td>0.433</td><td>0</td><td>0.432</td><td>0.431</td><td>0.130</td><td>674 N</td><td>0.420</td><td>121.0</td><td>071.0</td><td>0.11.0</td><td></td><td></td><td></td></td<>	136.50	0.433	0	0.432	0.431	0.130	674 N	0.420	121.0	071.0	0.11.0			
0.450 0.450 0.450 0.450 0.450 0.450 0.460 0.490 0.097 0.0147 0.117 <t< td=""><td></td><td>0.423</td><td>•</td><td>0.471</td><td>0.420</td><td></td><td>011.0</td><td>014.0</td><td></td><td>0.450</td><td>0.450</td><td>077 U</td><td>0 448</td><td>0.447</td></t<>		0.423	•	0.471	0.420		011.0	014.0		0.450	0.450	077 U	0 448	0.447
0.100 0.100 0.099 0.099 0.099 0.091 0.097 0.017 0.0147 <t< td=""><td>144.00</td><td>064.0</td><td></td><td></td><td></td><td>0.442</td><td>0.441</td><td>0.440</td><td>0.439</td><td>0.439</td><td></td><td></td><td></td><td></td></t<>	144.00	064.0				0.442	0.441	0.440	0.439	0.439				
0.096 0.096 0.095 0.095 0.094 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.101 <td< td=""><td>150 00</td><td></td><td></td><td>0.099</td><td>0.099</td><td>660.0</td><td>0.099</td><td>0.098</td><td>0.098</td><td>0.098</td><td>0.097</td><td>160.0</td><td>0.097</td><td>0.097</td></td<>	150 00			0.099	0.099	660.0	0.099	0.098	0.098	0.098	0.097	160.0	0.097	0.097
0.106 0.105 0.105 0.105 0.105 0.104 <td< td=""><td></td><td>0.096</td><td>0</td><td>0.096</td><td>0.095</td><td>0.095</td><td>0.095</td><td>0.094</td><td>0.094</td><td>160.0</td><td></td><td></td><td></td><td></td></td<>		0.096	0	0.096	0.095	0.095	0.095	0.094	0.094	1 60.0				
0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.102 0.102 0.102 0.117 0.110 0.120	156.00	0.106	0	0.105	0.105	0.105	0.105	0.105	0.104	0.104	0.104	0.104	0.104	0.104
0.118 0.118 0.118 0.118 0.119 0.117 0.117 0.117 0.117 0.117 0.140 0.1420 0.14		0.103	0	0.103	0.103	0.103	0.103	0.102	0.102	0.102				111
0.111/ 0.111/ 0.111/ 0.111/ 0.111/ 0.111/ 0.111/ 0.111/ 0.1147 0.217 0.120 0.4	163.50	0.118	0 (0.118	0.118	0.118	0.11/	11.0	0.11/	0.116	111.0	0.11/	0.117	
0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.217 0.220 0.420		0.11/		0.117	11.0	0.117	0 147	0 147		0.147	0.147	0.147	0,147	0.147
0.217 0.210 0.420 <td< td=""><td>NC.3/1</td><td>0.147</td><td></td><td>141.0</td><td>0.147</td><td>0.147</td><td>0.147</td><td>0.147</td><td>0.147</td><td>0.147</td><td></td><td></td><td></td><td></td></td<>	NC.3/1	0.147		141.0	0.147	0.147	0.147	0.147	0.147	0.147				
0.217 0.217 0.217 0.217 0.217 0.217 0.217 0.217 0.217 0.217 0.420	181.50	0.217	0	0.217	0.217	0.217		0.217	0.217	0.217	0.217	0.217	0.217	0.217
0.420 0.420		0.217	0	0.217	0.217	0.217	~	0.217	0.217	0.217				007 0
0.420 0.420	190.50		0	0.420	0.420	0.420	•	0.420	0.420	0.420	0.420	0.420	0.420	0.420
0.420 0.420			0	0.420	0.420	0.420	•	0.420	0.420	0.420	007	000	0 430	0.400
0.420 0.420 0.420 0.420 0.420 0.420 0.420 0.420 0.420 0.420	201.00	0.420		0.420	0.420	0.420	0.420	0.420	0.420	0.420	0.120	n74.U	n74.n	N71.N
WAKT FUK IIME		0.420	0	0.420	0.420	0.4		0.470	0.420	0.420				
				MSS	BALANCE >			KO/ J						

Table 11.--Partial listing of output to file 6, the main output file, for example problem 2--Continued

TOTAL ELAPSED SIMULATION TIME = 7.700E+01 DAYS

TOTAL MASS TIME STEP ED PRESSURE IFEAD GRAM GRAM ED PRESSURE IFEAD 0.00000E-01 0.00000E-01 SPECIFIED FLUX BOUNDARIES -2.13402E+03 0.00000E-01 -2.19147E-01 SPECIFIED FLUX BOUNDARIES -2.13402E+03 0.00000E-01 -2.19147E-01 SPECIFIED FLUX BOUNDARIES -2.13402E+03 0.00000E-01 0.00000E-01 SPECIFIED FLUX BOUNDARIES -2.13402E+03 0.00000E-01 0.00000E-01 TOTAL FLUX NIO DOMAIN -2.13402E+03 0.00000E-01 TOTAL FLUX NIO DOMAIN -2.13402E+03 0.00000E-01 TOTAL FLUX NIO DOMAIN -2.13402E+03 -1.0371E-02 TOTAL FLUX NIO -2.13927E+03 -2.19147E-01 TOTAL FLUX NIO -2.13402E+03 0.00000E-01 TOTAL FLUX -1.25556+00 -1.25556+00 -1.275556+00	FLUX INTO DOMAIN ACROSS SPECIFIED PRESSURE HEAD BOUNDARLES 5.73912E+02 0.00000E-01 0.00000E-01 FLUX INTO DOMAIN ACROSS SPECIFIED PRESSURE HEAD BOUNDARLES 5.73912E+02 0.00000E-01 0.00000E-01 LUX DUT OF DOMAIN ACROSS SPECIFIED FLUX BOUNDARLES 5.73912E+02 0.00000E-01 0.00000E-01 LUX DUT OF DOMAIN ACROSS SPECIFIED FLUX BOUNDARLES -2.13402E+03 0.00000E-01 0.00000E-01 FLUX HITO DOMAIN ACROSS SPECIFIED FLUX BOUNDARLES -1.18279E+03 0.00000E-01 0.00000E-01 FLUX DUT OF DOMAIN ACROSS SPECIFIED FLUX BOUNDARLES -2.13402E+03 0.00000E-01 0.00000E-01 FLUX DUT OF DOMAIN ACROSS SPECIFIED FLUX INTO DOMAIN -2.13402E+03 0.00000E-01 0.00000E-01 FLUX DUT OF DOMAIN -2.19970E+03 -2.19147E-01 -2.31124E+00 TOTAL FLUX INTO DOMAIN -2.19970E+03 -2.19147E-01 -2.31124E+00 TOTAL FLUX NOT OF DOMAIN -2.19970E+03 -2.19147E-01 -2.31124E+00 TOTAL FLUX NOT OF DOMAIN -2.19970E+03 -2.19147E-01 -2.31124E+00 TOTAL FLUX NOT OF DOMAIN -2.19970E+03 -2.19147E-01 -2.3124E+00 TOTAL FLUX NOT OF DOMAIN -2.19970E+03 -1.25555E+00 -1.34626	TOTAL MASS TIME STEP TI ED PRESSURE HEAD BOUNDARIES 5.73912E+02 0.00000E-01 5.73912E+02 0.00000E-01 ED PRESSURE HEAD BOUNDARIES	+ AAR FOR THIS PARE FOR FOR FOR FOR FOR FOR FOR FOR FOR FOR		NASS THIS	RATE FOR THIS
ED PRESSURE HEAD BOUNDARIES	FLUX INTO NOMAIN ACROSS SPECIFIED PRESSURE HEAD BOUNDARIES 5.73912E+02 0.00000E-01 0.00000E-01 FLUX INTO NOMAIN ACROSS SPECIFIED PRESSURE HEAD BOUNDARIES 5.73912E+02 -2.19147E-01 -2.33124E+00 LUX OUT OF DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES 5.73912E+02 -2.19147E-01 0.00000E-01 FLUX INTO DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES -2.43402E+03 0.00000E-01 -2.33124E+00 FLUX INTO DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES -2.43402E+03 0.00000E-01 0.00000E-01 FLUX INTO DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES -2.43402E+03 0.00000E-01 0.00000E-01 FLUX INTO DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES -2.43402E+03 0.00000E-01 0.00000E-01 FLUX INTO DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES -2.43402E+03 0.00000E-01 0.00000E-01 FLUX OUT OF DOMAIN -2.1397E+03 0.00000E-01 0.00000E-01 0.00000E-01 TOTAL FLUX INTO DOMAIN -2.19970E+03 0.10000E-01 0.00000E-01 0.00000E-01 TOTAL FLUX OUT OF DOMAIN -2.19970E+03 -1.10371E-02 -1.346600 -1.34666+01 TOTAL EVAPORATION -1.4159206E+03 -1.299506E+03 -1.299506E+03 -1.29161E+01 <th>FLUX INTO DOMATIN ACROSS SPECIFIED PRESSURE HEAD BOUNDARIES 573912E+02 0.00000E-01 0.00000E-01 FLUX INTO DOMATIN ACROSS SPECIFIED PRESSURE HEAD BOUNDARIES 5.73912E+02 0.00000E-01 0.00000E-01 FLUX INTO DOMATIN ACROSS SPECIFIED FLUX BOUNDARIES 5.73912E+02 0.00000E-01 0.00000E-01 0.00000E-01 FLUX INTO DOMATIN ACROSS SPECIFIED FLUX BOUNDARIES -2.43402E+03 0.00000E-01 0.00000E-01 0.00000E-01 FLUX INTO DOMATIN ACROSS SPECIFIED FLUX BOUNDARIES - -2.43402E+03 0.00000E-01 0.00000E-01 0.00000E-01 FLUX INTO DOMATIN ACROSS SPECIFIED FLUX BOUNDARIES - -2.43402E+03 0.00000E-01 0.00000E-01<</th> <th></th> <th>336H HEIGT</th> <th>TIME CIED</th> <th>TIME STEP</th>	FLUX INTO DOMATIN ACROSS SPECIFIED PRESSURE HEAD BOUNDARIES 573912E+02 0.00000E-01 0.00000E-01 FLUX INTO DOMATIN ACROSS SPECIFIED PRESSURE HEAD BOUNDARIES 5.73912E+02 0.00000E-01 0.00000E-01 FLUX INTO DOMATIN ACROSS SPECIFIED FLUX BOUNDARIES 5.73912E+02 0.00000E-01 0.00000E-01 0.00000E-01 FLUX INTO DOMATIN ACROSS SPECIFIED FLUX BOUNDARIES -2.43402E+03 0.00000E-01 0.00000E-01 0.00000E-01 FLUX INTO DOMATIN ACROSS SPECIFIED FLUX BOUNDARIES - -2.43402E+03 0.00000E-01 0.00000E-01 0.00000E-01 FLUX INTO DOMATIN ACROSS SPECIFIED FLUX BOUNDARIES - -2.43402E+03 0.00000E-01 0.00000E-01<		336H HEIGT	TIME CIED	TIME STEP
ED PRESSURE IFAD BOUNDARIES	FLUX INFO DOMAIN ACROSS SPECIFIED PRESSURE HEAD BOUNDARIES 5.73912E+02 0.00000E-01 2.33124E+00 LUX OUT OF DOMAIN ACROSS SPECIFIED PRESSURE HEAD BOUNDARIES -2.33124E+03 0.00000E-01 -2.33124E+00 LUX OUT OF DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES -2.1347E+03 0.00000E-01 -2.33124E+00 FLUX INTO DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES -2.19147E-01 -2.33124E+00 FLUX INTO DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES -2.19147E-01 -2.33124E+00 TLUX OUT OF DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES -2.19279E+03 0.00000E-01 0.00000E-01 TOTAL FLUX NOT ODMAIN -2.34302E+03 0.00000E-01 0.00000E-01 0.00000E-01 TOTAL FLUX NOT ODMAIN -2.34302E+03 -2.19147E-01 -2.33124E+00 TOTAL FLUX NOT ODMAIN -2.3402E+03 0.00000E-01 0.00000E-01 TOTAL FLUX NOT ODMAIN -2.2.43402E+03 -2.19147E-01 -2.33124E+00 TOTAL FLUX NOT ODMAIN -2.2.43402E+03 -2.19147E-01 -2.33124E+00 TOTAL EVAPORATION -2.19970E+03 -1.10371E-02 -1.17441E-01 TOTAL EVAPORATION -1.955950E+03 -1.2.56451E+03 -1.2.56595E+00 TOTAL EVAPORANSPIRATION -1.9559	FLUX INTO DOMAIN ACROSS SPECIFIED PRESSURE HEAD BOUNDARIES 5.73912f+02 0.00000E-01 0.00000E-01 FLUX INTO DOMAIN ACROSS SPECIFIED PRESSURE HEAD BOUNDARIES		COAM JUIAL MASS	CRAM	GRAH/DAYS
ED PRESSURE HEAD BOUNDARIES	FLUX INTO DOMAIN ACROSS SPECIFIED PRESSURE HEAD 2.33124F+00 2.33124F+00 LUX UUX UUT OF DOMAIN ACROSS SPECIFIED FLUX NO 0.00000F-01 0.0000F-01 <td>FLUX INTO NOMAIN ACROSS SPECIFIED PRESSURE HEAD BOUNDARIES -2.13124F-01 -2.33124F-00 FLUX INTO NOMAIN ACROSS SPECIFIED FLUX BOUNDARIES -2.43402F+03 -2.19147F-01 -2.33124F+00 FLUX UNT OF DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES - -1.18279F+03 0.00000E-01 0.00000E-01 FLUX UNT OF DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES - -2.43402F+03 0.00000E-01 0.00000E-01 0.00000E-01 FLUX UNT OF DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES - -2.43402F+03 0.00000E-01 0.00000E-01 0.00000E-01 FLUX UNT OF DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES - -2.43402F+03 -2.19147E-01 -2.33124F+00 FLUX OUT OF DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES - 0.00000E-01 0.00000E-01 0.00000E-01 FLUX OUT OF DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES - -2.33402E+03 -2.19147E-01 -2.33124F+00 FLUX OUT OF DOMAIN ACROSS SPECIFIED FLUX NITO DOMAIN -2.219970E+03 -1.126551E+00 -1.17411E-01 TRANSPIRATION -1.95550E+03 -1.25555E+00 -1.276555E+00 -1.25695E+00 TOTAL EVAPOIRANSPIRATION -1.95550E+03 -1.29555E+00 -1.276555E+00 -1.2690551E+01 TOTAL EVAPOIRA</td> <td></td> <td>UNNU 6 73019F+A7</td> <td>0_0000F-01</td> <td>0.000001-01</td>	FLUX INTO NOMAIN ACROSS SPECIFIED PRESSURE HEAD BOUNDARIES -2.13124F-01 -2.33124F-00 FLUX INTO NOMAIN ACROSS SPECIFIED FLUX BOUNDARIES -2.43402F+03 -2.19147F-01 -2.33124F+00 FLUX UNT OF DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES - -1.18279F+03 0.00000E-01 0.00000E-01 FLUX UNT OF DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES - -2.43402F+03 0.00000E-01 0.00000E-01 0.00000E-01 FLUX UNT OF DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES - -2.43402F+03 0.00000E-01 0.00000E-01 0.00000E-01 FLUX UNT OF DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES - -2.43402F+03 -2.19147E-01 -2.33124F+00 FLUX OUT OF DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES - 0.00000E-01 0.00000E-01 0.00000E-01 FLUX OUT OF DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES - -2.33402E+03 -2.19147E-01 -2.33124F+00 FLUX OUT OF DOMAIN ACROSS SPECIFIED FLUX NITO DOMAIN -2.219970E+03 -1.126551E+00 -1.17411E-01 TRANSPIRATION -1.95550E+03 -1.25555E+00 -1.276555E+00 -1.25695E+00 TOTAL EVAPOIRANSPIRATION -1.95550E+03 -1.29555E+00 -1.276555E+00 -1.2690551E+01 TOTAL EVAPOIRA		UNNU 6 73019F+A7	0_0000F-01	0.000001-01
ED PRESSURE HEAD BOUNDARIES	LUX OUT OF DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES	FLUX DUM IN ACROSS SPECIFIED FLUX DUMUNARIES	FLUX INTO DOMAIN ACROSS SPECIFIED PRESSURE HEAD BUUNDARIES		-2 19147F-01	-2.33124E+00
5 SPECIFIED FLUX BOUNDARIES	FLUX INTO DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES 0.000006-01 0.000006-01 0.000006-01 FLUX OUT OF DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES - 0.000006-01 0.000006-01 0.000006-01 FLUX OUT OF DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES - - - - 0.000006-01 0.000006-01 0.000006-01 FLUX OUT OF DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES - - - - - - - - - - 0.000006-01 0.00006-01 0.00006-01 0.00006-01 0.00006-01 0.00006-01 0.00006-01 0.00006-01 0.00006-01 0.00006-01 0.00006-01 0.00006-01	FLUX INTO DOMAIN ACROSS SPECIFIED FLUX BOUNDARIES		C0+302601 V	0.00001-01	0.000006-01
S SPECIFIED FLUX BUUNDARIES U. OUNDARIES U. OUNDARIES <thundaries< th=""> <thunda< td=""><td>FLUX OUT OF DOMAIN ACROSS SPECIFIED TLUX BUUNDARIES</td><td>FLUX 0UT OF DOMAIN ACROSS SPECIFIED FLUX NUT DOMAIN </td><td></td><td>0.00000 01</td><td>0 0000F-01</td><td>0.000005-01</td></thunda<></thundaries<>	FLUX OUT OF DOMAIN ACROSS SPECIFIED TLUX BUUNDARIES	FLUX 0UT OF DOMAIN ACROSS SPECIFIED FLUX NUT DOMAIN		0.00000 01	0 0000F-01	0.000005-01
TOTAL FLUX INTO UNMAIN	TOTAL FLUX INIO UDMAIN	T0TAL FLUX INIL OUMAIN	S SPE	0,00000 15,015,01	0 00000F-01	0.000005-01
TOTAL FLUX OUT OF DOMAIN	TOTAL FLUX DUI OU DUMAN	T01AL FLUX 0U1 0N UNANN -2.19970E+03 -1.10371E-02 -1.17411E-01 FVAPORATION -2.19970E+03 -1.25555E+00 -1.34516E+01 T07AL EVAPORANSFIRATION -4.15920E+03 -1.27555E+00 -1.35690E+01 T07AL EVAPORANSFIRATION -1.15920E+03 -1.27555E+00 -1.35690E+01 T07AL EVAPORANSFIRATION -1.63560E+03 -1.27555E+00 -1.56951E+01 CIIANGE IN FLUID STORED IN DOMAIN -1.63560E+03 -1.249420E+00 -1.58951E+01 FLUID MASS BALANCE -1.83604E+03 -1.449420E+00 -1.58951E+01 FLUID MASS BALANCE -4.72101E-01 -4.86980E-04 -5.20168E-03 FND OF SIMULATION -1.4.72101E-01 -4.86980E-04 -5.20168E-03		7.730/15.03	-10147F-01	-2.331246+00
EVAPUANTUM	LVANCHUM	EVAPONATION	TOTAL FLUX OUT OF DUMAIN	EU+302001 6	-1 10171F-02	-1.174116-01
TOTAL EVAPOTRANSPIRATION1.535300.00 TOTAL EVAPOTRANSPIRATION4.159206403 -1.275556400 TN FLUID STORED IN DOMAIN1.836046403 -1.494206400 FLUID MASS BALANCE4.72101E-01 -4.889906-04	IKANSPIKATION1.35690E+01 TOTAL EVAPOTRANSPIRATION4.15920E+03 -1.27555E+00 -1.58951E+01 CLIANGE IN FLUID STORED IN DOMAIN1.83604E+03 -1.49420E+00 -1.58951E+01 FLUID MASS BALANCE4.72101E-01 -4.889980E-04 -5.20168E-03	Item Spiration		1 ACAGATA	-1 26451F+00	-1.345166+01
TOTAL EVAPOLIKANSPIKATION1.03500100 -1.494206+00 TN FLUID STORED IN DOMAIN1.836046+03 -1.494206+00 FLUID MASS BALANCE4.72101E-01 -4.889906-04	TOTAL EVAPOIRANSPIRATION1.135201-03 -1.49420E+00 -1.58951E+01 Cliange in Fluid Stored in Domain1.83604E+03 -1.49420E+00 -5.20168E-03 Fluid Mass Balance4.72101E-01 -4.88990E-04 -5.20168E-03	TOTAL EVAPOIRANSPIRATION1.835046403 -1.494206400 -1.589516401 CUANGE IN FLUID STORED IN DOMAIN1.836046403 -1.494206400 -1.5201686-03 FLUID MASS BALANCE4.721016-01 -4.889806-04 -5.201686-03 END OF SIMULATION		CONJOCCCS' -	1 27555 +00	-1.35690E+01
IN FLUID STORED IN DOMAIN	CUANGE IN FLUID STORED IN DOMAIN	CUANGE IN FLUID STORED IN DUMAIN1.72101E-01 -4.88980E-04 -5.20168E-03 FLUID MASS BALANCE4.72101E-01 -4.88980E-04 -5.20168E-03 FND OF SIMULATION		CONTRACT.F-	1 49420F+00	-1.58951E+01
	FLUID MASS BALANCE	FLUID MASS BALANCE		10 11016C V	- A R9806 - 04	-5.20168E-03
	***************************************	•••••••••••••••••••••••••••••••••••••	FLUID MASS BALANCE			

(

(

1.130E+01 8.113E-02 4.752E-02 1.751E-02 7.131E-03 2.182E-03 11 ,AFTER 2.038E-01 DAYS OF SIMULATION TIME 02 1.932E-02 7.465E-03 3.215E-03 ,AFTER 2.352E-01 DAYS OF SIMULATION TIME -02 1.170E-02 4.372E-03 ,AFTER 1.044E-01 DAYS OF SIMULATION TIME AFTER 1.494E-01 DAYS OF SIMULATION TIME 02 1.4876-02 5.2836-03 2.1106-03 .AFTER 1.753E-01 DAYS OF SIMULATION TIME AFTER 6.716E-02 DAYS OF SIMULATION TIME 3.657E-02 1.235E-02 4.71BE-03 6 .AFTER 8.487E-02 DAYS OF SIMULATION TIME 3.839E-02 1.382E-02 5.537E-03 1.691E-03 8 .AFTER 1.258E-01 DAYS OF SIMULATION TIME 2.1776-02 8.8246-03 3.5736-03 2 ,AFTER 2.3106-02 DAYS OF SIMULATION TIME AFTER 3.641E-02 DAYS OF SIMULATION TIME TIME 1.100E-02 DAYS OF SIMULATION TIME 2 2.731E+00 9.839E-02 3.571E-02 1.152E-02 4.307E-03 4 .After 5.105E-02 DAYS OF SIMULATION 4.344E-03 3.759E+00 4.758E-01 1.2056-02 4.7376-03 3.327E-02 1.007E-02 4.064E-03 8.886E+00 6.309E-01 3.817E-02 1.559E-02 3.813E-02 1.170E-02 7 .AFTER 1.044 2.659E-02 AFTER. 4.569E-02 12 ,AF **3.642E-02** 6.555E-02 2.892E+01 1.906E+00 ŝ σ 2 e -2.5316-01 1.1156-01 LIERATION FOR TIME STEP 2.602E-01 9.735E-02 ITERATION FOR TIME STEP 2.623E-01 8.547E-02 ITERATION FOR TIME STEP ITERATION FOR TIME STEP 2.531E-01 8.266E-02 ITERATION FOR TIME STEP ITERATION FOR TIME STEP 2.3756-01 9.9326-02 116RATION FOR TIME STEP 2.386E-01 B.449E-02 ITERATION FOR TIME STEP 2.3346-01 8.2446-02 ITERATION FOR TIME STEP 1.512E-01 6.210E-02 ITERATION FOR TIME STEP ITERATION FOR TIME STEP 3.089E+03 3.284E+00 2.227E-01 9.783E-02 1.2606-01 ITERATION FOR TIME STEP 9.051E-02 7.252E+03 1.101E+00 2.6236-01 2.542E-01 3.0496-01 061E+00 1.639E+00 5.917E-01 MAXIMUM HEAD CHANGE DURING EACH MAXIMUM HEAD CHANGE DURING EACH 478E+00 1.261E+00 5.558E-01 MAXIMUM HEAD CHANGE DURING EACH 534E+00 4.098E+02 7.459E+01 594E+01 5.663E+00 1.253E+00 260E-02 9.268E-03 2.163E-03 Maximum Head Change During Each 6.0855+00 1.8845+00 5.7465-01 MAXIMUM HEAD CHANGE DURING EACH 633E+00 1.664E+00 6.158E-01 MAXIMUN HEAD CHANGE DURING EACH MAXIMUM HEAD CHANGE DURING EACH 3.421E+00 1.476E+00 5.821E-01 MAXIMUM HEAD CHANGE DURING EACH 342E+00 1.253E+00 5.982E-01 MAXIMUM HEAD CHANGE DURING EACH HAXIMUM HEAD CHANGE DURING EACH 6.036£-01 6.419E-01 284E+01 1.125E+00 4.284E-01 Maximum Head Change During Each 5.904E-01 MAXIMUM HEAD CHANGE DURING EACH 5.5765-01 1.240E+00 1.5236+00 1.483E+00 1.563E+00 3.342E+00 3.404E+00 3.376E+00 3.614E+00 3.4786+00 8.534E+00 1.594E+01 061E+00 3.722E+00 4.633E+00 284E+01 2.2601-02

Table 12.--Partial listing of output to file 7 for example problem

AR 020857

119

Table 13.--Partial listing of output to file 8 for example problem 2

TIME = 0.5000E+00 DAYS

-1.500E+00-1.500E+00-1.500E+00-1.500E+00-1.500E+00-1.500E+00-1.500E+00-1.500E+00 -1.500E+00-1.500E+00-1.500E+00-1.500E+00-1.500E+00-1.500E+00-1.500E+00-1.500E+00 -1.500E+00-1.500E+00-1.500E+00-1.500E+00-1.500E+00-1.500E+00-1.500E+00-1.500E+00 1.500E+00 0.000E-01 0.000E-01 0.000E-01 0.000E-01 0.000E-01 0.000E-01-1.992E-01 -3.271E+00-7.922E+00-1.267E+01-1.818E+01-2.395E+01-2.925E+01-3.360E+01-3.770E+01 -4.052E+01-4.225E+01-4.298E+01-4.323E+01-4.332E+01-4.335E+01-4.336E+01 1.500E+00 4.500E+00-6.807E-01-6.753E-01-6.642E-01-6.559E-01-6.702E-01-7.986E-01-1.492E+00 -4.592E+00-9.258E+00-1.404E+01-1.964E+01-2.552E+01-3.090E+01-3.527E+01-3.935E+01 -4.211E+01-4.380E+01-4.450E+01-4.474E+01-4.482E+01-4.485E+01+4.486E+01 4.500E+00 7.500E+00-1.361E+00-1.351E+00-1.328E+00-1.311E+00-1.336E+00-1.570E+00-2.607E+00 -5.734E+00-1.042E+01-1.529E+01-2.106E+01-2.718E+01-3.271E+01-3.712E+01-4.115E+01 -4.380E+01-4.540E+01-4.603E+01-4.625E+01-4.633E+01-4.635E+01-4.636E+01 7.500E+00 1.125E+01-2.213E+00-2.195E+00-2.158E+00-2.127E+00-2.157E+00-2.487E+00-3.801E+00 -6.939E+00-1.166E+01-1.666E+01-2.276E+01-2.936E+01-3.519E+01-3.967E+01-4.359E+01 -4.602E+01-4.746E+01-4.797E+01-4.815E+01-4.821E+01-4.823E+01-4.824E+01 1.125E+01 1.575E+01-3.235E+00-3.210E+00-3.154E+00-3.101E+00-3.115E+00-3.481E+00-4.911E+00 -7.980E+00-1.270E+01-1.791E+01-2.461E+01-3.227E+01-3.866E+01-4.322E+01-4.688E+01 -4.889E+01-5.002E+01-5.041E+01-5.054E+01-5.058E+01-5.060E+01-5.060E+01 1.575E+01 2.100E+01-4.428E+00-4.395E+00-4.317E+00-4.230E+00-4.195E+00-4.507E+00-5.860E+00 -8.707E+00-1.332E+01-1.874E+01-2.637E+01-3.618E+01-4.347E+01-4.776E+01-5.092E+01 -5.250E+01-5.334E+01-5.370E+01-5.382E+01-5.386E+01-5.387E+01-5.387E+01 2.100E+01 2.700E+01-5.794E+00-5.753E+00-5.649E+00-5.512E+00-5.372E+00-5.480E+00-6.463E+00 -8.772E+00-1.291E+01-1.827E+01-2.698E+01-4.218E+01-4.940E+01-5.323E+01-5.615E+01 -5.779E+01-5.862E+01-5.895E+01-5.905E+01-5.909E+01-5.910E+01-5.910E+01 2.700E+01 3.300E+01-3.716E+01-3.720E+01+3.735E+01-3.764E+01-3.823E+01-3.936E+01-4.130E+01 -4.413E+01-4.795E+01-5.210E+01-5.628E+01-5.336E+01-5.692E+01-6.046E+01-6.350E+01 -6.515E+01-6.593E+01-6.622E+01-6.631E+01-6.634E+01-6.635E+01-6.635E+01 3.300E+01 3.900E+01-7.694E+01-7.702E+01-7.731E+01-7.785E+01-7.887E+01-8.060E+01-8.304E+01 -8.585E+01-8.869E+01-9.085E+01-8.807E+01-6.414E+01-6.689E+01-7.000E+01-7.278E+01 -7.425E+01-7.492E+01-7.515E+01-7.523E+01-7.525E+01-7.526E+01-7.526E+01 3.900E+01 4.650E+01-9.932E+01-9.932E+01-9.934E+01-9.936E+01-9.941E+01-9.949E+01-9.959E+01 -9.968E+01-9.977E+01-9.978E+01-9.788E+01-8.118E+01-8.260E+01-8.439E+01-8.605E+01 -8.691E+01-8.729E+01-8.741E+01-8.745E+01-8.746E+01-8.747E+01-8.747E+01 4.650E+01 5.550E+01-1.024E+02-1.024E+02-1.024E+02-1.024E+02-1.024E+02-1.024E+02-1.024E+02-1.024E+02 -1.024E+02-1.023E+02-1.022E+02-1.014E+02-9.418E+01-9.433E+01-9.475E+01-9.521E+01 -9.547E+01-9.559E+01-9.563E+01-9.565E+01-9.565E+01-9.565E+01-9.565E+01 5.550E+01 6.450E+01-1.087E+02-1.087E+02-1.087E+02-1.087E+02-1.087E+02-1.086E+02-1.086E+02 -1.085E+02-1.082E+02-1.074E+02-1.054E+02-1.005E+02-9.909E+01-9.872E+01-9.863E+01 -9.864E+01-9.866E+01-9.867E+01-9.867E+01-9.867E+01-9.867E+01-9.867E+01-9.867E+01 6.450E+01 7.350E+01-1.040E+02-1.040E+02-1.040E+02-1.040E+02-1.040E+02-1.040E+02-1.040E+02 -1.039E+02-1.037E+02-1.032E+02-1.023E+02-1.008E+02-9.993E+01-9.956E+01-9.940E+01 -9.936E+01-9.935E+01-9.935E+01-9.935E+01-9.935E+01-9.935E+01-9.935E+01-9.935E+01 7.350E+01 8.400E+01-1.005E+02-1.005E+02-1.005E+02-1.005E+02-1.005E+02-1.005E+02-1.004E+02 -1.004E+02-1.003E+02-1.001E+02-9.981E+C1-9.939E+01-9.909E+01-9.892E+01-9.883E+01 -9.879E+01-9.879E+01-9.879E+01-9.879E+01-9.879E+01-9.879E+01-9.879E+01-9.879E+01 8.400E+01 9.750E+01-9.572E+00-9.572E+ -9.571E+01-9.568E+01-9.563E+01-9.556E+01-9.548E+01-9.541E+01-9.537E+01-9.534E+01 -9.533E+01-9.533E+01-9.533E+01-9.533E+01-9.533E+01-9.533E+01-9.533E+01 9.750E+01 1.125E+02-8.553E+01-8.554E+00-8.554E+00-8.554E+00-8.554E+00-8.554E+00-8.554E+00-8.554E+00-8.5554E+00-8.5554E+00-8.556

AR 020858

(

(

Table 13. -- Partial listing of output to file 8 for example problem 2-- Continued

-8.553E+01-8.552E+01-8.551E+01-8.550E+01-8.549E+01-8.548E+01-8.547E+01-8.546E+01
-B.546E+01-8.546E+01-8.546E+01-8.546E+01-8.546E+01-8.546E+01-8.546E+01-8.546E+01 1.125E+02
1,260E+02-7.239E+01-7.339E+01-7.339E+01-7.339E+01-7.339E+01-7.339E+01-7.339E+01-7.339E+01
-7.339E+01-7.339E+01-7.339E+01-7.338E+00000000000000000000000000000000000
-7.338E+01-7.338E+01-7.338E+01-7.338E+01-7.338E+01-7.338E+01-7.338E+01-7.338E+01 1.260E+02
1.365E+02-6.320E+01-6.320E+01-6.320E+01-6.320E+01-6.320E+01-6.320E+01-6.320E+01
-6.320E+01-6.320E+01-6.320E+01-6.320E+01-6.320E+01-6.320E+01-6.320E+01-6.320E+01
-6.320E+01-6.320E+01-6.320E+01-6.320E+01-6.320E+01-6.320E+01-6.320E+01 1.365E+02
1.440E+02-5.576E+01-5.576E+01-5.576E+01-5.576E+01-5.576E+01-5.576E+01-5.576E+01
-5.576E+01-5.576E+00-5.576
-5.576E+01-5.576E+01-5.576E+01-5.576E+01-5.576E+01-5.576E+01-5.576E+01 1.440E+02
1.500E+02-4.995E+01-4.995E+01-4.995E+01-4.995E+01-4.995E+01-4.995E+01-4.995E+01-4.995E+01
-4.995E+01-4.995E+01-4.995E+01-4.995E+01-4.995E+01-4.995E+01-4.995E+01-4.995E+01-4.995E+01
-4.995E+01-4.995E+01-4.995E+01-4.995E+01-4.995E+01-4.995E+01-4.995E+01-4.995E+01 1.500E+02
1.560E+02-4.392E+01-4.392E+01-4.392E+01-4.392E+01-4.392E+01-4.392E+01-4.392E+01
-4.392E+01-4.392E+01-4.392E+01-4.392E+01-4.392E+01-4.392E+01-4.392E+01-4.392E+01
-4.392E+01-4.392E+01-4.392E+01-4.392E+01-4.392E+01-4.392E+01-4.392E+01-4.392E+01 1.560E+02
1.635E+02-3.583E+01-3.583E+01-3.583E+01-3.583E+01-3.583E+01-3.583E+01-3.583E+01
-3.583E+01-3.583E+000-3.583E+00-3.583E+00-3.583E+00-3.583E+00-3.583E+00-3.583E+00-3.583E+00-3.583E+00-3.583E+00-3.583E+00-3.583E+00-3.583E+00-3.583E+00-3.583E+00-3.585E+00-3.585E+00-3.585400000000000000000000000000000000000
-3.583E+01-3.583E+01-3.583E+01-3.583E+01-3.583E+01-3.583E+01-3.583E+01-3.583E+01 1.635E+02
1.725E+02-2.502E+01-2.502E+01-2.502E+01-2.502E+01-2.502E+01-2.502E+01-2.502E+01
-2.502E+01-2.502E+00-2.502
-2.502E+01-2.502E+01-2.502E+01-2.502E+01-2.502E+01+2.502E+01-2.502E+01-2.502E+01 1.725E+02
1.815E+02-1.553E+01-1.553E+00-1.553E+00-1.554E+00-1.554E+00-1.554E+00-10-1.554E+00-10-1.554E+00-10-1.554E+00-10-1.554E+00-10-1.554E+00-10-1.554E+00-10-1.554E+00-10-10-10-10-10-10-10-10-10-10-10-10-1
-1.553E+01-1.553E+00-1.553E+00-1.553E+00-1.553E+00-10-1.553E+00-10-1.553E+00-10-1.553E+00-10-1.553E+00-10-10-1.553E+00-10-10-10-10-10-10-10-10-10-10-10-10-1
-1.553E+01-1.553E+01-1.553E+01-1.553E+01-1.553E+01-1.553E+01-1.553E+01-1.553E+01 1.815E+02
1.905E+01-1.553E+00-1.553E+00-100-1.558E+00-10
1.905E+02-6.504E+00-6.5000E+00-6.500E+00-6.500E+00-6.500E+00-6.500E+00-6.5
-6.504E+00-6.504E+00-6.504E+00-6.504E+00-6.504E+00-6.504E+00-6.504E+00-6.504E+00-6.504E+00
-6.504E+00-6.504E+00-6.504E+00-6.504E+00-6.504E+00-6.504E+00-6.504E+00 1.905E+02
2.010E+02 4.000E+00 4.000E+00 4.000E+00 4.000E+00 4.000E+00 4.000E+00 4.000E+00
4.000E+00 4.000E+00 4.000E+00 4.000E+00 4.000E+00 4.000E+00 4.000E+00 4.000E+00
4.000E+00 4.000E+00 4.000E+00 4.000E+00 4.000E+00 4.000E+00 4.000E+00 2.010E+02
2.145E+02 2.145E+02 2.145E+02 2.145E+02 2.145E+02 2.145E+02 2.145E+02 2.145E+02 2.145E+02
2.145E+02 2.145E+02 2.145E+02 2.145E+02 2.145E+02 2.145E+02 2.145E+02 2.145E+02 2.145E+02
2.145E+02 2.145E+02 2.145E+02 2.145E+02 2.145E+02 2.145E+02 2.145E+02 2.145E+02 2.145E+02

TIME = 0.1000E+01 DAYS

-1.500E+00-1.500E+00-1.500E+00-1.500E+00-1.500E+00-1.500E+00-1.500E+00-1.500E+00 -1.500E+00-1.500E+00-1.500E+00-1.500E+00-1.500E+00-1.500E+00-1.500E+00-1.500E+00 -1.500E+00-1.500E+00-1.500E+00-1.500E+00-1.500E+00-1.500E+00-1.500E+00-1.500E+00 1.500E+00-1.182E+00-1.213E+00-1.289E+00-1.411E+00-1.648E+00-2.105E+00-2.868E+00 -3.919E+00-5.279E+00-6.675E+00-8.367E+00-1.025E+01-1.214E+01-1.390E+01-1.588E+01 -1.784E+01-1.970E+01-2.130E+01-2.250E+01-2.340E+01-2.421E+01-2.469E+01 1.500E+00 4.500E+00-2.681E+00-2.711E+00-2.786E+00-2.906E+00-3.140E+00-3.589E+00-4.339E+00 -5.378E+00-6.730E+00-8.127E+00-9.837E+00-1.175E+01-1.366E+01-1.542E+01-1.740E+01 -1.936E+01-2.122E+01-2.282E+01-2.402E+01-2.491E+01-2.572E+01-2.620E+01 4.500E+00 7.500E+00-4.180E+00-4.209E+00-4.282E+00-4.397E+00-4.622E+00-5.056E+00-5.783E+00 -6.796E+00-8.129E+00-9.530E+00-1.127E+01-1.325F+01-1.520E+01-1.698E+01-1.896E+01 -2.091E+01-2.276E+01-2.435E+01-2.554E+01-2.643E+01-2.724E+01-2.772E+01 7.500E+00 1.125E+01-6.053E+00-6.080E+00-6.148E+00-6.255E+00-6.465E+00-6.870E+00-7.553E+00 -8.515E+00-9.813E+00-1.121E+01-1.302E+01-1.513E+01-1.716E+01-1.897E+01-2.095E+01 -2.289E+01-2.472E+01-2.629E+01-2.746E+01-2.834E+01-2.915E+01-2.962E+01 1.125E+01 1.575E+01-8.300E+00-8.323E+00-8.382E+00-8.476E+00-8.659E+00-9.013E+00-9.616E+00

~ problem example for g file ç output of Table 14.--Partial listing

 TRANSP
 EVA
 ULL3
 FLAUM

 01
 0.0000E
 01
 2.5935E+03
 5.588E
 02
 1.3176E
 03

 01
 0.0000E
 01
 2.5935E+03
 5.588E
 01
 1.7315E
 02

 01
 0.0000E
 01
 2.5035E+03
 3.9534E
 01
 2.0131E
 03

 01
 0.0000E
 01
 0.0000E
 1
 2.5932E+03
 5.58160
 1.7315E
 03

 01
 0.0000E
 01
 0.0000E
 1
 2.5622E+03
 3.9346E
 01
 0.0101E
 01
 2.6011E
 01
 0.011
 2.5622E+03
 3.9348E
 02
 10.015E-01
 0.0000E
 01
 2.56216+03
 3.7361E
 01
 0.015E
 01
 0.0001E
 01
 2.56216+03
 3.7361E
 01
 01
 0.015E
 01
 0.0001E
 01
 2.5651E
 01
 2.6631E
 01
 01
 0.0001E
 01
 2.5651E
 01
 2.601E
 01
 01
 01
 01
 2-1.11926-01 2 2.07806-01 1 3.28976-01 2-2.68346-02 2 4.27786-02 1-4.6989E+01 1.2423E-01-2.6438E RROR .25296-02 0.0000£-01-6.0000E+01-4.6807E+01-9.7264E-02 1.26136-02 (-2.01276-02 .0000E+01-4.6786E+01-1.5391E-01 ERROR 000001-01-4.700601-01 0.0000E-01-6.0000E+01-4.6989E+01 0.0000E-01-6.0000E+01-4.6933E+01 -4.7051E+01 DELS 1.6086E+04 6 7.2973E+03 9 3.6739E+03 6 3.2505E+03 5E+0505E+0505E+0505E+0505E+0505E+0505E+0505E+0505E+0505 0000E+01 ٻ ٻ è. 0.00006 -01 0.000006 -01 0.00 0.0000E-01 0.0000E-01 0.00006-01 0.00006-01 0 0.00006-01 0.00006-01 0 0.00006-01 0.00006-01 0 0.00006-01 0.00006-01 0 0.00006-01 0.00006-01 0 0.00006-01-6.00006+01 0 0.00006-01-6.00006+01 0 0.00006-01-6.00006+01 0 0.0000E-01-6.0000E+01 0.0000E-01-6.0000E+01 0.00006-01 0.00006-01 0.00006-01 0.00006-01 0.00006-01 0.00006-01 0.00006-01 0.00006-01 0.000006-01 0.000006-01 0.000006-01 0.000006-01 0.00005-01-6.00005+01 1-6.0000E+01 -01-6.0000E+01 0,0000.01-6.00000.01 0.0000E-01-6.0000E+01 0.0000E-01-6.0000E+01 0.00006-01-6.00006+01 0.00006-01-6.00006+01 0.00006-01 0.00001-01 0.00001-01 0.00001-01 Ξ TOTAL -01-6. ې 20 INFILTRATION AND EVAPOTRANSPIRATION 9 0.00001-01 0.00006-01 0.00006-01 0.00006-01 0.00006-01 0.00006-01 0.00006-01 0.00006-01 0.00006-01 0.00006-01 0.00006-01 0.00006-01 0.00001-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.00001-01 - **30000**. - 30000 0000E 0.00001-01 FLX0UT2 00 2.2500E+03 2.2500E+03 0.0000E-01 00-30000 0000E-01 2.2500E+03 1.8000E+03 0.00001-01 2.2500E+03 0 2.2500E+03 0 2.2500E+03 0 2.2500E+03 0 2.2500E+03 0 2.2500E+03 0 2.2500E+03 0 2.2500E+03 0 2.2500E+03 0 2.2500E+03 0 2.2500E+03 0 2.2500E+03 (2.2500E+03))))) 2500E+03 .2500f+03 25001+03 2.2500E+03 1.4625€+03 1.5750E+03 1.6875€+03 .2500E+03 FLXIN2 ö 0 N ~ ~ ē 0.00006-01 00006-01 0.00006-01 0.00006-01 0.0000E-01 0-30000 0.00001-01 0.00001-01 0.00001 -01 0.00001 -01 0.00001 -01 0.00001 -01 0.00001 -01 0.00001 -01 0.00001 -01 0.00001 -01 0.00001 -01 0.00001-01 10000 FLXOUI1 RATE COMPONENTS Ö ö 4. /2601 +01 | 4. 64131 +02 | 6. 80361 +02 | 6. 72891 +02 | 5. 84821 +02 | 2. 14801 +01 | 1. 84611 +01 | 1. 59801 +01 | 1. 39441 +01 | 1.31676+01 31586+01 10+36116. .29291+0 31356+01 . 30966E • 01 . 3060E + 0 3.12241+02 2.18701+02 2.18701+02 1.60781+02 1.24861+02 1.24861+02 1.31676+01 .3166f +01 31656 101 10+36316. .31616.01 .31466+01 .30076+0 8.5/886+01 7.36566+01 6.36546+01 5.496/6+01 5 (1474E+03 0 1.4246E+03 0 2 1.0009E+03 0 2 6.8259E+02 0 2 4.5972E+02 1.39036+04 FLXINI EXAMPLE PROBLEM 2.0394f-01 2.0394f-01 2.0394f-01 2.3523f-01 3.0772f-01 3.9545f-01 4.4545f-01 5.0000f-01 6.9664f-01 5.5941f-01 6.9664f-01 7.7572f-01 8.6270f-01 8.6270f-01 1.0000f+001 1.0000f+001 0058E+00 01311+00 00261+00 0087f+00 .00026+00 00+3600 00+ 30000 000 10000 00011400 .0001E+00 11.10001-02 1 1.10001-02 1 2.31006-02 5 3.64106-02 1 5.10516-02 1 6.71566-02 6 8.41/7f-02 1 1.04361 01 HASS BALANCE 1.25791-01

2---Continued problem example for 9 file to output of listing .--Partial 14 **Table** 0.0000E-01-6.0000E+01-4.7173E+01-1.3590E-02 2.8809E-02 0.0000E-01-6.0000E+01-4.73357E+01 4.2330E-03-8.9384E-03 0.0000E-01-6.0000E+01-4.7587E+01-5.7051E-03 1.1989E-02 0.0000E-01-6.0000E+01-4.7879E+01-5.0190E-02 1.0483E-01 0.0000E-01-6.0000E+01-4.8343E+01-4.6056E-02 9.5269E-02 0.0000E-01-6.0000E+01-4.8943E+01-5.5432E-02 1.1326E+01 1 0.0000E-01-6.0000E+01 0 1 0.0000E-01-6.0000E+01 0 1 0.0000E-01-6.0000E+01 0 1 0.0000E-01-6.0000E+01 0 1 0.0000E-01-6.0000E+01 0 1 0.0000E-01-6.0000E+01 0 0.00005-01 0.00005-01 0.00005-01 0.00005-01 0.00005-01 0,00006-01 0,00006-01 0,00006-01 0,00006-01 0,00006-01 1.28146+01 1.26476+01 1.24076+01 1.20716+01 1.16116+01 1.16116+01 1.10026+01 1.0197E+00 1.0295E+00 1.0443E+00 1.0665E+00 1.0997E+00 .1496E+00

9.43/05-02
9.43/05-02
9.66815-02
9.66815-02
9.66815-02
2.9.693/55-02
2.1.22965-01
7.1.25965-03
1.6.49565-03
1.6.49565-03
1.6.49565-03
7.1.231515-04
3.1.23945-04
3.1.23945-04
3.1.23955-04
3.1.23955-04
3.1.23955-04
3.1.23955-04
3.1.30215-0
3.1.229055-04
3.1.30215-0
3.1.23955-04
3.1.30215-0
3.1.23955-04
3.1.30215-0
3.1.23955-04
3.1.30215-0
3.1.23955-04
3.1.30215-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23955-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.23155-0
3.1.231555-0
3.1.231555-0
3.1.231555-0
3.1.231555-0
3.1.231555-0
3.1.231555-0
3.1.231555-0
3.1.2315555555555555555555555555555555 -03 09 39996 3643E (0) 0.0000E -01 - 1. 78/5E +01 - 3. 5403E +01 - 2. 9613E -02
(1) 0.0000E -01 - 1. 7566E +01 - 3. 4464E +01 - 3. 2543E -02
(2) 0.0000E -01 - 1. 6704E +01 - 3. 1957E +01 - 3. 1675E -02
(3) 0.0000E -01 - 1. 6704E +01 - 3. 1957E +01 - 3. 1675E -02
(4) 0.0000E -01 - 1. 6704E +01 - 3. 177E +01 - 3. 0858E -02
(5) 0.0000E -01 - 1. 6307E +01 - 3. 177E +01 - 3. 0858E -02
(6) 0.0000E -01 - 1. 6307E +01 - 3. 177E +01 - 3. 0858E -02
(7) 0.0000E -01 - 0.0000E -01 2. 2354E +03
(8) 1. 0.0000E -01 0.0000E -01 2. 2354E +03
(9) 0.0000E -01 0.0000E -01 2. 2354E +03
(9) 0.0000E -01 0.0000E -01 2. 2354E +03
(9) 0.0000E -01 0.0000E -01 2. 2354E +03
(10) 0.0000E -01 0.0000E -01 2. 2354E +03
(10) 0.0000E -01 0.0000E -01 2. 2356E +03 - 3. 8531E -02
(10) 0.0000E -01 0.0000E -01 2. 2356E +03 - 3. 86310E -02 - 3. 8031E -03 - 3. 23554E +03 -~ $\begin{array}{c} 1 & 0.0000E - 01 - 1. 7875E + 01 & 0 \\ 1 & 0.0000E - 01 - 1. 756BE + 01 & 0 \\ 1 & 0.0000E - 01 - 1. 756BE + 01 & 0 \\ 1 & 0.0000E - 01 - 1. 6339E + 01 & 0 \\ 1 & 0.0000E - 01 - 1. 6339E + 01 & 0 \\ 1 & 0.0000E - 01 - 1. 6339E + 01 & 0 \\ 1 & 0.0000E - 01 & 0.0000E - 01 & 0 \\ 3 & 0.0000E - 01 &$ ē 00001-01 .0000E 000 ċ 10-30000 0000E-01 ö 2.2500E+03 2.2500E+03 2.2500E+03 .2500E+03 .2500E+03 .2500E+03 2500E+03 2500E+03 2500E+03 2500E+03 2 $\begin{array}{c} 0.00006 - 01 - 1.5586 + 01 \\ 0.00006 - 01 - 1.69506 + 01 \\ 0.00006 - 01 - 1.52806 + 01 \\ 0.00006 - 01 - 1.52806 + 01 \\ 0.00006 - 01 - 1.52806 + 01 \\ 0.00006 - 01 - 1.45156 + 01 \\ 0.00006 - 01 - 1.45156 + 01 \\ 0.00006 - 01 - 1.46146 + 01 \\ 0.00006 - 01 - 1.46146 + 01 \\ 0.00006 - 01 - 1.46146 + 01 \\ 0.00006 - 01 - 1.46186 + 01 \\ 0.00006 - 01 - 1.46186 + 01 \\ 0.00006 - 01 - 1.46186 + 01 \\ 0.00006 - 01 - 1.46186 + 01 \\ 0.00006 - 01 - 1.46186 + 01 \\ 0.00006 - 01 - 1.46186 + 01 \\ 0.00006 - 01 - 1.46186 + 01 \\ 0.00006 - 01 - 1.46186 + 01 \\ 0.00006 - 01 - 1.46186 + 01 \\ 0.00006 - 01 - 1.46186 + 01 \\ 0.00006 - 01 - 1.43206 + 01 \\ 0.00006 - 01 - 1.42736 + 01 \\ 0.00006 - 01 - 1.42736 + 01 \\ 0.00006 - 01 - 1.42736 + 01 \\ 0.00006 - 01 - 1.42736 + 01 \\ 0.00006 - 01 - 1.47296 + 01 \\ 0.00006 - 01 - 1.47296 + 01 \\ 0.00006 - 01 - 1.47296 + 01 \\ 0.00006 - 01 - 1.47296 + 01 \\ 0.00006 - 01 - 1.47296 + 01 \\ 0.00006 - 01 - 1.47296 + 01 \\ 0.00006 - 01 - 1.47296 + 01 \\ 0.00006 - 01 - 1.47296 + 01 \\ 0.00006 - 01 - 1.47296 + 01 \\ 0.00006 - 01 - 1.47296 + 01 \\ 0.00006 - 01 - 1.47296 + 01 \\ 0.00006 - 01 - 1.47296 + 01 \\ 0.00006 - 01 - 1.47296 + 01 \\ 0.00006 - 01 - 1.47296 + 01 \\ 0.00006 - 01 - 1.4736 + 01 \\ 0.00006 - 01 - 1.47296 + 01 \\ 0.00006 - 01 - 1.47296 + 01 \\ 0.00006 - 01 - 1.47296 + 01 \\ 0.00006 - 01 - 1.47296 + 01 \\ 0.00006 - 01 - 1.47296 + 01 \\ 0.00006 - 01 - 1.47296 + 01 \\ 0.00006 - 01 - 1.47296 + 01 \\ 0.00006 - 01 - 1.47296 + 01 \\ 0.00006 - 01 - 1.47296 + 01 \\ 0.00006 - 01 - 1.47286 + 01 \\ 0.00006 - 01 - 1.47286 + 01 \\ 0.00006 - 01 - 1.47286 + 01 \\ 0.00006 - 01 - 1.47286 + 01 \\ 0.00006 - 01 - 1.47286 + 01 \\ 0.00006 - 01 - 1.47286 + 01 \\ 0.00006 - 01 - 1.47286 + 01 \\ 0.00006 - 01 - 1.47286 + 01 \\ 0.00006 - 01 - 1.47286 + 01 \\ 0.00006 - 01 - 1.47286 + 01 \\ 0.00000 - 01 - 1.47286 + 01 \\ 0.00000 - 01 - 1.47286 + 01 \\ 0.00000 - 01 - 1.47286 + 01 \\ 0.00000 - 01 - 1.47286 + 01 \\ 0.00000 - 01 - 1.47286 + 01 \\ 0.00000 - 01 - 1.47286 + 01 \\ 0.00000 - 01 - 1.47286 + 01 \\ 0.00000 - 01 - 1.47886 + 01 \\ 0.00000 - 01 - 1.47886 + 01 \\ 0$ 10+36666.1--1.40146+01 -1.39646+01 -1.3983E+0 **-**<u>-</u> 0000E - 01 10-30000 0000E **0000E** <u>.</u> <u>.</u> Ö Ċ 3. 1021[+01 3. 1021[+01 3. 1052[+01 3. 1052[+01 3. 1052[+01 3. 1092[+01 3. 1196[+01 3. 1196[+01 3. 1196[+01 3. 1196[+01 3. 1196[+01 3. 1245[+01 3. 1245[+01 3. 1245[+01 3. 1546[+01 3. 1546[+01 3. 1546[+01 3. 1546[+01 3. 1546[+01 3. 1546[+01 3. 1546[+01 3. 1566[+01] 3. 1566[+01 3. 1566[+01] 3. 2.9746E+01 3.0246E+01 3.0746E+01 2.8746E+01 2.9246E+01 8246E+01 3.1000f +01 3.1011E+01 ~ ~

example problem 2---Continued for 9 -- Partial listing of output to file

	_
$ \begin{array}{c} Table 14,partial listing of output to 10,000f-01 0,000f-01 2,2360f+03 1,177f-02 1,403f-03 2,458f-03 1,158f+01 0,000f-01 1,0000f-01 2,2360f+03 1,0471-01 4,5254f-03 1,1554f-03 1,0471-01 4,5254f-03 1,1554f-03 1,0471-01 4,5254f-03 1,1554f-03 1,0471-01 4,5254f-03 1,1554f-03 1,0471-01 4,5254f-03 1,1554f-03 1,1554f-03 1,1554f-03 1,1554f-03 2,1567f-03 1,1554f-03 1,1554f-03 2,1567f-03 1,1554f-03 2,1567f-03 1,0500f-01 0,000f-01 0,000f-01 2,2361f+03 5,1652f-02 2,9811f-03 1,1554f-03 2,1569f-03 2,1567f-03 1,1554f-03 2,1554f-03 2,0000f-01 0,0000f-01 0,0000f-01 0,0000f-01 2,2105f+03 1,15554f-03 2,1554f-03 2,2000f-01 0,0000f-01 0,5504f-03 2,1554f-01 2,51524f-01 2,1554f-01	

0.0000f -01 -9.2154f +01 -7.6626f +01 -1.5528f +01 -1.2384f +02 -2.5557f -02 2.0395f -02 0.0000f -01 -9.1482f +01 -7.6539f +01 -1.4743f +01 -1.2310f +02 -2.0783f -02 1.6889f -02 0.0000f -01 -9.0911f +01 -7.6686f +01 -1.4743f +01 -1.2245f +02 -2.7239f -02 2.2246f -02 0.0000f -01 -9.0911f +01 -7.7020f +01 -1.4743f +01 -1.2245f +02 -2.7239f -02 1.8919f -02 0.0000f -01 -9.0927f +01 -7.7020f +01 -1.2303f +01 -1.2186f +02 -2.3058f -02 1.8919f -02 0.0000f -01 -9.0027f +01 -7.7039f +01 -1.2303f +01 -1.2186f +02 -9.1717f -03 7.5839f -03 0.0000f -01 -9.9701f +01 -7.7398f +01 -1.2303f +01 -1.2034f +02 -9.1717f -03 7.5839f -03 0.0000f -01 -8.9445f +01 -7.7398f +01 -1.2303f +01 -1.2034f +02 -9.1717f -03 7.5839f -03 0.0000f -01 -8.9445f +01 -7.7926f +01 -1.1339f +01 -1.2034f +02 -1.1669f -02 9.7092f -03 0.7000f -01 -8.9445f +01 -7.7922f +01 -1.1339f +01 -1.2034f +02 -1.1669f -02 9.7092f -03 0.7000f -01 -8.9456f +01 -7.7922f +01 -1.1339f +01 -1.2034f +02 -1.1669f -02 9.7092f -03 0.7000f -01 -8.9456f +01 -7.7922f +01 -1.1339f +01 -1.2034f +02 -1.1669f -02 9.7092f -03 0.7000f -01 -8.9456f +01 -7.7922f +01 -1.1396f +01 -1.2034f +02 -1.1669f -02 1.1416f -02 0.0000f -01 -8.9156f +01 -7.8673f +01 -1.0441f +01 -1.1955f +02 -1.1654f -02 1.3834f -02 0.7000f -02 0.0000f -01 -8.9156f +01 -7.8673f +01 -1.0441f +01 -1.1955f +02 -1.6547f -02 1.3834f -02 0.7000f -02 0.0000f -01 -8.9116f +01 -7.8673f +01 -1.0441f +01 -1.1955f +02 -1.6547f -02 1.3834f -02 0.7000f -02 0.0000f -01 -8.9116f -02 0.7000f -01 -8.9116f -02 0.7000f -01 -8.9116f -02 0.7000f -01 -8.9116f +01 -7.8673f +01 -1.0441f +01 -1.1955f +02 -1.6547f -02 1.3336f -02 0.7000f -02 0.7346 -02 0.7 0.00001-01 0.00001-01 0.00001-01 0.00001-01 0.00001-01 0.00001-01 0.000001-01 0.000001-01 0.000001-01 0.000001-01 0.00006-01 1 0.0000E-01-3.1708E+01 0 1 0.0000E-01-3.1508E+01 0 1 0.0000E-01-3.1562E+01 0 1 0.0000E-01-3.1562E+01 0 1 0.0000E-01-3.1367E+01 0 0.0000E-01-3.1245E+01 0.0000E-01-3.1102E+01 0.0000E-01-3.0933E+01 10+32610.6-1 0.00006-01-3.04886+01 0.00006-01 4.7053E+01 4.7082E+01 4.7115E+01 4.7154E+01 4.7250E+01 4.7253E+01 4.7316E+01 4.7392E+01 4.70286+01 9.7484E+01

0.0000E_01-2.3541E+00 0.0000E_01 0.0000E_01-1.3585E+01-1.3467E+01-1.1790E_01-1.5918E+01-2.1308E_02 1.3386E-01 0.0000E_01-2.3312E+00 0.0000E_01 0.0000E_01-1.3569E+01-1.3452E+01-1.1741E_01-1.5895E+01-5.2017E_03 3.2725E-02 7.70006+01 Ć

Table 15.--Partial listing of output to file 11 for example problem 2

EXAMPLE PROBLEM 2 -- 20 INFILTRATION AND EVAPOTRANSPIRATION Monitoring point file

																											•					
7.7326-01	/./32E-01 7./32E-01	7.7326-01	3.200E-01	7.7326-01	7.7326-01	9.5626-01	8.158E-01	7.744E-UI 7 744E-UI	7 7325-01	7.732E-01	3.2016-01	3.2016-01	7.732E-01	7.7326-01	10-1/0C.6	8.490E-01	10-1/6/./	10-306-01	10-3261.1	3.2026-01	3.202E-01	7.7326-01	7.732E-01	9.562E-01			6.204E-01	10-3641./	6.701C-01	6.594E-01	3.0856-01	
3.4796-01	3.4796-01	3.4796-01	1.2806-01	3.4796-01	3.479101	4.303E-01	3.671E-01	3.485E-01	3.40JL-UI	3.4796-01	1.2806-01	1.2806-01	3.479E-01	3.4796-01	4.303t-01	3.8206-01	3.491t-01	3.4906-01	3.46UC-UL 3.420F_01	10-367-1	1 281F-01	3.479f-01	3.4796-01	4.3036-01			2.792E-01	3.21/t-UI	10-3010.C	10-3676-01	1.2346-01	
-1.000E+02	-1.000E+02		-1.000E+02	-1.000E+02 -1.000E+02	-1.000€+02	-5.600E+01	-8.571E+01	-9.952E+01	1013466.6-	-9.9960 00	-9.994E+01	-9.9946+01	-1.000€+02	-1.000€+02	-5.600E+01	-7.672E+01	-9.904E+01	-9.910E+01	-9.994E+U1	-1.00056401	0 0R7F+01	•	-1.000€+02	-5.600E+01			-2.0365+02	-1.26/t+U2	-	7 7	7	
-1.0156+02 -1.2706+02	-1.270E+02	-1.2706+02	-1.3306+02	-1.33UE+UZ -1.33NE+U2	-1.3306+02	-2.0001+02	-8.721E+01	-1.2656+02	-1.2056+UZ	-1.2/UE+U2	-1.3296+02	-1.3296+02	-1.3306+02	-1.330E+02	-2.000E+02	-7.8226+01	-1.260E+02	-1.2616+02	•	•			-1-10F+02	-2.000E+02			-2.0516+02	-1.53/[+02	-1.831E+02	-].82/L+UC	-1.4366+02	
	2.7006+01	2.7006+01	3.3006+01	3.300E+01	3. 300F +01	1.4406+02	1.500€+00	2.700E+01	2.700E+01	2./00t+01 2.700f+01	10-100/-2	3.300E+01			1.4406+02	1.5006+00	2.7006+01	2.700E+01	2.700E+01	2./001+01	3.3000+01	3.300E+01		1.4406+02			1.500E+00	2.700f+01	2.7006+01	2.700t+UI	3.300E+01	
1.1256+01 1.1256+01	1.4626+02	2.8876+02	1.1256+01	1.4626+02	2013/165.1	1.1256+01	1.1256+01	1.1256+01	1.462E+02	1.53/E+02	1 1266401	1 4626+02	1 5376+02	2.887E+02	1.1256+01	1.1256+01	1.1256+01	1.462E+02	1.537E+02	2.887E+02	1.1256+01	1.4021402	1.33/CTUC	1.125E+01	•	•	1.1256+01	1.1256+01	1.4626+02	1.5376+02	2.88/E+U2 1.125E+01	
0.0005-01 0.0005-01	0.000E-01	0.000t-01 0.000f-01	0.000E-01	0.000E-01	0.0001-01	0.0001-01	1.100F-02	1.100E-02	1.1006-02	1.1001-02	1,1006-02	1.1005-02	1 100f -02	1.1006-02	1.100F-02	2.310f-02	2.3106-02	2.3105-02	2.310E-02	2.310f-02	2.310E-02	2.3106-02	2.310E-UZ	2.3106-02			1.7056+01	1.7056+01	1.705E+01	1.7056+01	1.7056+01 1.7056+01	
	1.1256+01 1.5006+00 -1.0156+02 -1.0006+02 3.4796-01 1.1256+01 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01	1.1256+01 1.5006+00 -1.0156+02 -1.00006+02 3.4795-01 1.1256+01 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 1.4626+02 2.7006+01 -1.2706+02 -1.00006+02 3.4796-01 1.6526-02 2.7006+01 -1.27065+02 -1.0006+02 3.4796-01	1.1256+01 1.5006+00 -1.0156+02 -1.00006+02 3.4795-01 1.1256+01 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 1.4626+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 1.5376+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 2.6876+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01	1.1256+01 1.5006+00 -1.0156+02 -1.00006+02 3.4795-01 1.1256+01 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 1.4626+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 1.5376+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 2.6876+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 1.1256+01 3.3006+01 -1.3306+02 -1.0006+02 1.2806-01	1.1256+01 1.5006+00 -1.0156+02 -1.0006+02 3.4796-01 7.7 1.1256+01 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 7.7 1.4626+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 7.7 1.5376+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 7.7 2.66076+02 2.7006+01 -1.2706+02 -1.0006+02 1.2806-01 3.2 1.1256+01 3.3006+01 -1.3306+02 -1.0006+02 1.2806-01 3.2 1.4526+02 3.3006+01 -1.3306+02 1.2806-01 3.2	1.1256+01 1.5006+00 -1.0156+02 -1.0006+02 -1.795-01 1.1256+01 2.7006+01 -1.2706+02 -1.796-01 -1.2706+02 -1.796-01 1.1256+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 1.5376+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 2.68076+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 2.68076+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 1.1256+01 3.3006+01 -1.2306+02 -1.0006+02 3.4796-01 1.1256+01 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01	1.1256+01 1.5006+00 -1.0156+02 -1.0006+02 3.4796-01 7.3 1.1256+01 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 7.3 1.627+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 7.3 1.5377+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 7.3 1.1256+01 3.3006+01 -1.3306+02 -1.0006+02 1.2806-01 3.3 1.6276+02 3.3006+01 -1.3306+02 -1.0006+02 1.2806-01 3.3 1.5377+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 7.3 1.5377+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 7.3 1.5377+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 7.3 1.53776+01 1.4406+02 -2.0006+02 3.4796-01 7.3	1.1256+01 1.5006+00 -1.0156+02 -1.0006+02 3.4796-01 7.3 1.1256+01 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 7.3 1.627+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 7.3 1.5377+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 7.3 1.1256+01 3.3006+01 -1.3306+02 -1.0006+02 1.2806-01 3.3 1.1256+01 3.3006+01 -1.3306+02 -1.0006+02 1.2806-01 3.3 1.5377+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 7.3 1.5377+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 7.3 1.1256+01 1.4406+02 -2.0006+02 3.4796-01 7.3 1.1256+01 1.4406+02 -2.0006+02 -1.0006+02 3.4796-01 7.3 1.1256+01 1.4406+02 -2.0006+02 -1.0006+02 3.4796-01 7.3 1.1256+01 1.5006+00 -8.7216+01 -8.5716+01 3.6716-01 8.3	1.1256+01 1.5006+00 -1.0156+02 -1.0006+02 3.4796-01 1.1256+01 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 1.5376+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 1.5376+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 2.5376+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 2.9006+01 -1.2706+02 -1.0006+02 1.2806-01 1.1256+01 3.3006+01 -1.3306+02 -1.0006+02 1.2806-01 1.4626+02 3.3006+01 -1.3306+02 -1.0006+02 1.2806-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 2.8076+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 2.8076+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 2.8076+01 1.3306+02 -1.0006+02 3.4796-01 1.1256+01 3.4796-01 2.11256+01 1.5006+00 -1.2006+01 -1.2656+02 3.4796-01	1.1256+01 1.5006+00 -1.0156+02 -1.0006+02 3.4796-01 1.1256+01 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 1.5376+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 2.5376+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 2.5376+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 2.6967+02 3.3006+01 -1.2706+02 -1.0006+02 1.2806-01 1.4627+02 3.3006+01 -1.3306+02 -1.0006+02 1.2806-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 1.2806-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 2.8076+01 1.3306+02 -1.0006+02 3.4796-01 1.5006+01 1.3306+02 2.8076+01 1.3306+02 -1.0006+02 3.4796-01 3.4796-01 2.1256+01 1.4006+02 2.5006+00 -1.3306+02 3.4796-01 2.11256+01 1.5006+00 -1.2566+02 -9.9526+01	1.1256+01 1.5006+00 -1.0156+02 3.4796-01 1.1256+01 2.7006+01 -1.2706+02 3.4796-01 1.4621+02 2.7006+01 -1.2706+02 3.4796-01 1.5376+02 2.7006+01 -1.2706+02 3.4796-01 1.5376+02 2.7006+01 -1.2706+02 3.4796-01 1.5376+02 2.7006+01 -1.2706+02 3.4796-01 2.68076+02 2.7006+01 -1.2706+02 3.4796-01 1.1256+01 3.3006+01 -1.2706+02 -1.0006+02 3.4796-01 1.4526+02 3.3006+01 -1.2306+02 -1.0006+02 3.4796-01 3.4796-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 3.4796-01 2.8876+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 3.4796-01 2.8876+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 3.4796-01 2.1256+01 1.5006+01 -1.3306+02 -1.0006+02 3.4796-01 3.4796-01 2.11256+01 1.5006+01 -1.3306+02 -2.99556+01 3.4796-01 3.4796-01	1.1256+01 1.5006+00 -1.0156+02 -1.0006+02 3.4796-01 1.1256+01 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 1.6621+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 1.5376+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 2.5376+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 2.5376+02 3.3006+01 -1.2706+02 -1.0006+02 1.2806-01 1.1256+01 3.3006+01 -1.3306+02 -1.0006+02 1.2806-01 1.4526+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 2.8076+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 2.9006+01 -1.3306+02 -1.0006+02 3.4796-01 3.6716-01 1.1256+01 1.4406+02 -2.0006+02 3.4796-01 3.4796-01 2.11256+01 1.5006+01 -1.2656+02 9.9526+01 3.4856-01	1.1256+01 1.5006+00 -1.0156+02 -1.0006+02 3.4796-01 1.1256+01 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 1.5376+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 1.5376+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 2.5376+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 2.5376+02 3.3006+01 -1.2706+02 -1.0006+02 1.2806-01 1.1256+01 3.3006+01 -1.3306+02 -1.0006+02 1.2806-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 2.8076+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 2.8076+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 2.1256+01 1.4406+02 -2.0006+02 -5.6006+01 3.4856-01 2.1256+01 1.5006+01 -1.2656+02 -9.9546+01 3.4856-01 2.1256+01 2.7006+01 -1.2656+02 -9.9546+01 3.4966-01	1.1256+01 1.5006+00 -1.0156+02 -1.0006+02 3.4796-01 1.1256+01 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 1.5376+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 2.5376+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 2.6976+02 2.7006+01 -1.2706+02 -1.0006+02 3.4796-01 2.6976+02 3.3006+01 -1.2706+02 -1.0006+02 1.2806-01 1.1256+01 3.3006+01 -1.3306+02 -1.0006+02 1.2806-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 2.8076+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 2.8076+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 2.1256+01 1.4406+02 -2.0006+02 -9.9546+01 3.4856-01 2.1256+01 1.5006+01 -1.2656+02 -9.9546+01 3.4856-01 2.1256+01 2.7006+01 -1.2066+02 -9.9966+01 3.4966-01	1.125f+01 1.500f+00 -1.015f+02 -1.000f+02 3.479f-01 1.125f+01 2.700f+01 -1.270f+02 -1.000f+02 3.479f-01 1.537f+02 2.700f+01 -1.270f+02 -1.000f+02 3.479f-01 1.537f+02 2.700f+01 -1.270f+02 -1.000f+02 3.479f-01 1.537f+02 2.700f+01 -1.270f+02 -1.000f+02 3.479f-01 1.125f+01 3.300f+01 -1.270f+02 -1.000f+02 3.479f-01 1.452f+02 3.300f+01 -1.330f+02 -1.000f+02 3.479f-01 1.537f+02 3.300f+01 -1.330f+02 -1.000f+02 3.479f-01 1.537f+02 3.300f+01 -1.330f+02 -1.000f+02 3.479f-01 1.537f+02 3.300f+01 -1.330f+02 -1.000f+02 3.479f-01 1.125f+01 1.400f+02 -2.000f+02 -9.954f+01 3.485f-01 1.125f+01 1.256f+02 -9.954f+01 3.485f-01 3.479f-01 1.125f+01 1.250f+02 -9.954f+01 3.479f-01 3.479f-01 1.125f+01 1.250f+02 -9.994f+01 1.280f-01 3.479f-01	1.1256+01 1.5006+00 -1.0156+02 3.4796-01 1.1256+01 2.7006+01 -1.2706+02 3.4796-01 1.6627+02 2.7006+01 -1.2706+02 3.4796-01 2.5376+02 2.7006+01 -1.2706+02 3.4796-01 2.5376+02 3.7006+01 -1.2706+02 -1.0006+02 3.4796-01 2.5376+02 3.3006+01 -1.2706+02 -1.0006+02 3.4796-01 1.1256+01 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 2.8876+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 2.11256+01 1.4006+02 -2.0006+02 -9.9526+01 3.4866-01 2.11256+01 2.7006+01 -1.2566+02 3.4796-01 3.4866-01 2.11256+01 2.7006+01 -1.2566+02 3.4796-01 3.4866-01 2.11256+01 2.7006+01 -1.2566+02 <	1.125f+01 1.500f+00 -1.015f+02 -1.000f+02 3.479f-01 1.125f+01 2.700f+01 -1.270f+02 -1.000f+02 3.479f-01 1.537f+02 2.700f+01 -1.270f+02 -1.000f+02 3.479f-01 1.537f+02 2.700f+01 -1.270f+02 -1.000f+02 3.479f-01 2.690f+02 3.300f+01 -1.270f+02 -1.000f+02 3.479f-01 1.125f+01 3.300f+01 -1.330f+02 -1.000f+02 3.479f-01 1.537f+02 3.300f+01 -1.330f+02 -1.000f+02 3.479f-01 1.537f+02 3.300f+01 -1.330f+02 -1.000f+02 3.479f-01 1.537f+02 3.300f+01 -1.330f+02 -1.000f+02 3.479f-01 1.125f+01 1.500f+00 -1.330f+02 -1.000f+02 3.479f-01 1.125f+01 1.500f+00 -1.255f+02 3.479f-01 3.485f-01 1.125f+01 1.500f+00 -1.256f+02 3.479f-01 3.485f-01 1.125f+01 2.700f+01 -1.256f+02 3.479f-01 3.486f-01 1.125f+01 2.700f+01 -1.256f+02 -9.954f+01 3.486f-01	1.1256+01 1.5006+00 -1.0156+02 3.4796-01 1.2516+01 2.7006+01 -1.2706+02 3.4796-01 1.5376+02 2.7006+01 -1.2706+02 3.4796-01 1.5376+02 2.7006+01 -1.2706+02 3.4796-01 2.5376+02 3.7006+01 -1.2706+02 -1.0006+02 3.4796-01 2.6076+02 3.3006+01 -1.2706+02 -1.0006+02 1.2806-01 1.7556+01 3.3006+01 -1.3306+02 -1.0006+02 1.2806-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 2.8876+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 2.1256+01 1.4006+02 2.0006+02 3.4796-01 3.6716-01 1.1256+01 1.5006+01 -1.2006+02 3.4796-01 3.4856-01 1.1256+01 2.7006+01 -1.2066+02 3.4796-01 3.4856-01 2.1256+01 2.7006+01 -1.2066+02 3.4	1.1256+01 1.5006+00 -1.0156+02 3.4796-01 1.2516+01 2.7006+01 -1.2706+02 3.4796-01 1.5376+02 2.7006+01 -1.2706+02 3.4796-01 1.5376+02 2.7006+01 -1.2706+02 3.4796-01 2.5376+02 3.7006+01 -1.2706+02 -1.0006+02 3.4796-01 2.69076+02 3.3006+01 -1.2706+02 -1.0006+02 3.4796-01 1.7556+01 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.1256+01 1.4006+02 2.0006+02 3.4796-01 3.4856-01 1.1256+01 1.5006+01 -1.2066+02 3.4796-01 3.4856-01 1.1256+01 2.7006+01 -1.2066+02 3.4796-01 3.4856-01 1.1256+01 2.7006+01 -1.2066+02 3.	1.1256+01 1.5006+00 -1.0156+02 3.4796-01 1.2516+01 2.7006+01 -1.2706+02 3.4796-01 1.5376+02 2.7006+01 -1.2706+02 3.4796-01 1.5376+02 2.7006+01 -1.2706+02 3.4796-01 2.5376+02 3.3006+01 -1.2706+02 -1.0006+02 3.4796-01 2.6716+02 3.3006+01 -1.2706+02 -1.0006+02 3.4796-01 1.7556+01 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 2.8876+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.1256+01 1.406+02 -2.0006+02 -1.0006+02 3.4796-01 2.11256+01 1.5006+01 -1.2566+02 3.4796-01 3.4856-01 2.1256+01 2.7006+01 -1.2566+02 3.4796-01 3.4856-01 2.1256+01 2.7006+01 -1.2566+02 3.4796-01 3.4866-01 2.1256+01 2.7006+01 -1.2666+02 3.	1.1256+01 1.5006+00 -1.0156+02 3.4796-01 1.2516+01 2.7006+01 -1.2706+02 3.4796-01 1.5376+02 2.7006+01 -1.2706+02 3.4796-01 1.5376+02 2.7006+01 -1.2706+02 3.4796-01 2.5376+02 3.3006+01 -1.2706+02 -1.0006+02 3.4796-01 2.5376+02 3.3006+01 -1.2706+02 -1.0006+02 3.4796-01 1.4556+01 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.1256+01 1.4006+02 -2.0006+02 -1.0006+02 3.4796-01 1.1256+01 1.5006+01 -1.2566+02 3.4796-01 3.4856-01 1.1256+01 2.7006+01 -1.2566+02 3.4796-01 3.4856-01 1.1256+01 2.7006+01 -1.2566+02 3.4796-01 3.4866-01 1.1256+01 2.7006+01 -1.2666+02 3.	1.1256+01 1.5006+00 -1.0156+02 3.4796-01 1.2576+01 2.7006+01 -1.2706+02 3.4796-01 1.5376+02 2.7006+01 -1.2706+02 3.4796-01 2.5376+02 2.7006+01 -1.2706+02 3.4796-01 2.5376+02 3.3006+01 -1.2706+02 -1.0006+02 3.4796-01 2.5376+02 3.3006+01 -1.2706+02 -1.0006+02 3.4796-01 1.45276+01 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.5376+02 3.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.1256+01 1.3006+01 -1.3306+02 -1.0006+02 3.4796-01 1.1256+01 1.5006+00 -1.2556+02 3.4796-01 3.4856-01 1.1256+01 1.5006+01 -1.2566+02 3.4796-01 3.4866-01 1.1256+01 2.7006+01 -1.2566+02 3.4796-01 3.4866-01 1.1256+01 2.7006+01 -1.2566+02 3.4796-01 3.4866-01 2.12566+02 2.7006+01 -1.2566+02 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.125f+01 1.500f+00 -1.015f+02 -1.000f+02 3.479f-01 7.7 1.25f+01 2.700f+01 -1.270f+02 -1.000f+02 3.479f-01 7.7 1.55f+02 2.700f+01 -1.270f+02 -1.000f+02 3.479f-01 7.7 1.55f+02 2.700f+01 -1.270f+02 -1.000f+02 3.479f-01 7.7 1.55f+01 3.300f+01 -1.330f+02 -1.000f+02 3.479f-01 7.7 1.125f+01 1.300f+02 -2.000f+02 -2.000f+02 -3.479f-01 7.7 1.125f+01 2.700f+01 -1.270f+02 -9.954f+01 3.48f-01 7.7 1.125f+01 2.700f+01 -1.270f+02 -9.954f+01 3.48f-01 7.7 2.800f+01 1.125f+01 3.300f+01 -1.270f+02 -9.954f+01 3.49f-01 7.7 2.125f+01	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1.1251 + 01 \\ 1.251 + 02 \\ 2.7001 + 01 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 01 \\ 1.2701 + 02 \\ 2.7001 + 0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

•
DIGDI

8. 235E -01 6. 025E -01 6. 151E -01 6. 357E -01 6. 357E -01 6. 357E -01 6. 463E -01 6. 463E -01 6. 357E -01 6. 357E -01 6. 357E -01 6. 463E -01 6. 464
3.7066-01 2.7116-01 2.7686-01 2.856-01 2.8516-01 1.0706-01 1.0706-01 1.0706-01 2.9516-01 2.9516-01 2.9516-01 1.06316-01 1.06316-01 1.06316-01 2.95
1. 5006 +00 2. 7006 +01 2. 7006 +01 2. 7006 +01 3. 3006 +01 3. 3006 +01 3. 3006 +01 3. 3006 +01 3. 3006 +01 2. 7006 +01 2. 7006 +01 3. 3006 +01 3. 3006 +01 3. 3006 +01 3. 3006 +01 2. 7006 +01 3. 3006 +01 2. 7006 +01 3. 3006 +01 3. 3006 +01 2. 7006 +01 3. 3006 +01 3. 3006 +01 2. 7006 +01 3. 3006 +010 3. 3006 +010 +0000 +0000 +0000 +0000 +0000 +0000 +00000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +00
3.1116+01 3.1106+01 3.1116+0100000000000000000000000000000000

AR 020864

(

Table 15.--Partial listing of output to file 11 for example problem 2--Continued

5.8365-01 6.8355-01 6.3535-01 6.3535-01 6.3225-01 3.0335-01 5.6475-01 6.5385-01 6.5385-01 1.0005+00	3.657E-01 3.817E-01 3.826E-01 4.027E-01 4.059E-01 2.151E-01 4.219E-01 4.219E-01 1.000E+00 3.657E-01 3.815F-01 3.815F-01 3.815F-01 3.815F-01 3.815F-01 3.815F-01 3.815F-01 3.815F-01 4.042E-01 4.042E-01 4.201E-01 1.000E+000 1.000E+000 1.227E-01 1.000E+000
7.5066-01 3.06266-01 2.8596-01 2.8946-01 2.8456-01 1.2136-01 1.2136-01 1.1236-01 2.9916-01 2.9916-01 4.5006-01	1.646E-01 1.717E-01 1.712E-01 1.812E-01 1.826E-01 8.602E-02 1.913E-01 1.913E-01 1.913E-01 1.912E-01 1.717E-01 1.717E-01 1.806E-01 1.801E-01 1.801E-01 1.801E-01 1.902E-01 1.902E-01
-3.5456402 -2.5546402 -1.4846402 -1.8976402 -1.9046402 -1.4866402 -1.4866402 -1.6046402 -1.6956402 -3.5466401	-7.7276+03 -3.9688 +03 -3.9688 +03 -3.9688 +03 -2.1726 +03 -2.1726 +03 -7.9736 +03 -1.4456 +03 -1.4456 +03 -1.4456 +03 -3.8576 +03 -3.8576 +03 -3.8576 +03 -7.9926 +02 -1.4956 +03 -1.4956 +03 -1.4956 +03 -1.4236 +03 -1.4256 +03 -1.4456 +03 -1.4556 +03 -1.4556 +03 -1.4556 +03 -1.4556 +03 -1.4556 +03 -1.4556
-1.7946+02 -2.5746+02 -2.1746+02 -2.1746+02 -2.1746+02 -1.9166+02 -1.9346+02 -1.9346+02 -1.7956+02 -1.7956+02 -1.7956+02	-7.7296+03 -3.99556+03 -3.99556+03 -2.9956+03 -2.19956+03 -2.19956+03 -1.4786+03 -1.4786+03 -1.4786+03 -1.4786+03 -1.4766+03 -1.7506+03 -3.1246+03 -3.1246+03 -1.5286+03 -1.5286+03 -1.4566+03 -1.4566+03 -1.4566+03 -1.4566+03 -1.4566+03 -1.4566+03
1.440 ± 402 1.540 ± 402 2.700 ± 401 2.700 ± 401 2.700 ± 401 3.300 ± 401 3.300 ± 401 3.300 ± 401 3.300 ± 401 1.440 ± 402	1.500f+00 2.700f+01 2.700f+01 2.700f+01 3.300f+01 3.300f+01 3.300f+01 1.440f+02 1.500f+01 2.700f+01 2.700f+01 2.700f+01 3.300f+01 3.300f+01 3.300f+01 1.440f+02 1.440f+02
1.1256+01 1.1256+01 1.1256+01 1.4276+02 1.5376+02 1.5376+02 1.1256+01 1.46276+02 1.5376+02 1.5376+02 1.5376+02 1.1256+01 1.1256+01 1.1256+01 1.1256+01 1.1256+01	1.1256+01 1.1256+02 1.5376+02 1.5376+02 1.5376+02 1.1256+01 1.1256+01 1.1256+01 1.1256+01 1.1256+01 1.1256+01 1.1256+01 1.1256+01 1.4626+02 1.5376+02 1.5376+02 1.5376+02 1.5376+02 1.5376+02 1.5376+02 1.5376+02 1.5376+02 1.5376+02 1.5376+02 1.556+01 1.4526+01 1.4526+02 1.5376+02 1.5556+01 1.5556+01 1.5556+01 1.5556+01 1.5556+01 1.5556+02 1.5556+01 1.5556+02 1.5556+02 1.5556+02 1.5556+02 1.5556+02 1.5556+02 1.5556+01 1.5556+02 1.5556+01 1.5556+01 1.5556+01 1.5556+01 1.5556+02 1.5556+02 1.5556+01 1.5556+02 1.5556+01 1.5556+02 1.5556+01 1.5556+02000000000000000000000000000000000
4. 4055 +01 4. 4085 +01 4. 4085 +01 4. 4085 +01 4. 4085 +01 4. 4085 +01 4. 4085 +01 4. 4085 +01 4. 4085 +01 4. 4085 +01 4. 4085 +01	5.8786+01 5.8786+01 5.8786+01 5.8786+01 5.8786+01 5.8786+01 5.8786+01 5.8856+01 5.8856+01 5.8856+01 5.8856+01 5.8856+01 5.8856+01 5.8856+01 5.8856+01 5.8856+01
1 1244411 1 AAUPAUX - VARAUX - VARAUX - VOUL-01 - 4, 300L-01 - 1	1.1256+01 1.5006+00 -2.5746+02 -1.5566+01 5. 1.1256+01 2.7006+01 -1.7546+02 -1.4846+02 3.0626-01 6 1.4576+02 2.7006+01 -1.7546+02 -1.8726+02 2.8596-01 6 1.5376+02 2.7006+01 -2.1426+02 -1.7946+02 2.8956-01 6 1.5376+02 2.7006+01 -2.1746+02 -1.7946+02 2.8956-01 6 2.8876+02 2.7006+01 -2.1746+02 -1.9046+02 2.8456-01 6 1.1256+01 3.3006+01 -1.4916+02 -1.9046+02 1.2136-01 3 1.1256+01 3.3006+01 -1.91666+02 -1.4866+02 1.2136-01 2 1.4526+02 3.3006+01 -1.9346+02 -1.6046+02 2.9916-01 6 2.8877+02 3.3006+01 -1.9346+02 -1.6666+02 2.9426-01 6 2.8877+02 3.3006+01 -2.0256+02 -3.5466+01 4.5006-01 6

(

۰.

Table 15.--Partial listing of output to file 11 for example problem 2--Continued

3.5996-01 3.7066-01 3.7076-01 3.7276-01 3.7276-01	2,1066-01 4,1056-01 4,0906-01 1,0006+00 3,5996-01 3,7066-01	3.7276-01 3.7266-01 2.1246-01 2.1066-01 4.1056-01 4.0906-01 1.0006+00
1.619E-01 1.669E-01 10-3686-01 1.677E-01 1.677E-01	8.4985-02 8.4235-02 1.8475-01 1.8405-01 4.5005-01 1.6685-01 1.6685-01	1.677E-01 1.677E-01 8.497E-02 8.423E-02 1.847E-01 1.840E-01 4.500E-01
-1.0786+04 -6.1206+03 -6.0896+03 -5.5836+03 -5.5836+03	-9.040£+02 -1.135£+03 -1.819£+03 -1.880£+03 -4.775£+01 -1.079£+04	-5.5906+03 -5.5906+03 -5.5996+03 -9.6516+02 -1.1356+03 -1.8206+03 -1.88016+03 -1.8816+01 -4.7786+01
-1.0786+04 -6.1476+03 -6.1166+03 -5.6196+03	-9.9/06+02 -1.1686+03 -1.8526+03 -1.9136+03 -1.9186+02 -1.9186+03 -1.0796+04	-5.6266403 -5.6266403 -9.9816402 -1.16816403 -1.16816403 -1.9146403 -1.9146403
1.500E+00 2.700E+01 2.700E+01 2.700E+01 2.700E+01	3.3006+01 3.3006+01 3.3006+01 3.3006+01 1.4406+02 1.5006+01 2.7006+01	2.7006+01 2.7006+01 3.3006+01 3.3006+01 3.3006+01 3.3006+01 3.3006+01
1.1256+01 1.1256+01 1.1256+01 1.4626+02 1.5376+02 2.68976+02	1.1256+01 1.4626+02 1.5376+02 2.8876+02 1.1256+01 1.1256+01 1.1256+01	1.5926+02 2.8876+02 1.1256+01 1.4626+02 1.4626+02 1.5376+02 2.8876+02 2.8876+02 1.1256+01
7.691E+01 7.691E+01 10+3169.7 10+3169.7 10+3169.7 7.691E+01	7.691E+01 7.691E+01 7.691E+01 7.691E+01 7.700E+01 7.700E+01	7.7006+01 7.7006+01 7.7006+01 7.7006+01 7.7006+01 7.7006+01 7.7006+01

AR 020866

(

ĺ

REFERENCES CITED

Abramowitz, Milton, and Stegun, J.A., 1964, Handbook of mathematical functions and formulas, graphs, and mathematical tables: National Bureau of Standards, Applied Mathematics Series 55, 1,046 p.

Appel, C.A., 1976, A note on computing finite difference interblock transmissivities: Water Resources Research, v. 12, no. 3, p. 561-563.

- Arya, L.M., Blake, G.R., Farrell, D.A., 1975, A field study of soil water depletion patterns in the presence of growing soybean roots: III. Rooting characteristics and root extraction of soil water: Soil Science Society of America Proceedings, v. 39, p. 437-444.
- Baca, B.J., and King, I.P., 1978, Finite element models for simultaneous heat and moisture transport in unsaturated soils: Richland, Washington, Rockwell International, Inc., Rockwell Hanford Operations Group RHO-SA-31, 26 p.
- Baver, L.D., Gardner, W.H., and Gardner, W.R., 1972, Soil physics: New York, John Wiley, 497 p.
- Bristow, K.L., 1983, Simulation of heat and moisture transfer through a surface residue - soil system, Ph.D. thesis, Washington State University, Pullman, Washington, 129 p.
- Brooks, R.H., and Corey, A.T., 1964, Hydraulic properties of porous media: Fort Collins, Colorado State University Hydrology Paper no. 3, 27 p.
- Brutsaert, W. F., 1971, A functional iteration technique for solving the Richards equation applied to two dimensional infiltration problems: Water Resources Research, v. 7, no. 6, p. 1583-1516.
- Campbell, G.S., 1977, An introduction to environmental biophysics: New York, Springer Verlag, 159 p.
- Carslaw, H.S., and Jaeger, J.C., 1959, Conduction of heat in solids: Oxford, England, Oxford University Press, 510 p.
- Cooley, R.L., 1971, A finite difference method for unsteady flow in variably saturated porous media--Application to a single pumping well: Water Resources Research, v. 7, no. 6, p. 1607-1625.

1983, Some new procedures for numerical simulation of variably saturated flow problems: Water Resources Research, v. 19, no. 5, p. 1271-1275.

- Davis, L.A., and Neuman, S.P., 1983, Documentation and users guide--
- UNSAT2-Variably saturated flow model: U.S. Nuclear Regulatory Commission NUREG/CR-3390, 200 p.
- Duke, H.R., 1973, Drainage design based upon aeration: Fort Collins, Colorado State University Hydrology Paper 61, 59 p.
- Edelfson, N.E., and Anderson, A.B.C., 1953, Thermodynamics of soil moisture: Hilgardia, v. 15, no. 8, 298 p.
- Finlayson, B.A., 1980, Nonlinear analysis in chemical engineering: New York, McGraw-Hill, 366 p.
- Finlayson, B.A., Nelson, R.W., and Bruce, R.G., 1978, A preliminary investiation into the theory and techniques of modeling the natural moisture movement in unsaturated sediments: Richland, Washington, Rockwell International, Inc., Rockwell Hanford Operations Energy Systems Group, 144 p.
- Freeze, R.A., 1971, Three dimensional transient saturated-unsaturated flow in a groundwater basin: Water Resources Research, v. 7, p. 347-366. 1975, A stochastic - conceptual analysis of one-dimensional
 - groundwater flow in nonuniform homogeneous media: Water Resources Research, v. 11, no. 5, p. 725-741.

Gardner, W.R., 1958, Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table: Soil

Science, v. 85, no. 4, p. 228-232. Haverkamp, R., and Vauclin, M., 1979, A note on estimating finite difference interblock hydraulic conductivity values for transient unsaturated flow

problems: Water Resources Research, v. 15, no. 1., p. 181-187. Haverkamp, R., Vauclin, M., Tovina, J., Wierenga, P.J., and Vachaud, G., 1977,

A comparison of numerical simulation models for one-dimensional infiltration: Soil Science Society of America Proceedings, v. 41, p. 285-294.

Hedstrom, W.E., Corey, A.T., and Duke, H.R., 1971, Models for subsurface drainage: Colorado State University Hydrology Paper 48,-56 p.

Hillel, Daniel, 1971, Soil and water-physical principles and processes: New York, Academic Press, 288 p.

Jackson, R.D., Reginato, R.J., and van Bavel, C.H.M., 1965, Comparison of measured and calculated hydraulic conductivities of unsaturated soils:

Water Resources Research, v. 1, no. 3, p. 375-380.

Jensen, M.E., 1973, Consumptive use of water and irrigation water requirements: New York, American Society of Civil Engineers, 215 p.

King, L.G., and Hanks, R.J., 1973, Irrigation management for control of quality of irrigation return flow: U.S. Environmental Protection Agency

Report EPA RZ-73-765, 307 p. Kirkham, Don, and Powers, W.L., 1972, Advanced soil physics: New York,

Wiley-Interscience, 533 p. Laliberte, G.E., Corey, A.T., and Brooks, R.H., 1966, Properties of unsaturated porous media: Fort Collins, Colorado State University

Hydrology Paper 17, 40 p. Lappala, E.G., 1981, Modeling of water and solute transport under variably

saturated conditions--State of the art: Modeling and Low-Level Waste Management--An Interagency Workshop, Denver, Colorado, December 1980, Proceedings, p. 81-137.

Marshall, T.J., 1958, A relationship between permeability and size distribution of pores: Journal of Soil Science, v. 9, no. 1, p. 1-8.

Millington, R.J., and Quirk, J.R., 1961, Permeability of porous solids:

Transactions Faraday Society, v. 57, p. 1200-1206. Molz, F.J., 1981, Models of water transport in the soil-plant system--A

review: Water Resources Research, v. 17, no. 5, p. 1245-1260.

Mualem, Yekzekial, 1976, A new model for predicting the hydraulic conductivity of unsaturated porous media: Water Resources Research,

v. 12, no. 3, p. 513-515. Narasimhan, T.N., and Witherspoon, P.A., 1977, Numerical model for saturated-unsaturated flow in deformable porous media, 1--Theory: Water

Resources Research, v. 13, no. 3, p. 657-664. Neuman, S.P., 1975, Galerkin method of simulating water uptake in plants, in

Vansteenkiste, G.C., ed., Modeling and simulation of water resources systems: Amsterdam, Netherlands, North Holland Publishing Company,

Nobel, B., 1969, Applied linear algebra: New York, Prentice Hall, 523 p.

Norman, J.M., and Campbell. G.S., 1983, Application of a plant-environment model to problems in irrigation, in Advances in Irrigation, v. 2, Hillel, D., ed.: New York, Academic Press, p. 103-144.

Prill, R.C., Johnson, A.I., and Morris, D.A., 1965, Specific yield--Laboratory experiments showing the effect of time on column drainage: U.S. Geological Survey Water-Supply Paper 1662-B, 55 p.

Ripple, C.D., Rubin, Jacob, and van Hylckama, T.E.A., 1972, Estimating steady-state evaporation rates from bare soils under conditions of high water table: U.S. Geological Survey Water Supply Paper 2019-A, 39 p.

Rubin, Jacob, 1966, Theory of rainfall uptake by soils initially drier than their field capacity and its applications: Water Resources Research, v. 4, no. 4, p. 739-749.

Rubin, Jacob, and Steinhardt, R., 1964, Soil-water relations during rain infiltration, III--Water uptake in incipient ponding: Soil Science Society of America Proceedings, v. 28, p. 614-619.

Smith, R.E., 1972, The infiltration envelope--Results from a theoretical infiltrometer: Journal of Hydrology, v. 17, p. 1-21.

- Stallman, R.W., 1964, Multiphase fluids in porous media--A review of theories pertinent to hydrologic studies: U.S. Geological Survey Professional Paper 111E, 51 p.
- Sudar, R.A., Kaxton, K.E., and Spomer, R.G., 1981, A predictive model of water stress in corn an soybeans: Transactions of the American Society of Agricultural Engineers, v. 24, p. 97-192.
- Theis, C.V., 1935, The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage: Transactions of the American Geophysics Union, part 2, p. 519-524.
- Trescott, P.C., Pinder, G.F., and Larson, S.P., 1976, Finite-difference model for aquifer simulation in two dimensions with results of numerical experiments: U.S. Geological Survey Techniques of Water-Resources Investigations, bk. 7, chap. C1, 116 p.

van Genuchten, M.Th., 1980, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils: Soil Science of America Proceedings, v. 44, no. 5, p. 892-898.

Vachaud, G., 1966, Verification de la loc de Darcy generalisee et determination de la conductivite capillaire partir d'une infiltration horizontal, International Association of Scientific Hydrology, v. 82, p. 277-292.

von Rosenberg, D.U., 1969, Methods for the numerical solution of partial differential equations: New York, Elsevier Publishing Company, 128 p.

Wiebe, H.H., Campbell, G.S., Gardner, W.H., Rawlins, S.L., Cary, J.W., and Brown, R.W., 1971, Measurement of plant and soil water status: Utah Agricultural Experiment Station Bulletin 484, 71 p. DOCUMENTATION OF COMPUTER PROGRAM VS2D TO SOLVE THE EQUATIONS OF FLUID FLOW IN VARIABLY SATURATED POROUS MEDIA

By E. G. Lappala, R. W. Healy, and E. P. Weeks

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 83-4099

Ξ.

4

Denver, Colorado 1987

• •

DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director

For additional information write to:

Edwin Weeks U.S. Geological Survey Box 25046, MS 413 Denver Federal Center Denver, CO 80225 Copies of this report can be purchased from:

U.S. Geological Survey Books and Open-File Reports Section Federal Center Box 25425 Denver, CO 80225

	Page
Abstract	1
Introduction	2
Theoretical development	3
Conservation of mass	· 3
Fluid-flux equation	4
Storage term	9
Initial conditions	10
Boundary conditions	10
Infiltration and ponding	10
Evaporation	12
Evapotranspiration	13
Seepage faces	15
Source-sink terms	15
Nonlinear coefficient functions	16
Liquid saturation	17
Specific moisture capacity	22
Relative hydraulic conductivity	23
Numerical solution	27
Spatial discretization	27
Intercell averaging of conductance terms	29
Saturated hydraulic conductivity	30
Relative hydraulic conductivity	32
Temporal discretization	33
Linearization	34
Time-step limitation	35
Matrix solution	35
Initial conditions	37
Boundary conditions	37
Specified flux and potential	37
Infiltration	38
Evaporation	39
	43
Seepage faces	44
Source-sink terms	47
Nonlinear coefficient evaluation	47
Liquid-flux and mass-balance computations	48
Computer program	48
Program structure	48 ·
Input data	53
Subroutine descriptions	53
File definition	66
Model verification	66
Example problems	74
Example problem 1	74
Example problem 2	93
References cited	129
Attachment 1. Program listing	132
Attachment 7 - Program flow shows -	183

CONTENTS

. -

f

FIGURES

		Pa
Figure	Sketch showing general volume element, v, used for	
•	developing a fluid mass balance	
	Diagram showing relations among capillary, elevation, and	
	total potentials for downward flux through layered media	
	with a perched water table and a deep water table	
	Diagram showing infiltration and evaporation as two-	
	stage processes	
	Graph showing examples of root-activity functions	
	- Cross section showing examples of seepage faces	
	6-9. Graphs showing:	
	6. Comparison of Haverkamp equation fit to experimental	
	data of moisture content versus pressure head for	
	a sand and for a light clay	
	7. Comparison of Brooks and Corey equation fit to	
	experimental data of moisture content versus	
	pressure head for a sand and for a light clay	
	8. Specific moisture capacity as a function of	
	pressure head for a sand and a light clay:	
	A. As computed using the Brooks-Corey formulation	
	B. As computed using the Haverkamp formulation	
	9. Comparison of three functions to experimental	
	data relating relative hydraulic conductivity	
	to pressure potential for:	
	A. A sand (soil no. 4, table 1)	
	B. A light clay (soil no. 11, table 1)	
	Diagram showing rectangular and cylindrical coordinates and	
	grid-block systems	
	1-12. Graphs showing:	
	11. Accuracy of arithmetic and harmonic means in	
	estimating saturated intercell hydraulic	
	conductivities for a linear spatial variation	
	- of conductivity and constant grid spacing	
	12. Accuracy of several intercell weighting schemes for	
	unsaturated hydraulic conductivity in estimating	
	cumulative infiltration in a sand column with	
	ponded upper boundary	
	Sketch showing the reference plane from which the depth of	
	ponding, POND, is measured:	
	4-24. Graphs showing:	
	14. Ponding time as a function of relative rainfall	
	rate for a sand (soil no. 4, table 1) for two different initial conditions	
	15. Variation of evaporation rate from the surface of a	
	column of sand (soil no. 4, table 1), 1-meter deep,	
	for different potential evaporation rates	4
	16. Pressure-head profiles following transpiration from	
	shallow-rooted plants in sand (soil no. 4, table 1)	
	underlain by an impermeable bed at 1.8 meters	4

Figures	14-24	Graphs showing:Continued	Page
Figure		Pressure-bead profiles following transpiration from	
TTRATC	±1.	shallow-rooted plants in sand (soil no. 4, table 1)	
•		in the presence of a shallow water table at	
		1.2 meters	45
•	18	Evapotranspiration rate as a function of time for	43
	10.	transpiration by shallow-rooted plants in the	
		presence and absence of a shallow water table	:6
	10	Comparison of analytical and numerical solutions	. 0
		for one-dimensional linear diffusion	68
	20.		00
		for one-dimensional radial flow to a well in a	
		confined aquifer	69
	21.	•	09
		measured by Haverkamp and others (1977, p. 285)	
		for one-dimensional vertical infiltration	71
	22.	Comparison of effects of using different methods for	1
		determining interblock relative hydraulic conduc-	
		tivity in vertical infiltration problems	72
٠	23.	Comparison of simulated and measured location of	· •
	•	the free-water surface for the drainage problem	
	,	of Duke (1973)	73
	24.	Comparison of pressure head profiles at the left hand	
		boundary as computed by VS2D and Davis and Neuman	
		(1983) for the drainage problem of Duke (1973)	74
25	5. Sche	matic view of vertical section for example problem 1	93
	26-27.	Graphs showing:	
	26.	Pressure-head profiles at four locations for	
		example problem 2	94
	27.	t	
		functions of time for example problem 2	95

TABLES

Table	1.	Values for 11 soils of residual moisture content, scaling length, and pore-size distribution parameter that best fit three different models to measured moisture content versus pressure head	Page
	2.	Definitions of variables	20 49
	3.	Input data formats	54
	4.	-	70
	5.	Input data for example problem 1	70
	6.	Partial listing of output to file 6, the main output file, for example problem 1	
	7.	Partial listing of output to file 8 for example problem 1	78 87
	8.	Partial listing of output to file 9 for example problem 1	
	9.	Partial listing of output to file 11 for example problem 1	90 91
3	10.	Input data for example problem 2	
1	11.	Partial listing of output to file 6, the main output file,	96
1	12.	Partial listing of output to file 7 for example problem 2	98 119

Table	 Partial listing of output to file 8 for example problem 2 120 Partial listing of output to file 9 for example problem 2 122 Partial listing of output to file 11 for example problem 2 125
	LIST OF SYMBOLS
A	= area of grid-block face, L ²
Α'	= scaling length in Haverkamp relative hydraulic conductivity function, L
[A]	= coefficient matrix
[Ā]	= linear equivalent of [A]
В'	= exponent in Haverkamp relative hydraulic conductivity function, L°
[B]	= matrix containing all conductance terms of $[\overline{A}]$
сш	= specific moisture capacity, L ⁻¹
ເ	= mass concentration of solutes in liquid in Van't Hoff Law, ML^{-3}
Ĉ	= conductance to liquid across a grid-block face, $ML^{-1}T^{-1}$
ĉ	= volumetric lumped storage term for a given cell, ML^{-1}
D	= ratio between hydraulic conductivity and specific storage, or hydraulic diffusivity, for saturated systems, L ² T ⁻¹
Eœ	= evaporation rate from bare soil overlying shallow water table, LT ⁻¹
EV	= evaporation rate, LT^{-1}
f ₁	= specified-liquid-flux function, MT^{-1}
f ₂	= specified-total-potential function, L
g	= gravitational acceleration, LT^{-2}
G	= arbitrary function
[G _s]	= diagonal matrix of storage terms, used in Newton-Raphson linearization
h	= relative humidity of soil gas, L°
ha	= relative humidity of air, L°
́ Ь	= pressure potential expressed as the height of a column of water, L
₽₽	= bubbling or air-entry pressure potential, L
Ъ _щ	= pressure potential of water in soil in block m surrounding a root, L
Ъ _о	= osmotic pressure potential, L

Table 13. Partial listing of output to file 8 for example problem 2----

h pond = pressure potential corresponding to depth of ponding, L

h = pressure potential in plant root, L

h_z

= elevation or position potential, L

AR 020875

Page

120

vi

H	= total potential, L
H _A	= water pressure potential of the atmosphere, L
$\mathtt{H}^{\star^{k}}$	= residual vector at kth iteration
HKLL	= lumped harmonic mean saturated hydraulic conductivity term for left side of finite-difference cell, L ² T ⁻¹
HKTT	= lumped harmonic mean saturated conductivity term for top side of finite-difference cell, L^2T^{-1}
i	= index to time steps, L°
j	= index to finite-difference grid in the horizontal (x or r) direction, L°
k	= reference index to a face of grid block, L°
Ŕ	= intrinsic permeability, L ²
ĸ	= saturated hydraulic conductivity, LT^{-1}
K _{xx} , K _z	z = saturated hydraulic conductivity in the x and z directions, LT^{-1}
Ŕ	= linearized unsaturaturated hydraulic conductivity, LT^{-1}
K _r	= relative hydraulic conductivity to liquid, L°
L	= length of horizontal column, L
Mw	= mass of a mole of water, $M Mol^{-1}$
	= reference index to an arbitrary grid block, L
m	= dimension of coefficient matrix equal to the number of rows times the number of columns
<u> </u>	= number of faces in arbitrary grid block
D .	<pre>= number of volume subdivisions in column</pre>
n	= index to finite-difference grid in the vertical (z) direction, L°
<u>∎</u>	= general coordinate direction, L°
₽ ₽	= water-vapor pressure in the soil atmosphere, $ML^{-1}T^{-2}$
Р _о	= saturated water-vapor pressure over a flat surface of pure water, $ML^{-1}T^{-2}$
P	= average water pressure, $ML^{-1}T^{-2}$.
PEV	= potential evaporation rate, LT^{-1}
PET	= potential evapotranspiration rate, LT ⁻¹
Q	= evapotranspiration flux from a surface area, MT ⁻¹
q	= volumetric flux per unit volume, T ⁻¹
ĝ	= volumetric discharge, L ³ T ⁻¹
g <u></u> ⊒	= liquid flux to roots in block m , MT^{-1}
r	= radial coordinate, L
rc	= radius of a capillary tube, L

r(z,t)	= root activity factor, L^{-2}
R	= ideal gas constant, ML ² T ⁻² K ⁻¹ Mol ⁻¹
R	= resistance of soil in block m, TL
Rroot	= resistance of root system, TL
RHS	= vector containing all known quantities in flow equation
S s	= specific storage, L ⁻¹
S	= liquid saturation, L°
5	= surface of an arbitrary volume, L ²
s e	= effective saturation, L°
t	= time, T
t pond	= ponding time, T
Ţ	= absolute temperature, K
ک م	= liquid flux normal to n, LT^{-1}
v	= volume of a grid block, L^3
w k	= damping factor, computed for the kth iteration, used in SIP, L°
W	= surface flux rate, LT ⁻¹
X	= horizontal coordinate, L
У	= horizontal coordinate direction orthogonal to x and z, L
× Z	= vertical coordinate, positive downward, L
α.	<pre>= scaling length in Haverkamp equation relating saturation to pressure, L</pre>
°c	= matrix compressibility, LT ² M ⁻¹
α'	<pre>= scaling length in van Genuchten equation relating saturation to pressure, L</pre>
â	= contact angle between liquid and solid
ā, Ē	<pre>= weighting coefficients for upstream weighting for hydraulic conductivity, L^o</pre>
β	= exponent in Haverkamp equation relating saturation to pressure, L
β'	= exponent in van Genuchten equation relating saturation to pressure, L°
β _c	= liquid compressibility, LT ² M ⁻¹
β _s	= damping factor used in SIP algorithm, L°
Y	= second exponent in van Genuchten equation, L°
λ	= pore size distribution index in Brooks-Corey equation, L°
ρ	= liquid mass density, MI-3
ō	= surface tension of liquid against air, MT ⁻²

AR 020877

(

(

viii

METRIC CONVERSION FACTORS

The International System of Units (SI) used in this report may be converted to inch-pound units by the following conversion factors:

Multiply	By	To obtain
centimeter (cm)	.03281	foot
centimeter (cm)	.3937	inch
gram (gm)	.002205	pound
kilopascal (kPa)	.01450	pound per square inch
meter (m)	3.281	foot
millimeter (mm)	.03937	inch

To convert degree Celsius (°C) to degree Fahrenheit (°F), use the following formula: (°Cx9/5)+32=°F. To convert Kelvin (K) to degree Rankin (°R), use the following formula: Kx1.8=°R.

DOCUMENTATION OF COMPUTER PROGRAM VS2D TO SOLVE THE EQUATIONS

OF FLUID FLOW IN VARIABLY SATURATED POROUS MEDIA

By E. G. Lappala, R. W. Healy, and E. P. Weeks

ABSTRACT

This report documents a computer code for solving problems of variably saturated, single-phase flow in porous media. The mathematical model of this physical process is developed by combining the law of conservation of fluid mass with a nonlinear form of Darcy's law. The resultant mathematical model, or flow equation, is written with total hydraulic potential as the dependent variable. This allows straightforward treatment of both saturated and unsaturated conditions. The spatial derivatives in the flow equation are approximated by central differences written about grid-block boundaries. Time derivatives are approximated by a fully implicit backward scheme. Nonlinear storage terms are linearized by an implicit Newton-Raphson method. Nonlinear conductance terms, boundary conditions, and sink terms are linearized implicitly. Relative hydraulic conductivity is evaluated at cell boundaries by using full upstream weighting, the arithmetic mean, or the geometric mean of values from adjacent cells. Saturated hydraulic conductivities are evaluated at cell boundaries by using distance-weighted harmonic means. The linearized matrix equations are solved using the strongly implicit procedure.

Nonlinear conductance and storage coefficients are assumed to be represented by one of three closed-form algebraic equations. Alternatively, these values may be interpolated from tabulated data. Nonlinear boundary conditions treated by the code include infiltration, evaporation, and seepage faces. Extraction by plant roots is included as a nonlinear sink term.

The code is written in standard ANSI Fortran. Extensive use of subroutines and function subprograms provides a modular code that is easily modified. A complete listing of data-input requirements and input and output for a one-dimensional infiltration problem and for a two-dimensional problem involving infiltration, evaporation, and evapotranspiration (plant-root extraction) are included.

INTRODUCTION

This report documents VS2D, a computer program for simulating isothermal, two-dimensional movement of liquid water in variably saturated porous media. Understanding the occurrence and movement of water in variably saturated systems is important for developing predictive tools for managing both quantity and quality of ground water within ground-water flow systems. Recharge to aquifer systems generally occurs through overlying materials that are variably saturated. Land-use activities may alter both quantity and quality of recharge. Prediction of the fate of pollutants applied to the land surface or buried above the zone of permanent saturation requires estimates of the rate of moisture movement. VS2D provides a user-oriented tool for examining such problems. Although an attempt has been made to make the model general enough to handle many field situations, its use should be accompanied by a thorough understanding of the theoretical and practical limitations described herein. Field applications exist for which the model is not appropriate; an example would be evapotranspiration in which significant anisothermal movement of water vapor as well as liquid water occurs. However, such problems can be analyzed by modifying the basic isothermal model. This model does not include solution of the equations for movement of solutes.

The code has been verified for two one-dimensional transient linear problems and one one-dimensional steady-state nonlinear problem for which analytical solutions exist, and against two nonlinear problems for which experimental data exist.

An extensive review (Lappala, 1981) of the literature on numerical modeling of variably saturated flow was conducted during the development of this program. Based on this review, the model was developed to include the following features:

1. Capability to handle problems in which part of the mathematical solution domain is saturated and part is unsaturated.

2. Capability to handle "difficult" nonlinear problems, such as those caused by infiltration into dry soils and by discontinuities in permeabilities and porosities. This capability is best met by using finite differences to discretize the spatial and temporal domains. Adequate solutions of nonlinear equations using finite-element discretization in space require such numerical tricks as lumping the capacity (storage) term over each element. The upstream weighting of relative hydraulic conductivities that may be required to prevent numerical oscillations is more difficult with finite elements than with finite differences. Finally, the algebraic equations resulting from a finite-element spatialdiscretization scheme generally require more computer core storage and time to solve than those resulting from a finite-difference scheme (Lappala, 1981).

3. Capability to analyze problems in one and two dimensions with planar or cylindrical geometries.

4. A modular structure to simplify program modification. These features are described more completely below. (

THEORETICAL DEVELOPMENT

The equation that describes the movement of liquid water under isothermal and isohaline conditions is developed by combining the equation for conservation of mass for water with auxiliary equations for fluid flux and storage.

Conservation of Mass

Given a volume of porous medium, v, bounded by a surface s as shown in figure 1, conservation of mass for liquid water requires that the following equation be satisfied:

$$\int_{\nabla} \frac{\partial(\rho s \phi)}{\partial t} dv + \int_{\overline{s}} \rho \tilde{u}_{n} d\overline{s} - \int_{\nabla} \rho q dv = 0 , \qquad (1)$$

where:

ρ

- = liquid density, ML^{-3} ;
- s = liquid saturation, L°;
- φ = porosity, L°;
- t = time, T;
- $u_n =$ liquid flux per unit area in the direction n, which is normal to s, LT^{-1} ; and
- q = volumetric source-sink term accounting for liquid added to
 (+q) or taken away from (-q) the volume v, per unit volume
 per unit time, T⁻¹.

Equation 1 states that the rate of change of mass stored in v must be balanced by the sum of liquid flux across the surface boundary of v and of liquid added by sources or removed at sinks.

It is assumed that the volume v is small enough that within v, the liquid density (ρ) , saturation (s), and porosity (ϕ) can be considered constant "representative" values, so that the first term of equation 1 can be expressed as:

$$\int_{\nabla} \frac{\partial(\rho s \phi)}{\partial t} dv = v \frac{\partial(\rho s \phi)}{\partial t} ,$$

and the third term as:

Equation 1 becomes:

$$v \frac{\partial(\rho s \phi)}{\partial t} + \int \rho \frac{\partial}{\partial u_n} d\bar{s} - \rho q v = 0.$$
 (2)

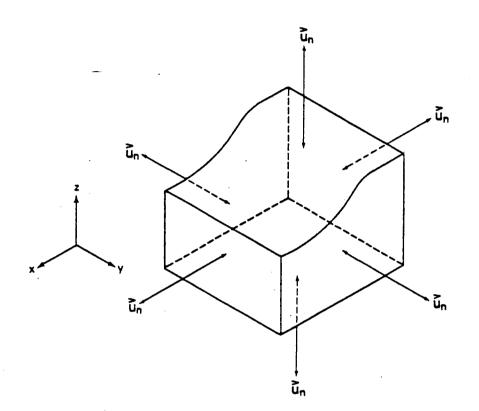


Figure 1.--General volume element, v, used for developing a fluid mass balance. (u is liquid flux normal to face.)

Fluid-Flux Equation

The fluid flux normal to the surface s bounding v is described by Darcy's law extended to variably saturated conditions:

$$\hat{\mathbf{x}}_{n} = - \frac{\bar{\mathbf{K}}\mathbf{x}_{r}(\mathbf{h})\rho_{g}}{\mu} \frac{\partial \mathbf{H}}{\partial n}, \qquad (3)$$

AR 020882

(

where:

Ē

H

= intrinsic permeability of the medium, L^2 ;

- - h = pressure head, L;
 - g = gravitational acceleration, LT^{-2} ;
 - μ = dynamic viscosity of the liquid, ML⁻¹T⁻¹; and
 - = total potential of the liquid, expressed as the height of a column of the liquid, L.

The saturated hydraulic conductivity, K, commonly used as a lumped term in hydrology is

$$K = \frac{\bar{K} \rho g}{\mu}$$
, LT^{-1} .

Because density and viscosity are assumed to be constant in the program, saturated hydraulic conductivity is used as a medium property in the remainder of this report, rather than intrinsic permeability. However, dynamic viscosity, μ , for water is strongly temperature dependent, changing by about 3 percent per °C in the common ambient temperature range. The program user should take this temperature dependence into account when formulating his simulation problem.

The effective hydraulic conductivity defined as KK (h), LT^{-1} , is sometimes used as the lumped conductivity term; however, in this program K is determined by a function call, so the two terms (K and K_r) are maintained as separate entities.

Under variably saturated conditions, total hydraulic potential, H, is comprised of two components:

$$\mathbf{H} = \mathbf{h} + \mathbf{h}_{\mathbf{r}} , \qquad (4)$$

where: h_ = elevation potential, L.

Below the water table, the pressure potential is proportional to the weight of the overlying water and increases with depth. Above the water table, water is held in porous media by adsorptive and capillary forces. Flow under unsaturated conditions generally occurs only when water is held by capillary forces, which can be illustrated by the capillary-rise equation (Stallman, 1964):

$$h = \frac{2 \sigma \cos \hat{\alpha}}{r_c \rho g} ,$$

(5)

where:

- $\bar{\sigma}$ = surface tension of water against the gas phase, MT^{-2} ;

r = radius of the capillary, L.

The capillary-rise principle embodied in equation 5 adequately describes the occurrence and movement of water in relatively coarse-grained materials, such as silt, sand, and gravel. However, if the media contain a large fraction of clay-size material, adsorption forces-may be dominant in controlling the occurrence and movement of water.

Pressure head below the water table is often measured in piezometers or wells. Above the water table, small negative pressure heads (less than about 100 kPa) can be measured by using tensiometers, which couple the measuring fluid in a manometer, vacuum gage, or pressure transducer to water in the partially saturated medium through a porous membrane. The operation of tensiometers is described in various soil physics texts, including Hillel (1971), Baver and others (1972), and Kirkham and Powers (1972).

The pressure status of water held under large negative pressure (greater than 100 kPa) may be measured using thermocouple psychrometers (Wiebe and others, 1971), which measure the relative humidity of the gas phase within the medium. Determination of pressure head from a thermocouple psychrometer measurement is made using the thermodynamic relation, commonly called the Kelvin equation, developed by Edelfson and Anderson (1943, p. 145):

$$h = \frac{RT}{M_w g} \ell_n \quad \frac{\bar{p}}{\bar{p}} = \frac{RT}{M_w g} \ell_n (h)$$
(6)

where:

R

T = absolute temperature, °K; M = mass of water, M Mol⁻¹; P = water-vapor pressure in the soil atmosphere, $ML^{-1}T^{-2}$; P = vapor pressure over a flat surface of pure water; and h = relative humidity, L°.

= ideal gas constant, ML²T⁻²°K⁻¹ Mol⁻¹;

Other symbols were defined previously.

Thermocouple psychrometers measure the combined hydraulic and osmotic potential (described hereafter), and thus may result in measured potentials at variance with those measured by tensiometers.

Elevation potential, h, is a measure of the gravitational potential resulting from position relative to a selected reference datum. The convention used in this report is taken as z being positive upward, with the datum at or above the land surface; thus, elevation potential is always negative.

6

XV A AR 020884

The model solves for the total hydraulic potential, H, as the principal dependent variable. As such, the individual components of H are not solved for explicitly. However, model applications to field situations should be made using equations 4 through 7 to gain an adequate understanding of the relation between field measurements of components of H and the simulated values.

If osmotic membranes and chemical gradients are present, water may move in response to osmotic potential, as well as to hydraulic potential. The magnitude of the osmotic potential across a perfect membrane is given by the Van't Hoff law (Campbell, 1977, p. 26):

$$h_{o} \cong \frac{CRT}{g}$$
, (7)

where:

 $h_o = osmotic potential, L; and C = molal solute concentration, Mol M⁻¹.$

Osmotic potential affects movement in the liquid phase only when an osmotic membrane is present. However, the liquid-water surface acts as such a membrane to the vapor phase, and relative humidity will be affected by the concentration of solutes in the liquid phase. Modeling of water movement due to osmotic-potential gradients would require the inclusion of solute concentrations within the liquid, membrane properties of the medium, and possibly movement in the vapor phase. Although this program does not include provision for such modeling, the effects of osmotic potential on water movement in the prototype system should be considered when formulating the simulation model.

Total hydraulic potential, H, was chosen as the principal independent variable because it allows a simple unified treatment of both saturated and unsaturated conditions. Interfaces between saturated and unsaturated regions are surfaces where the pressure potential is equal to the atmospheric pressure potential, or zero. Along these interfaces, the total potential equals the elevation potential (fig. 2).

When equation 3 is substituted into equation 2, the following results:

$$v \frac{\partial(\rho s \phi)}{\partial t} - \int \rho K K_r(h) \frac{\partial H}{\partial h} d\bar{s} - \rho q v = 0 , \qquad (8)$$

where all terms are reducible to units of mass per unit time (MT^{-1}) .

If all the quantities under the surface integral can be considered constant over each of \hat{m} faces of a general curvilinear polygonal volume, v, such as a cube or cylinder, equation 8 can be approximated by:

$$\frac{\partial(\rho s \phi)}{\partial t} - \sum_{k=1}^{m} \rho K K_{r}(h) A_{k} \frac{\partial H}{\partial n_{k}} - \rho q v = 0 ,$$
 (9)

where A_k is the area of the kth face to which n_k is orthogonal.

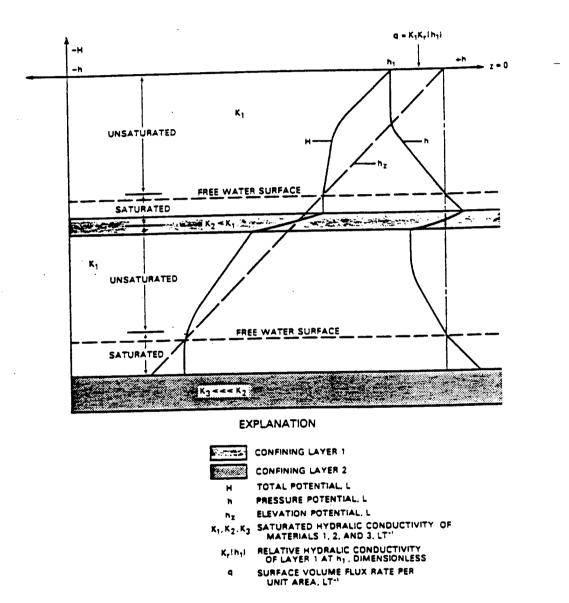


Figure 2.--Relations among capillary, elevation, and total potentials for downward flux through layered media with a perched water table and a deep water table.

AR 020886

Storage Term

Liquid water held in storage is expressed by the first term in equation 8 and can be expanded as follows using the product rule:

$$\mathbf{v} \frac{\partial(\rho s \phi)}{\partial t} = \mathbf{v} \left[\rho \phi \left(\frac{\partial s}{\partial t} \right) + \rho s \left(\frac{\partial \phi}{\partial t} \right) + s \phi \left(\frac{\partial \rho}{\partial t} \right) \right]. \tag{10}$$

The three terms in parentheses on the right-hand side of equation 10 account for changes in liquid stored in v owing to: (1) Changes in liquid saturation, (2) compression or expansion of pore space of the porous medium; and (3) compression or expansion of the liquid.

Because the principal dependent variable used in the model is total hydraulic potential, H, the storage terms are written in terms of H by using the chain rule of calculus to yield:

$$\mathbf{v} \frac{\partial(\rho s \phi)}{\partial t} = \mathbf{v} \left[\rho \phi \left(\frac{\partial s}{\partial H} \right) + \rho s \left(\frac{\partial \phi}{\partial H} \right) + s \phi \left(\frac{\partial \rho}{\partial H} \right) \right] \frac{\partial H}{\partial t} . \tag{11}$$

The functional dependence of s, ϕ , and ρ on H is taken to be independent of all components of H except the pressure potential, h. The following expressions can be defined:

$c_m = \frac{\partial O}{\partial h}$	= specific moisture capacity, which is the slope of the moisture retention curve, L ⁻¹ ;	
$\alpha_{c} = \frac{\partial \phi}{\partial \bar{P}}$	<pre>= matrix compressibility, M⁻¹LT², where P = average pressure, ML⁻¹T⁻²;</pre>	
$\beta_{c} = \frac{1\partial \rho}{\rho \partial \bar{P}}$	= fluid compressibility, M ⁻¹ LT ² ;	
$S_s = \rho g(\phi \beta_c)$	+ α_c) = specific storage, L ⁻¹ . (12)	,

and

20

Substituting equations 11 and 12 into equation 9 yields the following equation, which is written for each volume subdivision within the solution domain:

$$v \{\rho[c_m + sS_s]\} \frac{\partial H}{\partial t} - \rho \sum_{k=1}^{\hat{m}} A_k KK_r(h) \frac{\partial H}{\partial n_k} - \rho qv = 0.$$
 (13)

This is the form of the nonlinear flow equation that is solved by the computer code.

AR 020887

Initial Conditions

The solution to equation 13 requires that initial values of H be specified everywhere in the solution domain. These initial conditions usually represent some type of steady state or equilibrium. If initial conditions are used that do not represent steady state, any simulation results will include transient effects from the difference between specified initial conditions and equilibrium conditions. Since equation 13 is nonlinear, it is not permissible to use the principle of superposition to subtract out the effects of transient initial conditions, as is often done in simulating fully saturated ground-water systems, in which the aquifer properties are not a function of total potential.

Boundary Conditions

Solutions to equation 13 require boundary conditions that specify either the flux of liquid across the boundary, the total potential along the boundary, or some combination of specified head and specified flux. The specified flux boundary can be expressed as:

$$\rho_{u_{k}}^{\flat} = f_{1}(x, t, \nabla H, h)_{k}, \qquad (14)$$

where

 $f_1(x,t,\nabla H,h)_k = a$ general function that depends upon position, time, the gradient in total hydraulic potential across the face, and the pressure head at the face.

Boundary conditions that specify only the total potential are defined as:

$$H_{k} = f_{2}(x,t,\nabla H,h)_{k}, \qquad (15)$$

where f_2 is a general time-dependent function.

Four phenomena can occur in flow through variably saturated media that may make a priori specification of the boundary condition type impossible: infiltration, evaporation, plant-root extraction, and discharge through seepage faces. These processes are described immediately below, and their implementation into the computer code is described later.

Infiltration and Ponding

Infiltration of water into a thick uniform medium from rainfall or sprinkler irrigation is a two-stage process. During the first stage, water enters the system at the applied rate as long as the conductive and sorptive capacities of the medium are not exceeded. If these capacities are exceeded, water ponds on the surface and infiltration decreases asymptotically to a rate equal to the saturated hydraulic conductivity of the medium.

Rubin and Steinhardt (1964), Rubin (1966), and Smith (1972) present extensive discussions of the ponding process. This is an important concept in rainfall-runoff analysis, because surface runoff cannot occur until ponding has begun. The ponding process is illustrated in figure 3 and is summarized as follows for a uniform medium with a deep water table. At land surface, two boundary conditions are possible: 1. Vertical flux of liquid specified by equation 14, equal to the application rate prior to the time ponding occurs, t_{pond} ; and

2. Specified pressure potential (eq. 15) equal to the maximum height of ponding after ponding occurs.

The point in time that the boundary type changes, t must, therefore, be determined during simulation.

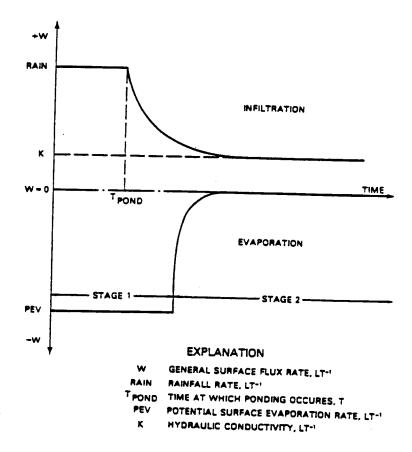


Figure 3.--Infiltration and evaporation as two-stage processes.

Infiltration into a layered medium is a more complicated process. If a thin surface layer of fine-grained materials overlies a coarser layer, infiltrated water will initially be retained above the interface between the layers. This phenomenon occurs because the water at the wetting front is under too low a pressure head to enter the larger openings constituting the pore space of the coarse layer, resulting in a head and saturation buildup above the interface before breakthrough occurs. As head builds up at the interface, the potential gradient may become too small to maintain infiltration at the applied rate, and ponding may occur. Once flow commences into the coarse layer, however, the pressure head above the interface declines, and the infiltration rate again increases. Thus, the ponding process is still governed by either a specified flux or a specified pressure potential, revert to one of specified flux.

Evaporation

The applicable boundary condition at land surface where evaporation can occur is determined by both the potential evaporative demand of the atmosphere and the ability of the porous medium to conduct water to the surface. Thus, it is a two-stage process analogous to infiltration (Hillel, 1971, p. 191). During the first stage of evaporation, occurring when the soil surface is wet, liquid leaves the system at a rate equal to the evaporative demand of the atmosphere, referred to here as potential evaporation rate (PEV). This rate will continue as long as the medium can conduct water to the surface at a rate equal to this demand. In the absence of sources of liquid in the system, such as a shallow water table, this conductive capability will be reduced by drying of the surface layer, and the rate of discharge by evaporation will be reduced. This process is

The two-stage evaporation process thus is expressed by two possible boundary conditions at land surface:

1. Specified liquid flux equal to the potential evaporative demand, until liquid cannot be conducted fast enough to meet this demand.

2. Specified flux driven by the gradient in pressure potential between the soil and the atmosphere.

The point in time that the boundary condition type changes must be determined during simulation; details of the numerical implementation of this determination are given later in this report.

Caution should be exercised in using VS2D to simulate bare-soil evaporation. The potential evaporation rate depends on a number of factors, including the energy and radiation balance, air temperature and humidity, soil-surface temperature, aerodynamic roughness, pressure potential, wind speed, and atmospheric stability. Most of these factors show great diurnal wariation and would require a sophisticated simulation, such as that used by treated simplistically in VS2D as an empirically determined value that is allowed to vary in time in a user-defined manner. This degree of detail user should be well aware that much empiricism is involved in the repre-

Evapotranspiration

Evapotranspiration occurs when the soil surface supports vegetative cover, and is similar to evaporation except that soil moisture can be removed by plant-root extraction throughout the depth of rooting. As with evaporation, evapotranspiration is a two-step process. The rate at which water is extracted from a soil column containing roots is limited by the amount of available energy to the potential evapotranspiration rate, PET. However, the rate of extraction is also limited by the rate at which the soil can transmit water to the roots and may, therefore, be less than PET.

Plant-root extraction is apportioned among the cells in a vertical column containing roots through the use of a depth- and time-dependent root activity function (Molz, 1981), defined as the length of roots per unit volume of soil. Examples of root-activity functions are shown in figure 4. The root-activity function r(z,t) is used to compute the bulk resistance to flow in the root system, and using a development similar to Hillel (1971), root extraction is expressed as the quotient of the pressure-potential difference divided by the combined resistance to flow imposed by the soil and the roots:

$$(v \rho q)_{\underline{m}} = v \frac{\rho(h_{root} - h_{\underline{m}})}{R_{\underline{m}}^{+} R_{root}}, \quad \text{if } h_{\underline{m}} > h_{root} \text{ and}$$

$$(v \rho q)_{\underline{m}} = 0, \quad h_{\underline{m}} \leq h_{root}; \quad (16)$$

where

h_m = pressure potential in the soil in volume m, L; h_{root} = pressure potential in the plant roots, L; R_m = resistance to flow in the soil towards the roots, in volume m, TL; and R_{root_} = resistance to flow in the roots occurring in volume m, TL;

The resistance term, $(R_{\underline{m}} + R_{root})$ is expressed as $1/[KK_r(h)r(z,t)]$ in the program.

Transpiration from the soil column is the sum of the fluxes computed by equation 16 over all cells containing roots in that column:

$$\hat{Q} = \rho \sum_{m=1}^{m} (\mathbf{v}\mathbf{q})_{m}$$
(17)

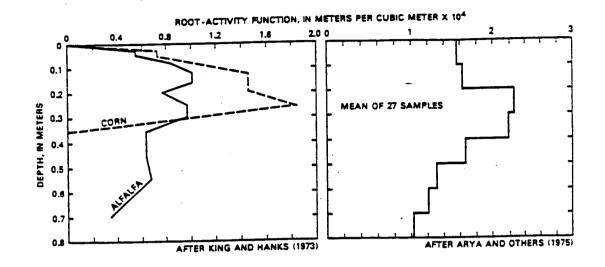


Figure 4.--Examples of root-activity functions.

where \bar{m} is the number of volume subdivisions in the column. If $\bar{Q}/(pxA)$, where A is the top surface area of cells in the column, is greater in magnitude than PET, $q_{\underline{m}}$ for each node is reduced by a uniform factor so that the two terms are equal. If the magnitude of $\bar{Q}/(pxA)$ is less than PET, $q_{\underline{m}}$ remains as originally computed. Finally, if $h_{\underline{m}}$ becomes less than h_{root} , $q_{\underline{m}}$ is set to 0. In each case, $q_{\underline{m}}$ becomes a specified flux for that node, dependent on the above conditions. Because $q_{\underline{m}}$ is dependent on pressure potential in the soil and on $K_r(h)$, its value must be evaluated iteratively.

Further details of the numerical implementation of this procedure are given in following sections of this report.

As with potential evaporation, potential evapotranspiration is dependent on many variables, except that additional variables related to the plant cover, including vertical and horizontal density of leaf cover, canopy height, leaf cover per unit surface area, plant-water potential, resistance and plant phenology of leaf stomata to vapor transport are involved (Sudar and others, 1981; Norman and Campbell, 1983).

14

Potential evapotranspiration is treated simplistically in VS2D as an empirically determined value that can vary in time in a manner similar to that of potential evaporation. Potential evapotranspiration for a freely transpiring perennial crop such as alfalfa may be computed using the Penman equation (Campbell, 1977; Jensen, 1973) the Jensen-Haise equation, or one of several other equations listed by Jensen (1973). Crop factors, empirical factors by which the above potential evapotranspiration values are adjusted for different crops or vegetation types and for vegetation growth stage, are also given by Jensen (1973).

- Most equations estimating potential evapotranspiration provide daily average values. However, when water is not limiting, evapotranspiration varies dramatically during the day, from near zero during the nighttime hours to a peak slightly lagging the solar radiation peak at solar noon. On clear days, in fact, potential evapotranspiration can be represented by a rectified sine function with reasonable accuracy, thus resulting in peak demand being about π times the mean daily rate. This peak use rate will be attenuated much earlier during the drying phase than would be the case for an average evaporative demand over the entire day.

Seepage Faces

Seepage faces are boundaries along which liquid leaves the system and along which the total potential is equal to the elevation potential, $H = h_z$. Seepage faces exist along interfaces between the surface of the solution domain and the atmosphere, such as along stream banks, spring discharge zones, and well bores that tap unconfined aquifers. Examples of these types of boundaries are shown in figure 5.

The boundary condition along a seepage face is one of specified potential with the requirement that liquid leave the system. These boundaries are nonlinear, in the sense that the top of a seepage face is not known a priori and must be determined as part of the solution (Narasimhan and Witherspoon, 1977).

Source-Sink Terms

The general source-sink term, pqv, included in equation 13, accounts for liquid introduced into or removed from the system at points that do not lie along boundaries. An important class of sink term, plant-root extraction, has been discussed above under "Evapotranspiration". Other source-sink terms would be those specified in time and space, such as withdrawal or injection by wells, suction lysimeters, or drip-irrigation devices. Such specified fluxes may result in problems when applied to the unsaturated zone, either because the specified withdrawal may exceed the capacity of the unsaturated soil to transmit water, or because unrealistically high pressure potential may be required to achieve the injection rate. On the other hand, use of specific source-sink terms in a saturated portion of the cross section to simulate, say, well withdrawal, well injection, or deep basin leakage is straightforward.

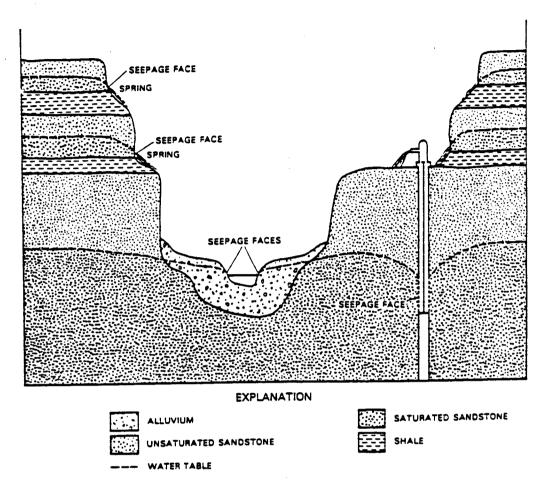


Figure 5.--Examples of seepage faces.

Nonlinear Coefficient Functions

The coefficients in equation 13 that appear in the storage and fluid flux terms are, in general, nonlinear functions of the pressure potential. Several general functional relations for porous media have been developed and tabulated in the literature. Although a given medium may exhibit behavior not described by the general models, a brief description of those that fit a wide range of media is useful. The functional relations required by the program described in this report are:

1. Volumetric moisture content ($\theta=\phi s$) as a function of pressure potential, $\theta(h)$ and the inverse function, $h(\theta)$.

2. Specific moisture capacity as a function of pressure potential, $c(h) = \phi(\frac{\partial s}{\partial h}) \cong (\frac{\partial \theta}{\partial h})$, assuming changes in ϕ are small compared $m \qquad \partial h \qquad dh$ to changes in θ .

3. Relative hydraulic conductivity as a function of pressure potential, $K_{\rm p}(h).$

When experimental data cannot be fit adequately by analytical expressions such as those that follow, tabulations of the dependence of saturation and relative hydraulic conductivity on pressure potential can be used. Use of these tabulations is described more fully in the section on numerical implementation.

The functional relations between volumetric moisture content or relative hydraulic conductivity versus pressure potential demonstrate hysteresis; that is, different functions apply during drainage than during uptake. This hysteretic relation is quite complicated and consists of main wetting and drying curves and a family of scanning curves that represent the functional relation when a partially drained medium is rewetted, or when drainage follows incomplete wetting. The phenomenon is described in various soil physics texts (Hillel, 1971; Kirkham and Powers, 1972; Baver and others, 1972). The program does not treat hysteresis among the head-related functional parameters and must be modified by the user if such considerations are significant to the problem being analyzed.

Liquid Saturation

For partly saturated media, liquid saturation decreases as pressure potential becomes increasingly negative. The curve relating the saturation of a given soil to pressure potential is commonly termed the moisturecharacteristic curve, and generally is empirically determined (Hillel, 1971, p. 61). Examples of moisture-characteristic curves for a sand and a light clay are shown by the symbols in figure 6. The slope of the moisturecharacteristic curve defines the specific moisture capacity and the curve can be integrated to define the relation between relative hydraulic conductivity and pressure potential. Hence, it is desirable, if possible, to fit the moisture-characteristic curve by an algebraic expression.

Three different algebraic equations to represent the moisturecharacteristic curve are available for use in program VS2D, including one by Brooks and Corey (1964), one by Gardner (1958), as used by Haverkamp and others (1977), and one by van Genuchten (1980).

The Brooks and Corey (1964) equation is:

$$s_{e} = \frac{\theta - \theta_{r}}{\phi - \theta_{r}} = \left(\frac{h_{b}}{h}\right)^{\lambda}, h < h_{b};$$

$$(18)$$

$$s_{e} = 1.0, h \ge h_{b};$$

$$(18)$$

where:

s_e = effective saturation, L°; Θ = volumetric moisture content, L°; Θ_r = residual moisture content, L°; φ = porosity, L°;

- h = bubbling or air-entry pressure potential, equal to the pressure potential required to desaturate the largest pores in the medium, L (actually this is a curvefitting parameter that may not equal the actual bubbling pressure, but must be less than 0); and
- λ = a pore size distribution index that is a function of soil texture, L°.

Parameters for the Brooks-Corey equation may be determined from the best-fit straight line through the data points on a log-log plot of pressure potential versus effective saturation, as shown in figure 7 for a sand and a light clay. The slope of the straight line represents λ , and its intercept at full saturation represents $h_{\rm b}$. The residual moisture content may be varied to improve the straight line fit, as described by Brooks and Corey (1964, p. 24). Alternatively, the three parameters (λ , $h_{\rm b}$, and θ) may be identified by a computer-aided search procedure. Mualem (1976) tabulates the results of fitting the Brooks-Corey equation to experimentally determined moisture-characteristic curves for 46 soils. Brooks-Corey parameters for 11 soils are listed in table 1. These parameters were determined by the authors using a search procedure that minimized the least-squares residual between the equation and all the experimental data. However, the residual moisture content was not allowed to have a negative value.

Figure 6.--Comparison of Haverkamp equation fit to experimental data of moisture content versus pressure head for a sand and for a light clay. Equation parameters are listed for soils 4 and 11 in table 1 (modified from Haverkamp and others, 1977).

AR 020896

(

(

18

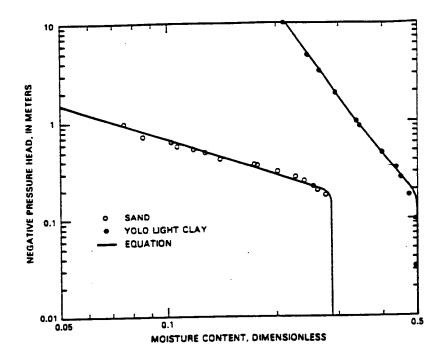


Figure 7.--Comparison of Brooks and Corey equation fit to experimental data of moisture content versus pressure head for a sand and for a light clay. Equation parameters are listed for soils 4 and 11 in table 1.

When the wet end of the plot shows too much curvature to be adequately fit by two straight-line segments on the log-log plot, a function of the type used by Haverkamp and others (1977) may fit the data reasonably well:

$$\mathbf{s}_{\mathbf{e}} = \frac{1}{1 + \left(\frac{\mathbf{h}}{\alpha}\right)^{\beta}}, \qquad (19)$$

where

 α = pressure potential at which s_e = 0.5, L; and β = slope of the log-log plot of (1/s_e-1) versus h, L°.

As with the Brooks-Corey equation, use of the Haverkamp function requires the identification of three fitting parameters (assuming porosity is known from other data): θ , α , and β , as may be seen from the above definitions; α and β may be determined graphically if θ is known or can be estimated. Alternatively, all three parameters may be determined using a computer-aided search procedure. The best-fit Haverkamp equation parameters for 11 soils are listed in table 1, and the fit of the Haverkamp equation to data for a sand and a light clay (soils 4 and 11 in table 1) are shown in figure 6.

19

parameter that best fit three different models to measure of scaling length; λ , pore-size distri- [m, meters; Θ , residual moisture content; h_b , bubbling head, or scaling length; λ , pore-size distribution parameter for model 2; bution parameter for model 1; α , scaling length, and β , pore-size distribution parameter for model 2; ω , scaling length, and β ', pore-size distribution parameter for model 3]	Model 2 Model 3 Haverkamp (1977) van Genuchten (1980) $\alpha \rightarrow \alpha (m)$ $\beta \qquad \theta -\alpha'$ (m) $\beta' \qquad \alpha(-)$		0.039 0.147 6.0 0.036 0.142 6.3 7.º	.077 .273 3.0 .020 .232 3.1 ^{4.5}	ک، لے 0.6 134 150. 8.3 .051. 134 0.0	.076 .355 3.7 .069 .326 3.9 ^{3.1}	.074 1.00 6.6 .072 .960 6.9 ^{1 0}	ر. 16 1.26 4.6 .15 1.18 4.8 ^{0.} × ۶	0.17 2.05 6.6 0.17 1.98 7.0 0.50	.15 1.28 10.3 .15 1.26 10.6 5.7
bling head, and β, por on paramete	(1964)	<	2.5	.84	4.4	.84	3.7	1.6	1.7	2.9
modeus co ; h, bubl g length, istributi	Model 1 Brooks and Corey (1964)	-h [,] (m)	0.112	. 149	911	. 196	.82	.85	1.45	1.06
ifferent content , scalin e-size d	Mo Brooks	θ	0.011	000.	060	000.	.063	п.	0.095	.13
three d moisture del 1; a Å', por	Poro- sity		0.36	375.		.435	716.	967.	0.430	. 25
parameter that best fit three different models to measure , meters; θ , residual moisture content; h_b , bubbling he bution parameter for model 1; α , scaling length, and β , β , α , scaling length, and β , β , β , β , β , β , β , β ,	Nydraulic conductivity	(m/day)	1×10 ³	- frietly convec um 4×102 4414	-1-: 	8.2 8.2		10 .70	am 0.22	.15
parameter [m, meters; bution par		Soil or rock	Del Monte Sand (20 mesh)	Fresno medium sand ²	Unconsolidated	sand ³ Sand ⁴	Fine sand (G.E. 13) ⁵ 10	Columbia sandy loam ⁶ 10	Touchet silt loam (G.E. 3) ^{5 10}	Hygiene sa nd- stone ⁷ 10

Table 1.--Values for 11 soils of residual moisture content, scaling length, and pore-size distribution parameter that best fit three different models to measured moisture content versus pressure head

AR 020898

(

ĺ

(

20

	llvdraulic Poro-	Poro-	Mo	Model 1			Model 2		Ŭ	Model 3	
Soil or rock	conductivity (m/day)	sity	Brooks Or	Brooks and Corey (1964) Θr -h _b (m) λ	(1964) A	llaver Or	Haverkamp (1977) 0a (m)	ß	van Genuc Or	van Genuchten (1980) $\Theta_{r} - \alpha^{\dagger}$ (m) β^{\dagger}	980) β'
Adelanto loam ⁸	.039	.42	.13	1.41	.51	. 18	4.32	1.8	.16	.16 2.74	2.06
Limon silt (imbibi- tion data) ⁹	ibi- .013	644.	000.	.338	.22	.012	5.84	.73	100.	.651 1.3	1.3
Yolo light clay ⁴	110.	645.	.055	.181.	.25	.215	.883	.883 1.3	571.	9.1 105.	1.6

260

•••

5

different models to measured moisture content versus pressure head--Continued Table 1.--Values for 11 soils of residual moisture content, scaling length, and pore-size distribution

from Laliberte and others (1900), table C-0. Uata

⁴Data from Haverkamp and others (1977), figure 1.

⁵Data from Brooks and Corey (1964), table 1.

⁶Data from Laliberte and others (1966), table C-5.

⁷Data from Brooks and Corey (1964), table 3.

^BData from Jackson and others (1965), figure 5. Values for psi 2 -100 m only used.

⁹Data from Vachaud (1966), table 1.

This fluid has a surface tension of 22.9 dynes per centimeter and a density of 0.758 grams per cubic centimeter. ¹⁰The data for these samples were obtained using an oil as the wetting fluid (Soltrol "C" core test fluid). Brooks and Corey (1964, p. 9) experimentally determined that the pressure potential for water at a given saturation is equal to twice that for the oil. Consequently, the pressure potentials tabulated for these samples have been multiplied by 2.0. The Haverkamp functions relating effective saturation to pressure potenial cannot be directly integrated using Mualem's (1976) procedure to provide a functional relation between K and pressure potential. To overcome this problem, van Genuchten (1980)^{Thas} cast equation 18 in slightly different form:

$$\mathbf{s}_{e}^{\prime} = \left[\frac{1}{1+\left(\frac{h}{\alpha'}\right)}\boldsymbol{\beta}^{\prime}\right]^{\gamma}, \qquad \boldsymbol{\Theta} = \boldsymbol{\Theta}_{r}^{\prime} + \left(\boldsymbol{\Theta} - \boldsymbol{\Theta}_{r}\right) \boldsymbol{\Theta}_{e}^{\prime} \qquad (20)$$

where $\alpha' = \alpha/[(2^{1/Y} - 1)^{1-Y}], L;$

$$\beta'$$
 = exponent, L°; and
 γ = exponent, = 1-1/ β' , L°.

Note that α' is the negative of the reciprocal of α defined by van Genuchten (1980). It is defined in this form here to enhance the concept that the parameter represents a characteristic length for the porous medium.

Van Genuchten describes a graphical technique to determine γ if θ'_{1} is known. The value of γ may be used with that for the pressure potential at which $s_{\perp} = 0.5$ (Haverkamp's α) to find α' , and β' is found from the formula:

$$\beta' = 1/(1 - \gamma) .$$
 (21)

Alternatively, the three parameters can be determined by a search procedure. Van Genuchten equation parameters for 11 soils are listed in table 1. Note that, for soils for which β' is large, the results are nearly identical to those for the Haverkamp equation, but the deviations become substantial as β' becomes small. Also, the van Genuchten fit to most sets of data is almost indistinguishable from the best Haverkamp fit. Consequently, no separate fit of the van Genuchten equation is shown here.

Specific Moisture Capacity

Specific moisture capacity, defined as the slope of the moisturecharacteristic curve, describes the change in saturation due to a change in pressure potential under partly saturated conditions. Hence, the term represents the dominant component of the storage coefficient under such conditions. Specific moisture capacity is given by the equation:

$$c_{m}(h) = \phi(\frac{\partial s}{\partial h}) = (\frac{\partial \theta}{\partial h})$$
, (22)

where $c_m(h)$ = specific moisture capacity, L^{-1} .

If the Brooks-Corey equation is used to represent the moisture-characteristic curve, specific moisture capacity is defined as follows:

$$c_{m}(h) = - (\phi - \theta_{r}) (\lambda/h_{b}) (h/h_{b})^{-(\lambda+1)}, h \leq h_{b}$$

$$c_{m}(h) = 0, h > h_{b}, \qquad (23)$$

and

AR 020900

(

ĺ

where all terms are as defined above. Examples of curves of specific moisture capacity versus negative pressure head, as computed from equation 23 for a sand and for Yolo light clay (entries 4 and 11, table 1) are shown in figure 8A. Note that the specific moisture capacity is discontinuous at h, and that it is extremely nonlinear with respect to the negative pressure head at smaller values.

If the moisture-characteristic curve is represented by the <u>Haverkamp</u> equation, specific moisture capacity is defined by the equation

$$c_{m}(h) = -(\phi - \theta_{r})(\beta/\alpha)(h/\alpha)^{\beta^{\beta}_{1}x} / [1 + (h/\alpha)^{\beta}]^{2}$$
(24)

for pressure head less than 0. Specific moisture capacity as a function of pressure potential computed from the Haverkamp functions for the same sand and light clay as for figure 8A are shown in figure 8B. Note that the Haverkamp specific moisture-capacity function differs substantially from the Brooks-Corey function, particularly for pressure heads near the bubbling pressure head.

For moisture-characteristic curves represented by the van Genuchten equation:

$$c_{m}(h) = \frac{-\underline{\gamma\beta'}(\phi - \theta_{r})(\frac{h}{\alpha'})}{\alpha' [1 + (\frac{h}{\alpha'})^{\beta'}]^{\gamma+1}}, \leq 0 \qquad (25)$$

$$c_{m}(h) = 0, h > 0.$$

The specific moisture capacity curves for the van Genuchten formulation are essentially undistinguishable from those for the Haverkamp formulation and are not shown separately.

When tabular data are used to describe the moisture-characteristic curve, specific moisture capacity can be determined by taking the slope of the line segment between data points adjacent to the h value of interest.

Relative Hydraulic Conductivity

Relative hydraulic conductivity, defined as the ratio of unsaturated to saturated hydraulic conductivity also decreases with increasingly negative pressure potential. Relative hydraulic conductivity may be determined experimentally or may be estimated by numerically or analytically integrating the moisture characteristic curve.

Experimentally determined data frequently may be fit to a <u>Haverkamp</u> and others (1977) type equation:

$$K_{r} = \frac{1}{1 + (\frac{h}{A})^{B}}, \quad (26)$$

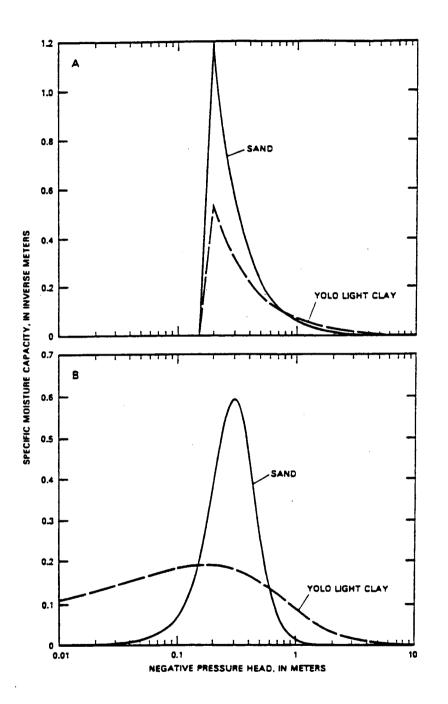


Figure 8.--Specific moisture capacity as a function of pressure head for a sand and a light clay:

A. As computed using the Brooks-Corey formulation.

B. As computed using the Haverkamp formulation.

AR 020902

Ć

where $A' = pressure potential at which <math>K_r = 0.5$, L; and

B' = dimensionless constant, equal to the slope of the log-log plot of $(1/K_r - 1)$ versus the pressure potential.

The best-fit Haverkamp function to experimentally determined values of relative hydraulic conductivity versus pressure head are shown in figure 9A for a sand, and for light clay by solid lines in figure 9B.

If the moisture-characteristic curve is represented by the Brooks-Corey equation, <u>Brooks and Corey (1964</u>) show that the relative hydraulic conductivity commonly is well represented by the equations:

$$K_{r} = \left(\frac{h}{h}\right)^{-2-3\lambda}, \quad h < h_{b}$$
(27)

and

$$K_{\perp} = 1.0$$
, $h \ge h_{b}$.

Relative hydraulic conductivities computed using equations 26 and 27 are compared to measured data for sand in figure 9A and for light clay in figure 9B. The Brooks-Corey equations fit the data for sand very well, but poorly represent the data for the clay. This phenomenon has been frequently observed, suggesting that care should be exercised using the Brooks-Corey equations to represent the relative hydraulic conductivity of clays.

For the van Genuchten (1980) equation, relative hydraulic conductivity is given by the equation:

$$K_{r} = \frac{\left\{ \frac{1 - (\frac{h}{\alpha'})^{\beta'-1} \left[1 + (\frac{h}{\alpha'})^{\beta'} \right]^{-\gamma} \right\}^{2}}{[1 + (\frac{h}{\alpha'})^{\beta'}]^{\gamma/2}}$$
(29)

Relative hydraulic conductivities computed using equation 29 are also compared to measured data in figure 9. The fit of the equation to data for sand (figure 9A) is, as with the Brooks-Corey equation, quite good. Also similarly to the Brooks-Corey equation, the fit to the data for clay (fig. 9B) is poor.

If the moisture-characteristic curve cannot be adequately fit by an integrable algebraic function, relative hydraulic conductivity can be estimated by dividing the curve into segments of equal $\Delta \Theta$ or Δs and integrating numerically, using the method of Marshall (1958) or Millington and Quirk (1961). The data thus generated can then be used in tabular form in the program.

(28)

A = . 7 m

Ć

(

(

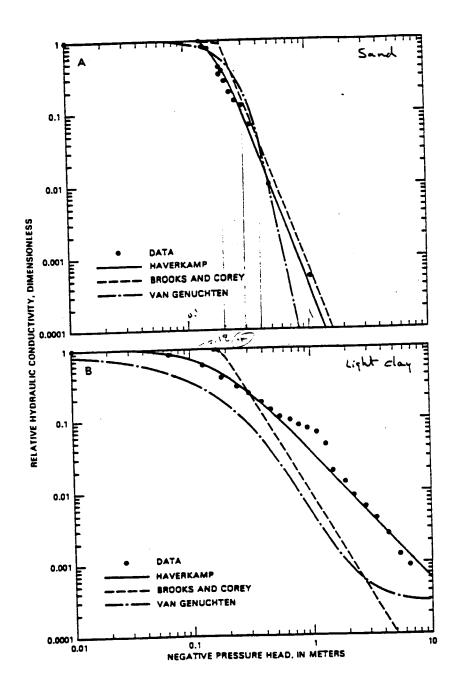


Figure 9.--Comparison of three functions to experimental data relating relative hydraulic conductivity to pressure potential for:
A. A sand (soil no. 4, table 1);
B. A light clay (soil no. 11, table 1).

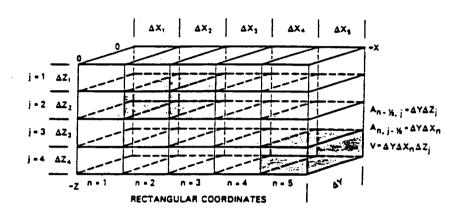
NUMERICAL SOLUTION

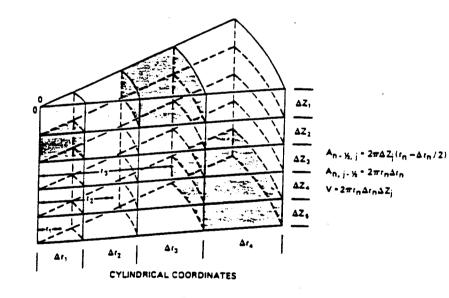
Equation 13, subject to the boundary conditions described by equations 14 and 15, is a nonlinear partial differential equation that has no general closed-form or analytic solution. Consequently, numerical approximations to the spatial and temporal derivatives in equations 13, 14, and 15 must be made. These approximations result in a set of simultaneous nonlinear algebraic equations that must be first linearized, then solved.

Spatial Discretization

The spatial derivatives in equation 13 are approximated by a blockcentered regular finite-difference scheme. This scheme is illustrated in figure 10 for a rectangular (x,z) and a cylindrical (r,z) grid. The nodes in each volume subdivision or grid block are located at the center of each block.

For a two-dimensional rectangular grid, the number of faces (\bar{m} in equation 13) of the volume subdivision is 6. However, two of the faces are not explicitly included, because the assumption used for two-dimensional problems to be simulated with this model is that no liquid flow can occur across them. When vertical section problems are analyzed, these no-flow faces are on the front and back of each grid block.


By retaining the volume and area terms in equation 13, it is a simple matter to use either rectangular or cylindrical coordinate systems. The computer program calculates the proper areas and volumes using the equations given in figure 10.


The spatial derivatives of total potential in equation 13 are approximated at the block boundaries, using the following space-centered finite-difference scheme:

Left side	$= \left(\frac{\partial H}{\partial x}\right)_{n-1/2,j}$	=	$\frac{H_{n-1,j} - H_{n,j}}{\Delta x_{n-1/2}};$	
Top side	$= \left(\frac{\partial H}{\partial z}\right)_{n,j-1/2}$	=	$\frac{H_{n,j-1} - H_{n,j}}{\Delta z_{j-1/2}};$	
Right side	= $\left(\frac{\partial H}{\partial x}\right)_{n+1/2,j}$	Ξ	$\frac{H_{n+1,j} - H_{n,j}}{\Delta x_{n+1/2}}$;	(30)
Bottom side	$= \left(\frac{\partial H}{\partial z}\right)_{n,j+1/2}$	=	$\frac{H_{n,j+1} - H_{n,j}}{\Delta z_{j+1/2}};$	

where

 $\Delta x_{n-1/2} = \text{horizontal distance between nodes } n-1,j \text{ and } n,j$ $\Delta z_{i-1/2} = \text{vertical distance between nodes } n,j-1 \text{ and } n,j.$

EXPLANATION

 An. %, j
 SURFACE AREA BETWEEN CELLS n = 1, j AND n, j

 An, j. %
 SURFACE AREA BETWEEN CELLS n, j = 1 AND n, j

 V
 VOLUME.OF CELL n, j

Figure 10.--Rectangular and cylindrical coordinates and grid-block systems.

AR 020906

.(

(

28

The sign convention used is such that flow out of each cell is positive. Equation 30 is defined for a rectangular grid; however, equations for a cylindrical grid are analogous with r replacing x as the horizontal coordinate. For simplicity, x will be used for the horizontal coordinate for the remainder of this report. Taylor series expansion about the points n-1/2, j; n, j-1/2; n+1/2, j; and n, j+1/2 shows equation 30 to be second-order correct in approximating the spatial derivatives (von Rosenberg, 1969, p. 5).

Substituting equation 30 into equation 13 gives the difference form of the balance equation for each grid block:

$$v\rho(c_{m}+sS_{s})\frac{\partial H}{\partial t}$$

$$- \tilde{c}_{n-1/2,j} (H_{n-1,j} - H_{n,j}) - \tilde{c}_{n,j-1/2} (H_{n,j-1} - H_{n,j})$$

$$- \tilde{c}_{n+1/2,j} (H_{n+1,j} - H_{n,j}) - \tilde{c}_{n,j+1/2} (H_{n,j+1} - H_{n,j}) - \rho qv = 0$$

$$(31)$$

Where the conductances, \hat{C} , are defined as

$$\hat{c}_{n-1/2,j} = \left(\frac{\rho \ KK_r A}{\Delta x}\right)_{n-1/2,j};$$

$$\hat{c}_{n,j-1/2} = \left(\frac{\rho \ KK_r A}{\Delta z}\right)_{n,j-1/2};$$

$$\hat{c}_{n+1/2,j} = \left(\frac{\rho \ KK_r A}{\Delta x}\right)_{n+1/2,j};$$

$$\hat{c}_{n,j+1/2} = \left(\frac{\rho \ KK_r A}{\Delta z}\right)_{n,j+1/2};$$

where A represents block face area.

Intercell Averaging of Conductance Terms

When block-centered finite-difference discretization schemes are used, as in this program, it is necessary to average the conductance terms for adjacent blocks to develop intercell conductances. Several authors have evaluated methods for determining these intercell-conductance terms. Appel (1976) compared the accuracy of arithmetic and harmonic means for saturated systems (K =1.0). He concluded that the actual functional variation in space of the conductance should be incorporated into a scheme for determining the interblock values. For a constant grid spacing with linear spatial variation

(32)

in conductance, an arithmetic mean gives the most accurate estimate (fig. 11). When smooth changes in conductance are present, the geometric mean should be used, owing to the observed log-normal distribution or this parameter (Freeze, 1975). For the case where conductance varies as a step function, as for layered soil, the harmonic mean gives the exact value of the interblock conductance (Appel, 1976). Haverkamp and Vauclin (1979) analyzed unsaturated conductances (K <1.0) and concluded that the geometric mean provided the most accurate representation of interblock conductances. (fig. 12), although they did not evaluate the accuracy of separate methods of averaging each parameter composing conductances. Separate methods are used in this report and are described hereafter for the parameters K and K.

Saturated Hydraulic Conductivity

Saturated hydraulic conductivity, K, is used to represent the conductance of the medium in this program. The distance-weighted harmonic mean of the saturated hydraulic conductivity of the adjacent cells is computed within the program to represent the intercell hydraulic conductivity. Appel (1976) shows that this method accurately represents interblock hydraulic conductivity when that parameter changes abruptly at node boundaries, and thus is best suited for layered systems. To simulate flow through a medium in which hydraulic conductivity varies gradually, node spacing should be adjusted such that the saturated hydraulic conductivity between adjacent blocks varies no more than 50 percent, based on figure 11.

Anisotropy in the saturated hydraulic conductivity is included in the model to reflect directional orientation in the resistance to liquid movement. It is assumed that coordinate axes used for a given problem are collinear with the principal directions of the intrinsic permeability tensor. This is a reasonable assumption for many vertical cross-section problems; however, steeply dipping beds cannot be adequately simulated with this code.

The distance-weighted, harmonic-mean saturated hydraulic conductivities accounting for anisotropy are given by the following equations. Since the left face of one block is the right face of the block on its left, and similarly for top and bottom faces, only two equations are needed for each block. The convention used in this report is to use the left and top sides.

Left side:
$$(\frac{K}{\Delta x})_{n-1/2,j} = \frac{2 K_{n-1,j} K_{n,j}}{K_{n-1,j} \Delta x_{n} + K_{n,j} \Delta x_{n-1}}$$

Top side: $(\frac{K}{\Delta z})_{n,j-1/2} = \frac{2 K_{n,j-1} K_{n,j} (K_{zz}/K_{xx})}{K_{n,j-1} \Delta z_{j} + K_{n,j} \Delta z_{j-1}}$
(33)

where:

 $K_{n,j} = K_{xx} = saturated hydraulic conductivity in horizontal direction, <math>LT^{-1}$; and

 $\begin{array}{l} K \\ zz \\ LT^{-1}. \end{array}$ = saturated hydraulic conductivity in vertical direction,

AR 020908

(

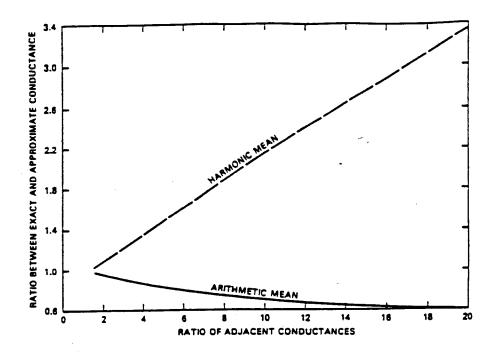


Figure 11.--Accuracy of arithmetic and harmonic means in estimating saturated intercell hydraulic conductivities for a linear spatial variation of conductivity and constant grid spacing (after Appel, 1976).

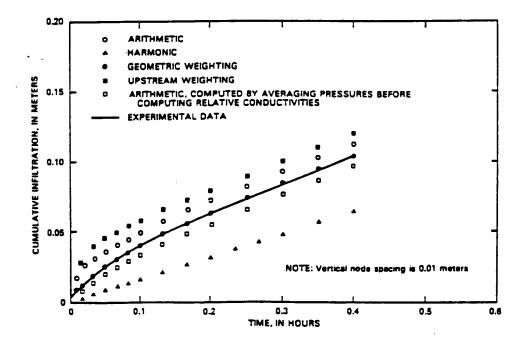


Figure 12.--Accuracy of several intercell weighting schemes for unsaturated hydraulic conductivity in estimating cumulative infiltration in a sand column with ponded upper boundary.

In the computer program, intercell saturated hydraulic conductivities are lumped with the block face area in the arrays HKLL and HKTT, as follows:

$$(\text{HKLL})_{n,j} = \left(\frac{K}{\Delta x}\right)_{n-1/2,j} \stackrel{A_{n-1/2}}{\underset{n,j}{\overset{}=}} \left(\frac{K}{\Delta z}\right)_{n,j-1/2} \stackrel{A_{j-1/2}}{\underset{j=1/2}{\overset{}=}} .$$
(34)

Relative Hydraulic Conductivity

Intercell averages of relative hydraulic conductivity, K (h), are computed using either a geometric mean or a weighted arithmetic mean. ^rGeometric mean averages provide the most accurate simulations, as discussed in the section on "Model Verification", and should be used whenever possible, their use being occasionally precluded by their generation of numerical oscillations. The geometric mean relative hydraulic conductivities are defined by the equations:

$$[K_{r}]_{n-1/2,j} = [K_{r}(h)_{n,j} \cdot K_{r}(h)_{n-1,j}]^{1/2}$$

$$[K_{r}]_{n,j-1/2} = [K_{r}(h)_{n,j} \cdot K_{r}(h)_{n,j-1}]^{1/2}.$$
(35)

This option is invoked by specifying the user-defined weighting coefficient $\bar{\alpha}$ as 0.

Arithmetic weighting, either based upon the mean weighting of the relative hydraulic conductivity between adjacent nodes or upon preferrentially weighting the relative hydraulic conductivity at the upstream node, is achieved by the following equations:

Left side, fluid moving to right $[K_r]_{n-1/2,j} = \bar{\alpha}K_r (h)_{n-1,j} + \bar{\beta}K_r (h)_{n,j}$; Left side, fluid moving to left $[K_r]_{n-1/2,j} = \bar{\beta}K_r (h)_{n-1,j} + \bar{\alpha}K_r (h)_{n,j}$; Top side, fluid moving downward $[K_r]_{n,j-1/2} = \bar{\alpha}K_r (h)_{n,j-1} + \bar{\beta}K_r (h)_{n,j}$; Top side, fluid moving upward $[K_r]_{n,j-1/2} = \bar{\beta}K_r (h)_{n,j-1} + \bar{\alpha}K_r (h)_{n,j}$;

where $\tilde{\alpha}$ is a user-defined weighting coefficient from which $\tilde{\beta}$ is computed using the relations:

 $\bar{\alpha} + \bar{\beta} = 1.0 ;$ $0.5 \leq \bar{\alpha} \leq 1.0 ;$ $0 \leq \bar{\beta} \leq 0.5 ;$

AR 020910

if $\bar{\alpha} = 1.0$ and $\bar{\beta} = 0$, full upstream weighting results; and

if $\alpha = \beta = 0.5$, the usual arithmetic average results.

Although the weighted arithmetic mean method generally is less accurate than others (see fig. 12), its use is necessary to obtain realistic results in a few cases. Brutsaert (1971) has shown that in the case of an advancing sharp wetting front into a dry uniform medium, it is necessary to use the value of K (h) for the cell from which liquid is flowing to obtain physically reasonable results and to prevent numerical oscillations that may prevent a solution. The need for upstream weighting arises because the relative hydraulic conductivity function (fig. 9) is very steep, and the difference in its value across a wetting front may be several orders of magnitude. If harmonic or geometric means are used for intercell relative hydraulic conductivity, the medium may not be able to conduct liquid fast enough at the front to maintain continuity. Consequently, some higher value of hydraulic conductivity should be used, based on upstream weighting.

Temporal Discretization

The numerical solution of equation 31 requires an approximation to the time derivative $\frac{\partial H}{\partial t}$ and evaluation of the differenced form of the spatial derivatives at a given point in time. Equation 31 can be written in the form of an ordinary differential equation:

$$\frac{dH}{dt} = k\Delta H , \qquad (37)$$

where ΔH is the differenced form of the spatial derivatives. The first-order correct approximation to this equation (von Rosenberg, 1969, p.19) is:

$$\left(\frac{dH}{dt}\right)^{i-1/2} \cong \frac{H^{i} - H^{i-1}}{t^{i} - t^{i-1}} .$$
(38)

where *i* is an index to discrete points in the time domain. Equation 38 is referred to as a fully implicit or backward difference scheme. Its substitution into equation 31 results in the following equations:

$$vp[c_{m} + sS_{s}]^{i-1/2} \left(\frac{H_{n,j}^{i} - H_{n,j}^{i-1}}{t^{i} - t^{i-1}} \right) = \\ +\hat{c}_{n-1/2,j}^{i-1/2} (H_{n-1,j}^{i} - H_{n,j}^{i}) + \hat{c}_{n,j-1/2}^{i-1/2} (H_{n,j-1}^{i} - H_{n,j}^{i})$$
(39)
$$+\hat{c}_{n+1/2,j}^{i-1/2} (H_{n+1,j}^{i} - H_{n,j}^{i}) + \hat{c}_{n,j+1/2}^{i-1/2} (H_{n,j+1}^{i} - H_{n,j}^{i})$$
(39)
$$+(\rho_{q}v)_{n,j}^{i-1/2} .$$

Equation 39 may be written for each n from 1 to NLY (the number of nodes in each column of the finite-difference mesh) and for each j from 1 to NXR (the number of nodes in each row), resulting in a set of m simultaneous nonlinear algebraic equations that can be written in matrix form as:

$$[A^{i-1/2}] \{H^i\} = \{RHS\}, \qquad (40)$$

where:

[A] is a square m by m (where m equals the number of rows times the number of columns) coefficient matrix that includes all implicit or unknown parts of conductance, storage, and source-sink terms; and RHS is a vector of all explicit or known parts of conductance, storage, and source-sink terms.

In equations 39 and 40, the implicit parts of all the conductance terms, the storage term, and the source-sink terms are evaluated at some approximation to the midpoint in time between t^i and t^{i-1} . It is the dependence of the parameters on H in these terms that makes equation 40 nonlinear. The next section discusses linearization of these terms to enable solution of equation 40.

Linearization

Evaluation of the nonlinear parameters in conductance and source-sink terms, as well as those that may occur in boundary condition equations, is accomplished by implicit linearization within the program. This means that these terms are evaluated at the current time level. Experience has shown, and it is evident from figure 8, that specific moisture capacity, the dominant component of the storage term, is more nonlinear than other terms composing elements of [A].

Hence the storage terms of [A] are linearized by a modified Newton-Raphson technique. Although this method requires additional computational effort for each iteration, it can significantly increase the rate of convergence (Finlayson, 1980).

The iterative method used in the program is developed as follows. By defining a residual vector $\{H^*\}^k = H^i - H^k$, where k is an iteration index, equation 40, can be written as:

$$[A]^{k-1} {\{H^{\star}\}}^{k} \cong [\bar{A}]^{k-1} {\{H^{\star}\}}^{k} = {\{RHS\}} - [\bar{A}]^{k-1} {\{H\}}^{k-1} , \qquad (41)$$

where $[\bar{A}]$ is the linear equivalent of [A]. $[\bar{A}]^{k-1}$ can be written as:

$$[\bar{A}]^{k-1} = [B]^{k-1} + [G_s]^{k-1} , \qquad (42)$$

where both B and G are m x m matrices, $[B]^{k-1}$ containing all conductance terms of $[\overline{A}]^{k-1}$, and $[G_s]^{k-1}$ containing all storage terms of $[\overline{A}]^{k-1}$. Following Cooley (1983, p. 1274) $[G_s]^{k-1}$ is a diagonal matrix with:

AR 020912

(

$$\begin{bmatrix} G_{s} \end{bmatrix}_{jj}^{k-1} = \begin{bmatrix} \frac{\partial \bar{c} (H_{jj} - H_{jj}^{i-1})}{\partial H} \end{bmatrix}_{k-1} = C_{k-1}^{+} (H_{jj}^{k-1} - H_{jj}^{i-1}) \frac{\bar{c}_{k-1} - \bar{c}_{k-2}}{H_{jj}^{*}}$$
(43)

where

 $\bar{c}_{k-1} = v \rho \{ c_m + s S_s \}^{k-1}$.

Equation 41 is solved for the residual potential $\{H^{\pm}\}\$ as a correction to values of $\{H\}^{k-1}$ obtained during the previous iteration. The use of residuals as the solution variable in iterative methods has been shown to minimize roundoff errors in algorithms to solve matrix equations such as equation 41 (Nobel, 1969). Elements of the coefficient matrix $[A]^{k-1}$ are updated after every iteration, using the most recent values of $\{H\}^{k-1}$.

Time-Step Limitation

An implicit time-discretization scheme is used in the computer code. For linear systems of parabolic equations, this scheme is unconditionally stable for all values of time step and grid spacing. For linear equations that may be a mixture of parabolic and hyperbolic, or nonlinear parabolic equations, such stability is not unconditional (Finlayson, 1980). The descriptive flow equation (equation 13) is nonlinear, and may exhibit hyperbolic behavior when the gradients in the gravitational potential dominate. The computer code includes provision for increasing the time-step length by a user-specified factor (TMLT). Consequently, a time-step limitation procedure is included in the computer code to give the user control over such stability problems. The code estimates the maximum change in head for the next time step (BIGI) by linearly extrapolating the maximum change from the previous time step. If BIGI is greater than DSMAX, the timestep length is decreased by a factor of (DSMAX/BIGI). Similarly if the timestep length is greater than DLTMX, it is set equal to DLTMX. The method is somewhat ad hoc) in that the user specifies both a maximum time-step length (DLTMX) and a maximum change in pressure head permitted in any grid cell from one time step to the next (DSMAX). Finally, if convergence is not achieved in the specifieded number of iterations, the time step is reduced by the usersupplied factor, TRED, as described below.

Matrix Solution

The computer code uses the strongly implicit procedure (Stone, 1968) to solve the set of linear algebraic equations formed by equation 40 iteratively. At each iteration, the system of equations can be represented by:

$$[\bar{A}]^{k-1} {\{H^{\star}\}}^{k} = \beta_{s} {\{RHS\}}^{k} - [\bar{A}]^{k-1} {\{H\}}^{k-1} , \qquad (45)$$

where:

$$\beta_{e}$$
 = user-defined damping factor, HMAX.

AR 020913

(44)

Convergence of the nonlinear problem commonly simulated using VS2D is highly dependent on the value of HMAX. A value of 0.7 often works well, but values as low as 0.3 are sometimes needed to obtain convergence.

The iteration required to solve equation 44 is often separated from the iteration used to linearize the nonlinear equations (Brutsaert, 1971; Freeze, 1971; Cooley, 1971). However, these authors have found that it is efficient to use the same iterative loop for both linearization and matrix solution. This is accomplished as follows:

 All nonlinear coefficients are evaluated using the latest value of H, and the elements of the [A] matrix and {RHS} vector are determined.
 Equation 45 is solved for the residuals, {H*}, using the strongly implicit procedure.

3. New potentials are computed using the following equation:

$$\mathbf{H}^{k} = \mathbf{H}^{k-1} + \mathbf{w}_{k} \mathbf{H}^{\star} , \qquad (46)$$

where w_k is a damping factor (0 < $w_k \le 1$) that is designed to dampen numerical oscillations. It is calculated by the computer code according to the formula given by Cooley (1983, p. 1274).

4. Convergence is tested for by requiring that all H* be less in magnitude than a user-specified tolerance (EPS in table 3).

5. If convergence is achieved, the program proceeds to the next time step. If convergence is not achieved, steps 1 through 4 are repeated a maximum of ITMAX times, where ITMAX is a user-specified variable. If convergence is still not achieved, the length of the current time step is reduced by the user-specified factor of TRED and heads computed at the end of the previous time step are re-established as initial conditions for the shortened time step. Steps 1 through 4 are again repeated a maximum of ITMAX times. The length of the time step can be reduced 3 times within an individual time step. If convergence is still not obtained either the program proceeds to the next time step (if ITSTOP = FALSE) or the program terminates after writing an error message and results from the last iteration (if ITSTOP = TRUE).

In some cases, the iterative process may not converge within a specified tolerance. In these cases, the solution does not diverge, but oscillates about the true solution. These oscillations commonly occur in systems in which quasi-equilibrium or steady-state conditions are approached. No panacea exists for eliminating these oscillations, but convergence can often be

AR 020914

achieved by changing the value of HMAX that multiplies the {RHS} term in equation 46. An approximate range of values for HMAX is 0.2 to 1.1. Trescott and others (1976, p. 26) give more detail on this parameter.

Care must be exercised when specifying the ITSTOP option (table 3) to FALSE. Errors may increase without bound with simulation time if convergence is not achieved in several sequential time steps, resulting in totally nonsensical results. Output generated using this option should be thoroughly scrutinized to easure that the results are indeed meaningful.

Initial Conditions

Initial conditions required for solution of the fluid-flow equation are specified by reading either the initial volumetric-moisture content, (Θ) or the initial pressure head, h. The program computes the pressure head or the volumetric-moisture content using the appropriate moisture content-pressure head function or its inverse from the supplied data. Boundary conditions at the start of simulation are read after initial conditions are set, so that they override initial conditions for boundary cells.

One commonly found initial condition is one in which the pressure potential is in equilibrium with the elevation potential above a free-water surface or water table. This condition is referred to in soil physics literature as an equilibrium profile. Automatic computation of pressure heads to provide such a profile as an initial condition is an option in the program. The user also may specify a constant minimum pressure head to replace the upper part of an equilibrium profile.

Boundary Conditions

Numerical approximations to the boundary conditions required to solve the fluid flow equation are described in this section.

Specified Flux and Potential

The specified flux boundary condition, which is described by equation 14, is also called a Neumann boundary condition. The specified potential, or Dirichlet boundary condition, is given by equation 15. The use of a blockcentered finite difference grid in this model results in the following dilemma: The Neumann boundary condition (specified ∇ H) can be specified properly, but the Dirichlet condition (specified H) cannot. With a facecentered grid, the Dirichlet boundary condition specification is straightforward, because the nodes are located on the boundary; however, flux boundary conditions require special formulation of the equations for each face across which the flux occurs. Difficulty in numerical implementation of these formulations in two dimensions was one of the reasons for choosing a blockcentered grid.

The specified flux boundary condition is implemented in the code by the use of source or sink terms at the boundary nodes. Each term in the summation in equation 13 represents a flux across a cell face. Consequently, when such a face is on a boundary, its conductance is set to zero, and a source or sink term approximates the boundary flux. To accurately represent a specified potential on the boundary, these cells should be as small (as possible) in the dimension perpendicular to the boundary. However, making this dimension small may require smaller time steps to prevent oscillation (Finlayson and others, 1978) and to preserve accuracy. Nodes with a specified potential are actually removed from the model domain. Because of this, the user should be aware that errors may occur in the computed mass balance if specified potentials are changed between successive simulation periods.

Infiltration

As discussed previously, infiltration may be a multistage process in which the boundary condition initially is one of specified flux, followed by a specified potential, and possibly, a reversion to one of specified flux. The boundary condition changes at the time ponding occurs or ceases. Infiltration is implemented in the code by:

1. Specifying the application or rainfall rate as a source term at boundary cells on the land surface. A new simulation period must be used to change rainfall rates.

2. Solving for all heads at the current time step.

3. Checking values of pressure potential (h) at each rainfall boundary node. If h is less than the maximum height of ponding (h_{pond}) , as specified by the user, the simulation proceeds to the next time step. If h is greater than h_{pond} , h is set equal to h_{pond} , the boundary condition at that node is set to a specified potential, and step 2 is repeated. At the same time, a flag (IFET2) is set to indicate that at least one node has been converted from specified flux to specified head.

4. Once ponding has occurred, the flux through each node subject to ponding is computed and compared to the specified flux. If the computed flux exceeds that specified by 1 percent or more, the node is respecified as a constant flux node, and step 2 is repeated. The 1-percent tolerance is incorporated to minimize flip-flopping between specified boundary conditions.

The value of h_{pond} is determined by the user-defined variable POND. The appropriate value for POND depends on the topography of the cross section being simulated. If the land surface is flat or uniformly sloping, the depth of ponding should be uniform. Under these conditions, POND should be a zero or positive value corresponding to the anticipated height of ponded water above land surface. If the cross section includes a furrow or depression, on

38

AR 020916

(

the other hand, as shown in figure 13, water would drain by overland runoff into the depression, where it might accumulate to some significant depth. This situation may be simulated by establishing a horizontal zero reference line that coincides with the highest point on the land surface. POND is defined as the algebraic height of anticipated ponding in the depression above the reference line, and is thus negative. Under these conditions,

$$h_{\text{pond}} = \text{maximum of } (0, DZZ + POND) , \qquad (47)$$

where DZZ = depth of each boundary node subject to infiltration below the reference point (positive downward).

The maximum height of ponding for each node will thus be equal to the greater of the elevation equal to POND or the elevation of land surface.

The manner in which VS2D may be used to determine the duration of a given rainfall rate, relative to the saturated hydraulic conductivity, needed to produce surface ponding and overland runoff for a given soil and specified initial conditions, is illustrated in figure 14. This figure shows the time required to produce ponding on a thick (4 m) bed of sand having the hydaulic properties of soil 4 in table 1, based on Brooks-Corey parameters. The effect on ponding time of two different initial conditions is shown by the separate curves. Ponding occurs significantly sooner when the soil column is relatively wet (pressure head = -80 cm) than when it is well drained (pressure head = -200 cm).

Evaporation

Evaporation across a boundary cell face is simulated as a two-stage process, as described above. Bare-soil evaporation is computed as the upward flux driven by the pressure-potential gradient between the soil and the atmosphere by the equation:

$$EV = KK_{r} SRES (HA - h) .$$
 (48)

The actual value of the evaporation flux is established by the value of EV. (1) if EV > PEV, the sink term for the cell is set equal to EV x A x ρ , where A = surface area of the cell. (2) If EV \leq PEV, the sink term for the cell is set equal to PEV x A x ρ .

When simulating evaporation, the user must specify three variables, as described below:

1. PEV, evaporative demand of the atmosphere, or potential evaporation, as a function of elapsed simulation time, LT^{-1} . Values for potential evaporation may be estimated using, say, the Penman equation (Campbell, 1977, p. 120) with an appropriate wind function. PEV is determined in the program by a subroutine VSPET (which can be provided by the user)

AR 020917

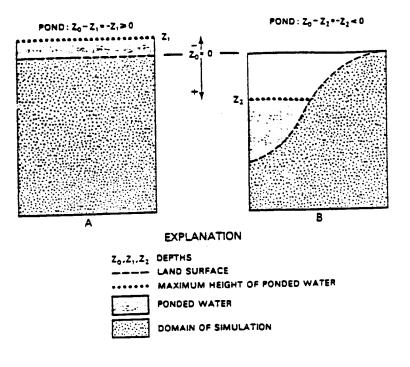
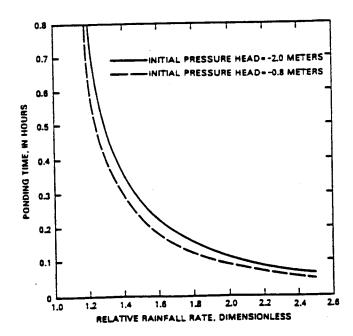
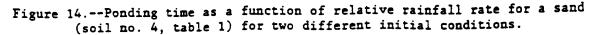




Figure 13.--The reference plane from which the depth of ponding, POND, is measured:

A. For infiltration through a horizontal surface.

B. For infiltration through a furrowed surface.

(

(

ł

based on the variation of potential evaporation with elapsed simulation time. The programmed subroutine assumes a recurring cycle of potential evaporation. Thus, several days of evapotranspiration may be simulated using a repeating daily sequence of hourly potential evapotranspiration values, or a few years of evapotranspiration could be simulated using a repeated annual sequence of, say, monthly values. The variation in PEV throughout a cycle is represented by a user-defined number (NPV) of line segments (ET periods) of equal length in time (ETCYC). Values of PEV for the beginning of each line segment must be entered by the user at the beginning of the simulation as a single set of values for that simulation. The program selects the proper line segment, based on elapsed simulation time, and then determines the value of PEV by linearly interpolating between values at the beginning and end of that segment.

2. HA, pressure potential of the atmosphere, L. This may be computed using the Kelvin equation (equation 6):

$$HA = \frac{RT}{M_{eg}} \ln h_{a},$$

where h_{j} = rélative humidity of the atmosphere.

As an example, assume that air temperature is 27 °C (300 K) and that relative humidity is 0.9. Since R = 8.31 kg \cdot m²/sec² \cdot K \cdot g \cdot mol, and M = 0.018 kg/g-mol, HA = -1,490 m. Moreover, at the same temperature and a relative humidity of 0.1, HA = -32,500 m. However, a pressure potential smaller than minus a few thousand meters of water can cause numerical instability in the simulation code. Thus, the user may want to arbitrarily specify HA as -1×10^3 m or so. Numerical experiments, described below, indicate that the computed evaporative flux is changed by only a few percent when HA is changed from -500 m to -1,000 m in a problem involving typical soil properties. Thus, little error should be introduced by using a value of HA of relatively small absolute magnitude.

3. SRES, surface resistance, L^{-1} . The total pressure potential in the atmosphere is assumed to apply at land surface. The surface resistance would be just the reciprocal of the distance from the node to land surface, or 2./DELZ(2). However, the user may want to simulate the effect of a less permeable surface crust. Under these conditions, SRES would be equal to the reciprocal of the thickness of designated soil that has the same hydraulic resistance as the crust. Thus, if the crust were assumed to have a thickness of DELZ(2)/2.,

SRES =
$$[2./DELZ(2)] \times K_{c}/K_{i,2},$$
 (49)

where K_{i,2} = designated saturated hydraulic conductivity of boundary node, and

 K_{\perp} = saturated hydraulic conductivity of the crust material.

For this approach, it is implicitly assumed that the unsaturated hydraulic conductivity function for the crust is the same as that for the surface soil.

SRES and HA are treated as cyclically varying parameters in the same manner as potential evaporation. Thus, it is necessary for the user to specify NPV values of both HA and SRES at the beginning of the simulation.

Some results obtained using Program VS2D to compute evaporation from a sand are shown in figure 15. For the simulations, the sand was assumed to have the hydraulic properties listed for entry 4 in table 1, based on the Brooks-Corey model. The sand was assumed to contain water throughout a deep profile underlain by impermeable materials at a pressure head of -80 cm. The pressure potential of the atmosphere was assumed to be -1,000 m. Simulations were made for three assumed potential evaporation rates, resulting in the graphed rates of evaporation. Note that once the evaporation rate becomes soil limited, it is essentially the same, regardless of the potential rate. The small humps in the curves likely arise from numerical problems in the code during the transition from climate-limited to soil-limited evaporation.

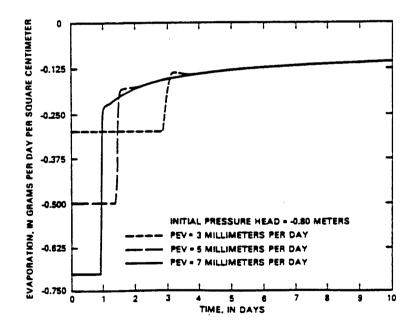


Figure 15.--Variation of evaporation rate from the surface of a column of sand (soil no. 4, table 1), 1-meter deep, for different potential evaporation rates.

AR 020920

(

42

Evapotranspiration

Evapotranspiration by vegetation results in plant-root extraction, which in turn is computed based on the following equation:

$$q_m = KK_r(h)r(z,t)(h_{root}-h)$$
(50)

where

r(z,t) is a root activity function of depth and time, L^{-2} ; and

h_{root} = pressure head in the root for the entire system, L. Total extraction by roots in a given column of cells is:

$$\hat{Q} = \rho \Sigma \left(vq \right)_{m}$$

$$m = 1$$
(51)

where

m = number of cells in the column with roots present.

If water is freely available to the plants, equations 50 and 51 may compute a flux from the soil (thus negative in sign) that is larger in magnitude than the potential evapotranspiration rate (PET). Consequently, for each iteration, the value of \hat{Q} computed by equation 51 is compared to PET x A x ρ , and if \hat{Q} is larger in magnitude than that value, all q are adjusted by

$$q_{\underline{m}} = \left(\frac{PET \times A \times \rho}{\hat{Q}}\right) q_{\underline{m}}$$
(52)

Otherwise, all q remain as the values computed by equation 50. The flow equation is then solved using the specified values for q_{\perp} .

To simulate of evapotranspiration, the logical variable ETSIM must be set to TRUE, and values for five variables must be specified, including PET (potential evapotranspiration), HROOT (minimum pressure in the roots, RTDPTH (the depth of rooting), RTBOT (the root activity at the bottom of the root zone), and RTTOP (the root activity at land surface). All of these variables are assumed to vary cyclically, and NPV values of each variable must be specified at the beginning of the simulation. The variables used to simulate evapotranspiration are discussed in greater detail below.

1. PET, Potential evapotranspiration, LT^{-1} . Typically, potential evapotranspiration would be computed from climatic data, using an equation such as the Penman or Jensen-Haise equations (Jensen, 1973) times an appropriate empirically determined crop factor.

2. HROOT, the pressure potential within the plant roots, L. Ordinarily HROOT would be set equal to the permanent wilting point for the plants in question. The permanent wilting point is defined as the pressure

AR 020921

potential in the soil at which the plant wilts and dies. For most agricultural crops, the permanent wilting point is equivalent to about -150 m of water.

3. RTDPTH, depth of rooting, L. This is the maximum depth below land surface in which root extraction is allowed. As programmed, the roots could grow throughout the season, then die back at the end of the season to start-over.

4. RTBOT, root activity at bottom of the root zone [r(RTDPTH,t) in equation 50], L^{-2} . This term is defined as the length of roots in a given volume of soil divided by that volume. The function routine VSRDF calculates the root activity for each depth within the root zone by linearily interpolating between the activity at the bottom of the root zone and that at land surface (RTTOP). Root activities range from 0 up to about 3.0 cm⁻², depending on the plant community and its stage of development.

5. RTTOP, root activity at land surface [r(0,t)], L^{-2} . This parameter is similar to RTBOT, and the comments above regarding RTBOT apply.

Several more comprehensive root-resistance functions have been presented in the literature (Molz, 1981). The user may want to supply his own rootactivity function, which would replace VSRDF in the program.

Examples of the use of program VS2D to simulate the effects of evapotranspiration are shown in figures 16 through 18. Figures 16 and 17 show the effects of plant-root extraction on the pressure-head profile with time in a 1.8-m thick sandy soil having the hydraulic properties listed for soil 4 in table 1, based on the Brooks-Corey model. Figure 16 shows the pressure head profiles that would develop with time in the sand if it were underlain by an impermeable bed at a depth of 1.8 m, starting with an initial pressure head of -100 cm. Figure 17 shows the pressure-head profiles that would develop in the same sand underlain by a fixed water table at 1.8-m depth, with an equilibrium profile from the water table to a depth of 0.8 m and a uniform pressure head of -100 cm above that depth. Root depth was 0.6 m, and root activities varied from 1.0 cm⁻² at land surface to 0.5 cm⁻² at the base of the root zone.

The actual evapotranspiration rates for the two cases during the 10-day simulation are shown in figure 18. Note that, in the case involving a shallow water table, the plant-root extraction induces upward flow from the water table, but the plants are not able to obtain enough water to meet the atmospheric demand. On the other hand, the plants growing in the absence of a shallow water table are nearly unable to extract water after about 5 days. Note that these large differences in evapotranspiration rates arise even though the pressure-head profiles for the two situations are quite similar.

Seepage Faces

Seepage faces produce nonlinear boundary conditions because the position of the top of the face is not known a priori. The code simulates this boundary condition in a manner similar to that described by Neuman (1975). This is accomplished as follows: (

(

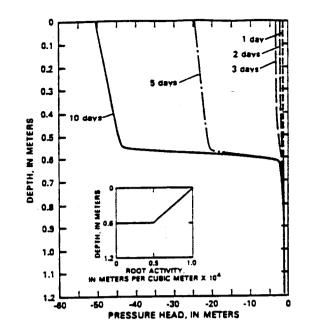


Figure 16.--Pressure-head profiles following transpiration from shallowrooted plants in sand (soil no. 4, table 1) underlain by an impermeable bed at 1.8 meters. Potential evapotranspiration is 1 gram per square centimeter per day and the numbers on the curves represent elapsed days from the start of the simulation.

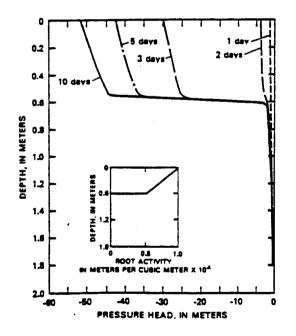


Figure 17.--Pressure-head profiles following transpiration from shallowrooted plants in sand (soil no. 4, table 1) in the presence of a shallow water table at 1.2 meters. Potential evapotranspiration is 1.0 grams per square centimeter per day and the numbers on the curves represent elapsed days since the start of the simulation.

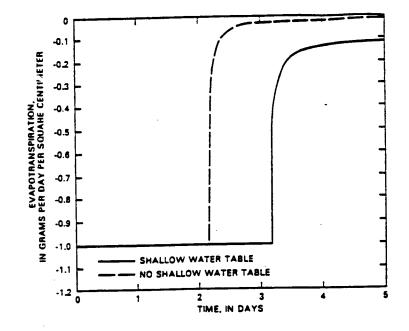


Figure 18.--Evapotranspiration rate as a function of time for transpiration by shallow-rooted plants in the presence and absence of a shallow water table. Potential evapotranspiration, soil properties and root-density profiles are the same as for figures 16 and 17.

1. The user specifies the nodes that fall on potential seepage face boundaries, as well as initial estimates of the seepage face heights.

2. For each seepage face, pressure potentials are set equal to zero from above the free-water surface to a height equal to the initial estimate of the seepage face height. Along the remainder of the potential seepage face, the boundary condition is considered to be one of specified zero flux.

3. Potentials are solved for in the entire system, and fluxes along the seepage face are computed. If these fluxes are all either zero or out of the system, simulation proceeds. If any point along the seepage face exists where h is specified as zero, and the computed flux is into the system, this cell is set to a prescribed zero flux boundary. For a specified zero flux cell, if the computed pressure head is positive, h is set to zero and the boundary condition is set to be one of specified potential.

4. Step 3 is repeated until all fluxes are out of the system along boundary segments at which h has been set to zero and all pressure potentials are less than or equal to 0 along the boundary.

AR 020924

Source-Sink Terms

Internal source-sink terms, other than plant-root extraction, must be treated either as constant-head or constant-flux nodes, the value of which may be changed with time. Fluxes must be in terms of volume per time (L^3/T) or of volume per time per unit of top surface area of the nodal cell (L/T). The former option is convenient for simulating pumping wells, while the latter option would be used to simulate infiltration. Constant-head nodes may be set in terms of pressure or total head. If the scurce-sink terms are made up of more than one node, the user must determine beforehand how the specified flux (or specified head) should be apportioned among all the nodes.

As was mentioned under "Theoretical Background", source-sink terms present in an unsaturated medium can possibly produce unrealistic results, due to the inability of the medium to conduct fluid at a fast enough rate. VS2D has no provision to check the validity of the computed results when this option is selected. Therefore the user is cautioned to scrutinize the calculated output to ensure that it is reasonable.

Nonlinear Coefficient Evaluation

Function subprograms have been written and tested to define θ from specified h, h from specified θ , $K_r(h)$, and $c_m(h)$, based on one of the following algebraic equations:

- 1. Brooks and Corey (1964).
- 2. van Genuchten (1980).
- 3. Haverkamp (1977).

The various expressions based on these equations are presented in the section "Nonlinear Coefficients". For all three equations, the variables used to evaluate the coefficients are stored in array HK (input line B-7 in table 3). The first four entries for each texture class must be the ratio of vertical to horizontal conductivity, horizontal saturated hydraulic conductivity, specific storage, and porosity. The fifth entry is the bubbling pressure for the Brooks and Corey equation, α' (as defined in this report) for the van Genuchten equation, or A' for the Haverkamp relative hydraulic conductivity equation. The sixth entry is Brooks-Corey λ , van Genuchten β' , or B' for the Haverkamp relative hydraulic conductivity are adequate to evaluate all nonlinear coefficients using the Brooks-Corey and van Genuchten equations, but two additional values are needed to evaluate the coefficients for the Haverkamp equation. These are read as Haverkamp α for the eighth variable and Haverkamp β for the ninth.

Alternatively, different function subroutines may be used to interpolate the coefficient values from tabular data of h, Θ , and K. For the included function routines, the first four values are the ratio of vertical to horizontal conductivity, saturated hydraulic conductivity, specific storage, and porosity, as above. All pressure heads are then input in increasing order from the smallest to the largest. Next all values of relative hydraulic conductivity are entered in the same order. Finally, all values of moisture content are input in the same order. There must be an equal number of heads,

AR 020925

relative conductivities, and moisture contents. The last values of head, relative hydraulic conductivity, and moisture content should all be 99 to indicate the end of data. For this option, initial conditions must be specified in terms of pressure potential. It should be recognized that the use of tabular data and an interpolation scheme may add considerable time to the execution of the program.

As listed in Attachment 1, the program is set up to use the van Genuchten equations to define Θ , h, K, and c. The functions using the Brooks and Corey or Haverkamp equations or linear interpolation are included as comment cards at the end of the program. To use these subroutines, they should be unloaded from the file, stripped of comment designation, compiled, and loaded with a compiled version of VS2D that does not include the functions for the Brooks-Corey model.

Liquid-Flux and Mass-Balance Computations

For many applications of this model, the quantities of most interest are fluxes in and out of the system. These fluxes are computed and printed separately for the following:

- 1. Specified potential boundaries;
- 2. Specified flux boundaries;
- 3. Evaporation;
- 4. Transpiration by plants; and
- 5. Specified source-sink cells.

These fluxes are balanced against changes in storage in the system being modeled. Integration of storage changes over the solution domain and over time uses differenced forms of the storage term in equation 13. The error in the balance is computed as a cumulative volume and as mass flux rates.

COMPUTER PROGRAM

Program Structure

The following pages list the functions of each of the subroutines, the required data inputs, and the content of the output files. A complete source-code listing is given in Attachment 1 and a flow chart for the program is given in Attachment 2. Definitions of variables are given in table 2. Table 3 lists the input data, including temporary designations not listed in table 2, and describes the read formats.

Communication among subroutines is achieved through the use of common blocks with minimal use of variables passed through calling sequences.

(

Ĺ

Table 2.--Definitions of variables

[NN, number of nodes; KT, number of time steps; NTEX, number of textural classes; NLY, number of rows; NXR, number of columns; NIT, number of iterations; NPLTIM, number of times to print to file 11; NFCS, number of seepage faces]

Variable	Definition		
HX (NN)	Horizontal saturated hydraulic conductivity, LT ⁻¹ .		
HKTT(NN)	Conductance at left side of cell, L^2T^{-1} .		
HKLL (NN)	Conductance at left side of cell, L^2T^{-1} .		
PXXX (NN)	Total head from previous time step, L.		
Q(NN)	Evapotranspiration rate, $L^{3}T^{-1}$.		
RT(NN)	Root activity function, L^{-2} .		
THETA(NN)	Volumetric moisture content at current time step, L°.		
THLST (NN)	Volumetric moisture content at previous time step. L°.		
QQ(NN)	Array of constant fluxes into or out of each cell, $L^{3}T^{-1}$.		
DUM(NN)	Temporary array used for input and output.		
A(NN)	Coefficient in flow equation for left side of each cell, L^2T^{-1} .		
B(NN)	Coefficient in flow equation for top side of each cell, L^2T^{-1} .		
C(NN)	Coefficient in flow equation for right side of each cell, L^2T^{-1} .		
D(NN)	Coefficient in flow equation for bottom of each cell, L^2T^{-1} .		
E(NN)	Coefficient for center of each cell, L^2T^{-1} .		
RHS (NN)	Right-hand side of the flow equation for each cell, $L^{3}T^{-1}$.		
P(NN)	Total head at current time step, L.		
PITT(NN)	Static array used in VSMGEN to allow Newton-Raphson treatment of capacitance terms.		
HCND(NN)	Relative hydraulic conductivity at each cell, L ^o .		
DEL(NN)	Temporary array used in SIP.		
ETA(NN)	Temporary array used in SIP.		
V(NN)	Temporary array used in SIP.		
XI (NN)	Residual of total head between iterations, L.		
ETOUT	Total transpiration from system for each time step, MT^{-1} .		
ETOUTI	Total evaporation from system for each time step, MT^{-1} .		
TITL	80 character title.		
DELZ(NLY)	Grid spacing in vertical direction, L.		
DXR (NXR)	Grid spacing in horizontal direction, L.		
RX(NXR)	Radial or horizontal distance from left side of domain to cente of each column, L.		
DELY	Thickness of vertical section, L.		
DSMAX	Maximum allowed change in head per time step, L.		
JTEX(NN)	Textural class code for each cell.		
JSPX(3,25,4)	Integer map of seepage face nodes; first dimension contains cell number, row number, and column number for each cell on a possible seepage face; second dimension is the position on the seepage face from lowest to highest dimension; third dimension is the seepage face number.		

1

Variable	Definition			
NTYP(NN)	Boundary condition or cell type indicator:			
	0 = internal node;			
	1 = specified pressure head; 2 = specified flux per unit top surface area of cell;			
	2 = specified flux per unit top sufface field of term, 3 = cell on which seepage face is permitted;			
	3 = cell on which seepage face is permitted,			
-	4 = specified total head; 5 = cell from which evaporation is permitted; and			
	5 = cell from which evaporation is permitted, the 6 = specified volumetric flow rate.			
	6 = specified volumetric flow face. Temporary array for input and output of texture class codes.			
IDUM(NN)	Temporary array for input and output of texture tibe to cell Array of observation points; head and saturation for each cell			
IJOBS (NOBS)	contained in LIOBS will be written to file 11 each time step			
KDUM (NN)	Temporary array to read in observation points for which data are to be written to file 11.			
NFC(4)	Number of cells permitted in each seepage face.			
EPS	Convergence criterion for all iterations, L.			
STERR	Steady-state convergence criterion for all recharge periods, 1			
STIM	Current value of elapsed simulation time, T.			
TPER	Length of current recharge period, T.			
PET	Potential plant transpiration per unit area, LT ⁻¹ , as compu- by function VSPET.			
PEV	Potential evaporation per unit area, LT ⁻¹ , as computed by function VSPET.			
PETT	Potential evaporation or potential evapotranspiration from column area, L ³ T ⁻¹ .			
ANIZ(10)	Ratio of vertical-to-horizontal saturated hydraulic con-			
	ductivity or anisotropy factor, L°.			
WUS	Upstream weighting factor for relative hydraulic conductivity, L°.			
WDS	Downstream weighting factor for relative hydraulic conduc- tivity, L°.			
HROOT	Pressure head in roots at which plants permanently wilt, L.			
НА	Pressure head in the atmosphere, used to compute evaporation, L.			
NPV	Number of potential evaporation or potential evapotranspira- tion values to be read in during simulation.			
PEVAL(25)	Potential evaporation at beginning of simulation and at end of each user-specified interval thereafter, LT ⁻¹ .			
PTVAL(25)	Potential evapotranspiration at beginning of simulation and at end of each user-specified interval thereafter, LT ⁻¹ .			
RDC(6,25)	Constants used to determine pressure potential of the atmos- phere, surface resistance of the soil, rooting depth, root activity functions, and root pressure potential.			
DHMX(NIT)	Maximum change in total head over entire solution domain for each iteration within each time step, L.			
DPTH(NN)	Depth from land surface to center of each cell, L.			
TEMP(NLY)	Temporary array.			

Table 2.--Definitions of variables--Continued

(

(

Definition Variable Vertical distance from origin at top of domain to center of DZZ(NLY) each layer, L. Times at which heads are written to files 6 and 8 for all PLTIM(NPLT) cells, T. Iteration parameters for SIP algorithm, L°. HM(30)Array of textural properties for each different class. HK(10, 100)First dimension refers to textural class. Second dimension refers to saturated hydraulic conductivity, specific storage, porosity, and other parameters required for determining moisture and conductivity functions. Minimum allowed time step, T. DLTMIN Surface-resistance factor for evaporation, L^{-1} . SRES · Current time-step length, T. DELT Maximum allowed time step, T. DLTMX Relaxation or damping factor, L°. HMAX Maximum allowed depth of ponded water, L. POND Descriptor for units of mass. CUNX Root depth, L. RTDPTH Multiplier for time-step length, L°. TMLT Factor for time-step length reduction, L°. TRED Maximum simulation time, T. TMAX Descriptor for units of time. TUNIT Liquid density, ML⁻³. RHOZ Descriptor of units used for length. ZUNIT $2 \times \pi$, L°. PI2 Counter that is set to 1 when ponding has occurred or ceased; IFET allows rerunning of the time step with new boundary conditions. Counter to determine whether all nodes for which ponding can IFET1 occur have been tested. Counter to determine whether any nodes that were initially IFET2 specified as constant flux are now specified as constanthead nodes. Maximum permitted number of iterations per time step. ITMAX Flag used to initiate print to file 6, when set to 1. JFLAG Flag used to stop simulation, if set to 1. JSTOP Switch to indicate convergence (=0) or nonconvergence of ITEST iteration (=1). Maximum permitted number of time steps. NUMT Number of periods for which different boundary-condition data NRECH are to be read. Number of rows in domain. NLY Number of columns in domain. NXR NLY-1. NLYY NXRR NXR-1. Counter on number of periods with different boundary conditions KP (recharge periods).

Table 2.--Definitions of variables--Continued

Table 2.--Definitions of variables--Continued

Variable	Definition			
KTIM	Time-step counter.			
NIT	Iteration counter.			
NITT	Total number of iterations for simulation.			
MINIT	Minimum number of iterations for each time step.			
JPLT	Switch to write all heads to file 8 (=1), or bypass writing			
	these $(=0)$			
NPLT	Number of times for which all heads are written to file 8.			
	Number of cells for which head and saturation are written to			
NOBS	file 11 each time step.			
-	Number of seepage faces.			
NFCS	Number of seepage faces. Number of node which represents current height of each			
JLAST(NFCS)	Number of node witch represents current height of the			
	seepage face. Total number of nodes in simulation.			
NNODES	Total number of nodes in simulation.			
NTEX	Number of textural classes.			
THPT	If = T , moisture contents are written to file 6.			
SPNT	If = T, saturations are written to file 6.			
PPNT	If = T, pressure heads are written to file 6.			
BCIT	If = T, flux boundary condition involving evaporation			
	is permitted.			
PRNT	If = T, heads and saturations are written to file 6			
	every time step; if = F, heads and saturation are written			
	at designated times and at end of recharge period.			
RAD	If = T, cylindrical coordinate system is used; if = F,			
	rectangular system is used.			
PHRD	If = T, initial values of pressure head are read; if = F,			
· ·	initial volumetric moisture contents are read for entire			
•	solution domain.			
TTOTOD	If = T, simulation is terminated if MAXIT iterations are			
ITSTOP	exceeded during a time step.			
	If = T, seepage faces are permitted.			
SEEP	If = 1, seepage faces are permitted. If = T, total heads are written to site 6.			
HPNT	II = 1, total meaus are written to site 0 .			
F6P	If = T, mass balance summary is written to file 6 each			
	time step. If false, mass balance summary is written to			
	file 6 at designated times and at end of recharge period.			
ETSIM	If = T, flux boundary condition involving plant transpiration			
	is permitted.			
F7P	If = T, the maximum head change for each iteration is			
	written to file 7 after every time step.			
F8P	If = T, the mass-balance summary and pressure heads, total			
	heads, saturations, and/or moisture contents, as designated			
	are written to file 6 at specified times; pressure heads			
	are written to file 8 for the same times.			
F9P	If = T, mass-balance components, including evaporation and			
- / -	evapotranspiration are written to file 9 for each time step			
F11D	If = T, heads and saturations are written to file 11 for			
F11P	specified observation points each time step.			
	Sbecilled observation bornes each time steb.			

(

(

Input Data

Data are read, mainly as free-formatted or list-directed input, from file 5. However, the title and the units are read in VS2D in A-format to avoid the need to enclose the character strings in quotation marks. The use of free format, which is supported by Fortran-77 and some extended versions of Fortran-66 facilitates terminal input. Data for a given READ statement can occur anywhere on the line, or may occur on several lines, each entry being separated by a comma or by one or more blanks. Every item in the input list requires an entry (blanks do not represent zeros), but data may be read using a repeat count. Entry of data using the form n*d results in n values of d being read into the program. For repeated data entries, such as those read in at the start of a new recharge period, the user may wish to retain some previously read values. This may be accomplished for entries within the read list by the use of two commas surrounding the position of the the previous entry to be retained. If the entries to be retained are at the end of the list, the new entries may be followed by a / for some systems, or blank /, which terminates the record.

Users wishing to use this program on a computer with a Fortran compiler that does not support free format must add format statement numbers to the read statements, using formats of their choice (compatible with the data type of the variables).

Table 3 lists the data input entries by line. The usual Fortran convention is used to designate real numbers and integers.

Subroutine Descriptions

An attempt was made to make the computer code as modular as possible to facilitate updating of subroutines. As given in this report, the computer code comprises 22 subroutine and function subprograms. The main program to execute the code must be supplied by the user. This allows the inclusion of file attachment statements (if any) that may be required for a particular machine installation.

This section gives the purpose of each subroutine and function subprograms included in the computer code.

1520

1. VSEXEC Executive control of simulation:

a. Reads solution domain dimensions, program options and location and times for output to monitoring files. b. Calls routines to: (1) read material properties, boundary and initial conditions; (2) echo input data; (3) control time sequence of simulation; (4) compute coefficients in matrix equations and solve them; and (5) output results of simulation.

2. BLOCK DATA Initializes values for common blocks used in the program.

3. VSREAD Inputs initial conditions:

a. Reads material properties, initial heads or moisture contents, and initial source/sink strengths from file 5.
b. Computes depths for evapotranspiration calculations.

rđ	Variable	Description
	[Line gro	up A read by VSEXEC]
-1	TITL	80-character problem description
		(formatted read, 20A4).
2	TMAX	Maximum simulation time, T.
	STIM	Initial time (usually set to 0), T.
}	ZUNIT	Units used for length (A4)
	TUNIT	Units used for time (A4).
	CUNX	Units used for mass (A4).
e: Line A-3	is read in 3A4 :	format, so the unit designations must occur
	, 5-8, 9-12, re:	
4 -	NXR	Number of cells in horizontal or
		radial direction.
	NLY	Number of cells in vertical direction.
5	NRECH	Number of recharge periods.
e	NUMT	Maximum number of time steps.
•6	RAD	Logical variable = T if radial
		coordinates are used; otherwise = F.
	ITSTOP	Logical variable = T if simulation is
		to terminate after ITMAX iterations in
_		one time step; otherwise = F.
7	F11P	Logical variable = T if head, Q
		moisture content, and saturation K
		at selected observation points are
		to be written to file 11 at end of
,		each time_step: otherwise = F.
	F7P	Logical variable = T if <u>head changes</u> for each iteration in every time step are to be written in file (7) otherwise = F. Logical variable = T if output of <u>pressure heads</u> to file (8) is desired
		for each iteration in every time
		step are to be written in file (7)
		otherwise = F.
	F8P	Logical variable = T if output of
		pressure heads to file B is desired V
		at selected observation times; other-
		wise = F .
	F9P	at selected observation times; other- wise = F. Logical variable = T if one-line mass balance summary for each time step is
		balance summary for each time step is
		to be written to file(9) otherwise
		= F.
•	F6P	Logical variable = T if mass balance
		is to be written to file 6 for each
		time step; = F if mass balance is to
		be written to file 6 only at obser-
		vation times and ends of recharge
		periods.
		Lastado -

Table 3.--Input data formats

(

(

٠.

.

Card	Variable	Description
A-8	THPT	Logical variable = T if <u>volumetric</u> <u>moisture</u> contents are to be written to file 6; otherwise = F.
	SPNT	Logical variable = T if <u>saturations</u> are to be written to file 6; other- wise = F.
	PPNT	Logical variable = T if pressure head are to be written to file 6; other- wise = F.
	HPNT	Logical variable = T if total heads a to be written to file 6; otherwise
A-9	IFAC	 = 0 if grid spacing in horizontal (or radial) direction is to be read in each column and multiplied by FACX. = 1 if all horizontal grid spacing is
		<pre>to be constant and equal to FACX. = 2 if horizontal grid spacing is var able, with spacing for the first tw columns equal to FACX and the spacing for each subsequent column equal to XMULT times the spacing of the pre- vious column, until the spacing equal XMAX, whereupon spacing becomes con- stant at XMAX.</pre>
	FACX	Constant grid spacing in horizontal (o radial) direction (if IFAC=1); constant multiplier for all spacing (if IFAC=0); or initial spacing (if IFAC=2), L.
Line set A-10 is If IFAC = 0,	present if IFAC = 0	or 2.
A-10	DXR	Grid spacing in horizontal or radial direction. Number of entries must equal NXR, L.
If IFAC = 2, A-10	XMULT	Multiplier by which the width of each node is increased from that of the previous node
	XMAX	previous node. Maximum allowed horizontal or radial spacing, L.
A-11	JFAC	 = 0 if grid spacing in vertical direction is to be read in for each row and multiplied by FAC2. = 1 if all vertical grid spacing is to

ς.

١

Table 3.--Input data formats--Continued

•

for each subsequent row equal to ZMULT times the spacing at the previous row, until spacing equals ZMAX, whereupon spacing becomes constant at ZMAX.
variable, with spacing for the first two rows equal to FACZ and the spacin for each subsequent row equal to ZMULT times the spacing at the previous row, until spacing equals ZMAX, whereupon spacing becomes constant at ZMAX.
variable, with spacing for the first two rows equal to FACZ and the spacing for each subsequent row equal to ZMULT times the spacing at the previous row, until spacing equals ZMAX, whereupon spacing becomes constant at ZMAX.
two rows equal to FACZ and the spacing for each subsequent row equal to ZMULT times the spacing at the previous row, until spacing equals ZMAX, whereupon spacing becomes constant at ZMAX.
for each subsequent row equal to ZMULT times the spacing at the previous row, until spacing equals ZMAX, whereupon spacing becomes constant at ZMAX.
ZMULT times the spacing at the previous row, until spacing equals ZMAX, whereupon spacing becomes constant at ZMAX.
previous row, until spacing equals ZMAX, whereupon spacing becomes constant at ZMAX.
ZMAX, whereupon spacing becomes constant at ZMAX.
constant at ZMAX.
Constant and encoder in martinal
Constant grid spacing in vertical
direction (if JFAC=1); constant
multiplier for all spacing (if JFAC
=0); or initial vertical spacing (if
JFAC=2), L.
JFAC = 0 or 2.
Grid spacing in vertical direction;
number of entries must equal NLY, L.
Multiplier by which each node is
increased from that of previous node.
Maximum allowed vertical spacing, L.
at only if $F8P = T$, $(A \neg)$
Number of the second second second
step to file 8 and heads, saturations , whow and/or moisture contents to file 6. Elapsed times at which pressure heads
And/or moisture contents to file 6
Elapsed times at which pressure heads
are to be written to file 8, and
heads, saturations and/or moisture
contents to file 6, T.
t only if F11P = T,
Number of observation points for which
heads, moisture contents, and satur-
ations are to be written to file 11.
Row and column of observation points.
A double entry is required for each
observation point, resulting in
2xNOBS values.
d by subroutine VSREAD]
Closure eriterie for iterative column
Closure criteria for iterative solution,
units used for head, L.
Relaxation parameter for iterative
solution. See discussion in text for
more detail. Value is generally in the
range of 0.4 to 1.2.
•

Table 3.--Input data formats--Continued

AR 020934

(

(

ard	Variable	Description
B-1Continued		· · ·
	WUS	Weighting option for intercell rela-
		tive hydraulic conductivity:
		WUS = 1 for full upstream weighting.
		WUS = 0.5 for arithmetic mean.
		WUS = 0.0 for geometric mean.
B-2	RHOZ	Fluid density (M/L ³ in units designated
		in line A-3).
B-3	MINIT	Minimum number of iterations per time
	•	step.
	ITMAX	Maximum number of iterations per time
		step. Must be less than 201.
B-4	PHRD	Logical variable = T if initial
		conditions are read in as pressure
		heads; = E)if initial conditions
		are read in as moisture contents.
B-5	NTEX	Number of textural classes or lith-
		ologies having different values of
		hydraulic conductivity, specific
		storage, and/or constants in the
		functional relations among pressure
		head, relative conductivity, and
	·	moisture content.
	NPROP	Number of material properties to be
		read in for each textural class.
		When using Brooks and Corey or van
. ·		Genuchten functions, set NPROP = 6,
		and when using Haverkamp functions,
		set NPROP = 8. When using tabulated
		data, set NPROP = 6 plus number of
		data points in table. [For example,
		if the number of pressure heads in
		the table is equal to N1, then set
	N N N N N N N N N N	NPROP $=3*(N1+1)+3$]
	-	eated NTEX times
B-6	ITEX	index to textural class.
B-7	ANIZ(ITEX)	Ratio of vertical-to-horizontal or
		radial conductivity for textural
		class ITEX.
	HK(ITEX,1)	Horizontal saturated hydraulic con-
		ductivity (K) for class ITEX, LT^{-1} .
	HK(ITEX, 2)	Specific storage (S _s) for class
		ITEX, LT^{-1} .
	HK(ITEX,3)	Porosity for class ITEX.

Table 3. -- Input data formats -- Continued

.

.

-

Table 3.--Input data formats--Continued

upon w coeffi a <u>nd</u> Co choice compil	ons for hich fun cients. rey, (2) of which ed, by i	Four Four van h of includ	emaining sequential values on this line are dependent al relation is selected to represent the nonlinear different functional relations are allowed: (1) Brooks Genuchten, (3) Haverkamp, and (4) tabular data. The these to use is made when the computer program is ing only the function subroutine which pertains to n (see discussion in text for more detail).
relati pressu to the	ons are re heads largest	index ; are :), al	riptions, definitions for the different functional ed by the above numbers. For tabular data, all input first (in increasing order from the smallest l relative hydraulic conductivities are then input followed by all moisture contents.
HK(ITEX,			h. L. (must be less than 0.0).
			α' , L. (must be less than 0.0).
		(3)	A', L. (must be less than 0.0). (
		(4)	Smallest pressure head in table. (
HK(ITEX,	5)	(1)	Residual moisture content (θ_r) .
			Residual moisture content (θ_r) .
		(3)	Residual moisture content (θ_r) .
			Second smallest pressure head in table.
HK(ITEX,	6)	(1)	λ.
		(2)	β'.
		(3)	B'.
		(4)	Third smallest pressure head in table.
HK(ITEX,	7)	(1)	Not used.
		(2)	Not used.
		(3)	α , L. (must be less than 0.0).
		(4)	Fourth smallest pressure head in table.
HK(ITEX,	8)	(1)	Not used.
		(2)	Not used.
		(3)	β.
		(4)	Fifth smallest pressure head in table.
on thi		for th	ons (1), (2), and (3) no further values are required is textural class. For tabular data (4), data input s:

AR 020936

,

Ĉ

(

Table	3Inp	ut data	formatsContinu	led
-------	------	---------	----------------	-----

Card	Variable	Description
B-7Continued		
HK(ITEX,9)	Next largest pr	essure head in table.
HK(ITEX,N1+3)	Maximum pressur	e head in table.
	$= 3 \times (N1+1)+3)$	
HK(ITEX,N1+4)	Always input a	
HK(ITEX,N1+5)	Relative hydrau pressure head	lic conductivity corresponding to first.
HK(ITEX,N1+6)	Relative hydrau second pressu	lic conductivity corresponding to re head.
HK(ITEX,2*N1+4)	Relative hydrau largest press	lic conductivity corresponding to ure head.
HK(ITEX, 2*N1+5)	Always input a	
$HK(ITEX, 2 \neq N1 + 6)$	Moisture conten	t corresponding to first pressure head.
HK(ITEX,2*N1+7)	Moisture conten	t corresponding to second pressure head.
•		
		t corresponding to largest pressure head.
HK(ITEX,3*N1+6)	Always input a	value of 99.
		elation is selected there must be NPROP+1
values on line		
B-8	IROW	If IROW = 0, textural classes are read for each row. This option is preferable if many rows differ from the others. IF IROW = 1, textural classes are read in by blocks of rows, each block consisting of all the rows in sequence consisting of uniform properties or uniform properties separated by a vertical interface.
Line set B-9 is	present only if	
B-9	JTEX	Indices (ITEX) for textural class for each node, read in row by row. There must be NLY*NXR entries.
Line set B-10 i	s present only if	IROW = 1.
As many groups	of B-10 variables ired. The final ;	as are needed to completely cover the group of variables for this set must have
B-10	IL	Left hand column for which texture
2 10	~~	class applies. Must equal 1 or [IR(from previous card)+1].

Card	Variable	Description
-10Continued	·	
	IR	Right hand column for which texture
		class applies. Final IR for
		sequence of rows must equal NXR.
	JET	Bottom row of all rows for which the
	_	column designations apply. JBT must
		not be increased from its initial
		or previous value until IR = NXR.
	JRD	Texture class within block.
Note: As an	example, for a colu	umn of uniform material; IL = 1, IR = NXR,
		class designation for the column material.
	-	et for this example.
B-11	IREAD	If IREAD = 0 , all initial conditions
		in terms of pressure head or moisture
		content as determined by the value of
		PHRD are set equal to FACTOR. If
		IREAD = 1, all initial conditions are
		read from file IU in user-designated
		format and multiplied by FACTOR. If
		IREAD = 2 initial conditions are
		defined in terms of pressure head,
		and an equilibrium profile is specified above a free-water surface
		at a depth of DWTX until a pressure
		head of HMIN is reached. All pressure
		heads above this are set to HMIN.
	FACTOR	Multiplier or constant value, depending
		on value of IREAD, for initial
		conditions, L.
Line B-12 is p	present only if IRE	
B-12	DWTX	Depth to free-water surface above which
		an equilibrium profile is computed, L
	HMIN	Minimum pressure head to limit height
	- /	of equilibrium profile; must be less
		than zero, L.
Line B-13 is r	read only if IREAD :	
B-13	IU	Unit number from which initial head
		values are to be read.
	IFMT	Format to be used in reading initial
		head values from unit IU. Must be
		enclosed in quotation marks, for
P-1/	DOTE	example '(10X,E10.3)'.
B-14	BCIT	Logical variable = 1) if evaporation is
		to be simulated at any time during the simulation; otherwise = F.

Table 3.--Input data formats--Continued

(

(

Ć