

Mr. John Drabek Department of Ecology Northwest Regional Office Water Quality Program 3190 160th Ave S.E. Bellevue, WA 98008-5452

RECEIVED MAY 1 8 2001 DEPT OF ECOLOGY

Dear Mr. Drabek:

This letter provides an update regarding fill material placed at the Third Runway Embankment during the first quarter 2001 and presents the final tonnage and calculated volumes for soil placed during the Third Runway Phase III Embankment contract (May 2000 through February 2001). There were no new sources of fill received during the first quarter 2001. Supplemental environmental information for ongoing chemical testing of fill sources is included.

The attached table provides a summary of soil placed during the 2000 Phase III Embankment contract. There a few minor differences between the estimates provided during earlier reports to Ecology and the final actual amounts presented in the attached table. Data provided in the attached table are based on the final contract records and take precedence over earlier submittals.

This documentation was developed consistent with the requirements of the 1999 Airfield Project Soil Fill Acceptance Criteria agreed to by the Port and Ecology in May 1999. If you have any questions regarding this information, I can be reached at (206) 439-6604.

Sincerely

Paul W. Agid Environmental Program Manager

XC:

Jim Thomson (Port of Seattle) Ching Pi Wang (Ecology)

Attachments: Fill summary table

Environmental documentation

Seattle-Tacoma International Airport P.O. Box 68727 Seattle, WA 98168 U.S.A. TELEX 703433 FAX (206) 431-5912

Exhibit Witness_ Diana Mills, Court Recorter May 15, 2001

Mr. John Drabek
Department of Ecology
Northwest Regional Office
Water Quality Program
3190 160th Ave S.E.
Bellevue, WA 98008-5452

Dear Mr. Drabek:

This letter provides an update regarding fill material placed at the Third Runway Embankment during the first quarter 2001 and presents the final tonnage and calculated volumes for soil placed during the Third Runway Phase III Embankment contract (May 2000 through February 2001). There were no new sources of fill received during the first quarter 2001. Supplemental environmental information for ongoing chemical testing of fill sources is included.

The attached table provides a summary of soil placed during the 2000 Phase III Embankment contract. There a few minor differences between the estimates provided during earlier reports to Ecology and the final actual amounts presented in the attached table. Data provided in the attached table are based on the final contract records and take precedence over earlier submittals.

This documentation was developed consistent with the requirements of the 1999 Airfield Project Soil Fill Acceptance Criteria agreed to by the Port and Ecology in May 1999. If you have any questions regarding this information, I can be reached at (206) 439-6604.

Sincerely,

Paul W. Agid Environmental Program Manager

Cc: Jim Thomson (Port of Seattle) Ching Pi Wang (Ecology)

Attachments:
Fill summary table
Environmental documentation

THIRD RUNWAY CUMULATIVE FILL SUMMARY -- PHASE III EMBANKMENT (2000/2001)

				Month	Year	Month	Year	Final	Final
				Initial	Initial	Final	Final	Amount	Volume
Source Name	Supplier	Category	Description	Receipt	Receipt	Receipt	Receipt	(Tons)	(CY) (a)
Airborne Express/ FAA	FAA	⋖	New FAA Tower Phase 2	April	2000 May	Мау	2000		4,000
Airfield 2000 -Taxiway B	Port	A	Taxiway B Improvements	April	2000 June	June	2000		5,300
First Avenue Bridge	WSDOT	×	First Avenue Bridge, Seattle	April	2000 June	June	2000		85,000
No. Esplanade	Port	A	No. Esplanade - Conc. D	May	2000 May	May	2000		1,700
NW Hangar Project	NW/CTI	A	New NW Hangar	June	2000	2000 August	2000	69,549	38,638
Lakeland Pit (2000)	CTI	B (b)	Borrow Pit, Sumner	June	2000	2000 February	2001	370,164	205,647
CTI Pit No. 3	CTI	Borrow	Borrow Pit, Sumner	June	2000	2000 February	2001	311,193	172,885
Auburn Pit (Miles Sa & Gvl)	CTI	Borrow	Borrow Pit, Auburn	June	2000	2000 February	2001	288,783	160,435
	CTI	Borrow	Borrow Pit, Ravensdale	June	2000	2000 February	2001	497,224	276,236
Airfield 2000 - So. Sat.	Port	V	Duct Bank, IWS Improve.	June	2000 Sept	Sept	2000		1,000
Lincoln Square	CTI	A	Bellevue Development	July	2000	2000 November	2000	545,306	302,948
NE12th/112th Bellevue	CTI	A	Bellevue/Stowe Stockpile	August	2000 Sept	Sept	2000	95,012	52,784
REI	ICON	A	REI's Kent Expansion	July	2000 July	July	2000		6,000
IWS Lagoon No. 3	Port	A	Expansion Lagoon 3 (2000)	August	2000	2000 November	2000	64,500	35,833
Third RW Offices	Port	В	New Offices - West Side	August	2000 Sept	Sept	2000		10,200
Airfield 2000- West Side	Port	A	RTA A and B, Taxi P,N	August	2000	2000 October	2000		31,400
Black River Quarry	CTI	A	Stoneway Rock & Recycl.	August	2000	2000 October	2000	93,328	51,849
Detention Ponds C and F	Port	В	West Side Detention Ponds	Sept	2000	2000 October	2000	22,485	12,492
Seattle Olympus	CTI	A	Bell Tower - Seattle	October	2000	2000 October	2000	196	109
Bellevue Summit Ridge	СТІ	A	Bellevue Development	October	2000	2000 January	2001	148,160	82,311
								,	

(a) Note these values may vary slightly from earlier submittals to Ecology. These values represent final contract actual amounts and take precedence over

earlier estimates. Reported tonnage was converted to cubic yards (cy) assuming a soil density of 1.8 tons/cy.

(b) As part of source review for the Phase IV Embankment contract, the Port has reevaluated this site and determined that the site meets the requirements for Category B (this site was previously reported as Category A).

SUPPLEMENT ENVIRONMENTAL REVIEW SHEET Airport Project Fill Material

CONTRACTOR/SUPPLIER NAME: CTI
SITE: Black River Quarry
SITE LOCATION: Stoneway Rock and Recycling Renton Washington
DATE INITIAL REPORT TO ECOLOGY: Third Quarter 2000
COMMENTS:
This supplement documents additional sampling activities at the Black River Quarry site.
REVIEWER: Classe DATE: 4/3c/c1

Memo

To: Paul Agid

From: Beth Clark

cc: Elizabeth Leavitt, Jim Thomson

Date: 04/30/01

Re: Black River Quarry

Rock aggregrate was imported to the Third Runway embankment from the Black River Quarry during August through October 2000. The site, owned by Stoneway Rock & Recycling, also operates as a concrete crushing and recycling center. Blasting and crushing of bedrock derived from the quarry produces aggregate that is used for various construction projects in the Puget Sound. Chemical testing was conducted on samples of the aggregate by AMEC, environmental consultant to the supplier City Transfer, Inc. (CTI). The initial test results for this site were submitted to Ecology in the Port's Third Quarterly Report 2000. On the request of the Port, AMEC conducted additional chemical testing on the aggregate. These test results have been discussed with Mr. Chung Yee of the Department of Ecology (various telecommunications fall, 2000) and are discussed further below.

Testing for Petroleum Hydrocarbons

Table 1, prepared by AMEC, summarizes the test results for petroleum hydrocarbons. The initial test results indicated the presence of diesel and heavy oil range petroleum (TPH diesel and oil) at 200 and 310 ppm respectively. This exceeds the current Method A standard of 200 ppm, but is well below the new MTCA Method A standard of 2000 ppm which becomes effective August 15, 2001. The presence of TPH was attributed to the inadvertent mixing of residual asphaltic materials found in the recycling operations with the stockpiled soil. Subsequent samples collected on 6/22/00 and 7/6/00 of newly blasted rock also detected TPH but at levels below current and proposed MTCA Method A standards. Based on the results of the initial chemical testing, the Port agreed to accept only newly blasted rock and required AMEC to conduct ongoing TPH testing as a condition to the acceptance of the material to the Third Runway embankment. The initial test results were submitted to Ecology.

The results of the ongoing sampling of the aggregate are also summarized in Table 1 (9/25/00 through 10/11/00). The results indicate the continued presence of low levels of TPH (primarily oil). The results varied from non-detect up to 270 ppm. After careful review of the site operations, AMEC concluded that the only apparent source of TPH was residual material in the crushing equipment left from the asphalt recycling operations. The Port stopped the import of material from the Black River Quarry in October and instructed CTI and Stoneway to evaluate potential modifications in procedures to better separate the asphalt recycling and rock crushing operations. Based on their evaluation, Stoneway modified operations to include:

(1) Thorough cleaning of the crushing equipment after the asphalt recycling operations and before the switch to rock crushing, and

(2) Discard of the first hundred tons of rock crushed after the use of the equipment for asphalt recycling.

Subsequent on-site testing conducted by AMEC on 10/2400 through 10/30/00, after the modifications in operations, indicate levels below current and proposed Method A standards. Although there were no exceedances of Method A standards, none of this material was placed at the Third Runway.

Testing for Metals

After review of the Port's Third Quarterly Report 2000, Mr. Chung Yee of Ecology called the Port to discuss the metal data. He particularly noted the presence of copper at levels above typical background levels for Puget Sound, but for which there is not MTCA Method A standard. The initial test results are summarized on Table 2 (6/9/00). Based on Mr. Chung Yee's evaluation, the Port requested AMEC to conduct additional sampling of the aggregrate for total metals. AMEC and the Port also discussed the potential sources of copper and concluded that copper was naturally occurring in the rock formation and that there were no known on-site sources of copper contamination.

These results of the additional metals testing are also summarized on Table 2 (11/30/00). The results of the testing are compared to current and proposed MTCA Method A standards for analytes for which these standards are published, and MTCA Method B standards when there are no published Method A standards. The Method B standards were developed based on protection of groundwater using the Three Phase Partitioning Model (WAC 173-340-747). Ecology uses this conservative model to backcalculate soil concentrations that are protective of drinking water. The default assumptions used by Ecology in the regulations were used in the calculations. Metal test results in Table 2 in all cases are below the published MTCA Method A and calculated Method B standards.

The Port stopped the import of material from the Black River Quarry in mid-October to allow time for the operational changes and additional testing discussed above. CTI did not bring any additional material from this site after mid-October 2000.

TABLE 1

SUMMARY OF ANALYTICAL RESULTS ON SOIL SAMPLES: PETROLEUM HYDROCARBONS

BLACK RIVER QUARRY, KING COUNTY, WASHINGTON

	ACK RIVER QUAR Sample No.	TPH-G	TPH-D	TPH-O
Date Collected		<20	>50	>100
6/9/00	S-1	NT	R	
6/9/00*	S-1*	NT NT	29.4	65.6
	S-2	NT	48.4	83.4
6/22/00	S-3	NT NT	28.4	50.6
	S-4		<10.0	31.5
10.100	S-1	NT	<10.0	35.0
7/6/00	S-2	NT		<25
	S-3	NT ,	<10	<25
9/25/00	S-4	NT	<10	<25
	S-2	NT	<10	1
9/27/00	S-4			<25
	S-2			150
9/29/00	S-4			
	S-3	NT	1	130
10/02/00	S-4	NT		
	S-3	NT		43
	S-4	NT	1	26
10/9/00	S-7	NT		<25
	S-8		NT <10	<25
	S-3	NT	B.	<25
10/11/00	S-4	NT		<25
	S-1	NT	<10	<25
10/24/00	S-2	NT	<10	<25
	S-1	NT	<10	87
10/25/00	S-2	NT	<10	33
	S-1	NT	<10	<25
	\$-2	NT	<10	33
10/27/00	S-3	NT	<27	<53
	S-4	NT	<27	<53
	S-1	NT	13	62
10/30/00	S-2	NT	<10	<25
NATON Mathed	"A" Cleanup Level	100	200	200

MTCA = Washington State, Model Toxic Control Act

(NT = Not Tested)

Sample collected on 6/9/00 was tested for TPH-G, TPH-D, TPH-O = Gasoline-, diesel-, and heavy oilrange petroleum hydrocarbons, (respectively), by Washington State Method WTPH-HCID.

* Sample re-tested for TPH-D and TPH-O = diesel-, and heavy oil-range petroleum hydrocarbons, (respectively), by Washington State Method WTPH-D (extended).

Samples collected after 6/9/00 were tested for TPH-D, TPH-O = Diesel-, and heavy oil-range petroleum hydrocarbons, (respectively), by Washington State Method WTPH-D (extended)

All results in parts per million (ppm)

Shaded Numbers = In excess of MTCA Method "A" Cleanup Levels

SUMMARY OF ANALYTICAL RESULTS ON SOIL SAMPLES: METALS BLACK RIVER QUARRY, KING COUNTY, WASHINGTON TABLE 2

										ı			The live 7 inc	7100
					Cardenius III	Chemium	Cooper	Lead	Mercury	TO TO TO	Selenium	Silver	I Damoin	7117
Sample	Date	Antimony Ar	Arsenic	Beryllum	Cadmon	Т	T	Τ.		7	S	4.3	S	92.5
, ,	00000	Ž	3.5	<0.5	0.25	22	101	E	3	3			٩	
4-1	308.0			9	2	۶	83	S	2	32	2	ON	⊋	ō
S-1	11/30/00	2	Ž	2			1	1	Ž	٩N	¥	¥ Z	¥	ž
6.2	11/30/00	¥	¥ Z	₹ Z	₹	¥ Z	ŝ	٤	5		٩	٩	ş	8,7
	14/30/00	٤	Ş	Ç	2	28	8	Ş	2	\$	2	2	2	
5-3	3000					1	"	ĄN	٧×	≨	ž	∢	¥	∢ Z
S-4	11/30/00	₹	¥	₹ Z	٤	2			9	g	Š	Q	Ş	ŝ
	44/30/00	Ş	S	Ş	2	22	91	S	2	8				
5-5	3000			1	NA.	٩N	110	ž	₹	≨	¥	¥	ž	ž
9-8	11/30/00	¥	ž	ž	5			٤	٢	7	2	9.0	2	8
5.7	11/30/00	2	ş	ջ	ON	31	3	2			9	٤	٤	8
		Į_	٤	2	2	23	8	웆	2	43	Ş	2		3
8-8	11/30/00	2	2				1	1	¥2	٧	¥X	₹ _	≰ Z	₹ Z
0	11/30/00	ž	ž	¥ Z	₹ Z	¥	3	٤	5			١	42	٩Z
8.0			1	NAM.	₹N	¥	8	₹	≰	¥ Z	¥	٤	٤	
S-10	11/30/00	Y.	٤											
MTCA Standards											ž	Ž	A/A	N/A
			۶	A/A	2	5	ž	220		Š	2			
MTCA Method A Current	Current	¥Ž	3			10000	42	250	2	ž	¥	₹ Ž	¥ Z	۷X
MTCA Method A Proposed	Proposed	∀Z	20	¥N Z	7	2000				157		7.	:	5,970
	(4)	-	;	;	1	:	797	<u>.</u>						
MICA Method & GVV 6	SW (0)													

Notes

All values reported in mg/kg

ND = Not Detected

NA = Not Analyzed

N/A=Not applicable; no published standard

(a) Method B Standards for protection of drinking water calculated using MTCA WAC 173-340-747 Three Phase Partitioning Model.

Calculated for those detected constituents for which Method A standards are not available.

ANALYTICAL DATA METALS

₩ FA

	Roth Clarke	From	Meg Strong
То	Beth Clarke	Direct Tel	425 820 4669
Company	206-988 5636	Fax	
Fax	206-188 333	Pages	19 (inc. cover)
- 1 -4 No	0-93M-00087 TASK4	Date	January 4th 2000
Project No. Fax Operato	.	cc	
O. M. and	Autical Results		

Subject Itnaty Took F-3911

Beth
Please find attached the analytical results
for samples collected from the Stoneray pit on
November 30, 2000.

The samples were mixed, prepared and croshed to provide a homogenised sample representative of the croshed bedrock material.

If you have any fither questions, please feel free to call.

Regards My Strong

AMEC Earth & Environmental, Inc. 11335 N.E. 122nd Way Suite 100 Kirkland, Vvashington U.S.A. 98034 Tel (425) 820-4669 Fax (425) 821-3914 www.amec.com Date of Report: December 8, 2000 Samples Submitted: November 30, 2000 Lab Traveler: 11-232 Project: 0-93M-00087-0 T7

EPA 6010B/7471A

Date Extracted: 12-4&7-00 Date Analyzed: 12-5,6&8-00

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID:

S -1		
Method	Result	PQL
6010B	ND	5.6
6010B	· ND	11
6010B	ND	0.56
6010B	ND	0.56
6010B	20	0.56
6010B	83	0.56
6010B	ND	5 .6
7471A	ND	0.28
6010B	32	1.1
6010B	ND	11
6010B	ND	0.56
6010B	ND	5.6
6010B	81	2.8
	Method 6010B	Method Result 6010B ND 6010B ND 6010B ND 6010B 20 6010B 83 6010B ND 7471A ND 6010B 32 6010B ND 6010B ND 6010B ND 6010B ND 6010B ND 6010B ND

Lab Traveler: 11-232 Project: 0-93M-00087-0 T7

TOTAL METALS EPA 6010B/7471A

Date Extracted:

12-487-00

Date Analyzed:

12-5,6&8-00

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID:

11-232-03

Client ID:

S-3

		•	
Analyte	Method	Result	PQL
Antimony	6010B	ND	5.9
Arsenic	6010B	ND	12
Beryllium	6010B	ND	0.59
Cadmium	6010B	ND	0.59
Chromium	6010B	28	0.59
Copper	6010B	95	0.59
Lead	6010B	ND	5.9
Mercury	7471A	ND	0.29
Nickel	601 0B	40	1.2
Selenium	6010B	ND	12
Silver	6010B	ND	0.59
Thallium	6010B	ND	5.9
Zinc	6010B	78	2.9

Date of Report: December 8, 2000 Samples Submitted: November 30, 2000 Lab Traveler: 11-232

Project: 0-93M-00087-0 T7

TOTAL METALS EPA 6010B/7471A

12-4&7-00 Date Extracted: 12-5,6&8-00 Date Analyzed:

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID:

11-232-05

Client ID:

S-5

Analyte	Method	Result	PQL
Antimony	6010B	ND	5.6
Arsenic	6010B	ND	11
Beryllium	6010B	ND	0.56
Cadmium	6010B	ND	0.56
Chromium	6010B	25	0.56
Copper	6010B	91	0.56
Lead	6010B	ND	5.6
Mercury	7471A	ND	0.28
Nickel	6010B	38	1.1
Selenium	6010B	ND	11
Silver	6010B	ND	0.56
Thallium:	6010B	ND .	5.6
Zinc	6010B	59	2.8

Date of Report: December 8, 2000 Samples Submitted: November 30, 2000 Lab Traveler: 11-232

Project: 0-93M-00087-0 T7

TOTAL METALS EPA 6010B/7471A

12-4&7-00 Date Extracted: 12-5,6&8-00 Date Analyzed:

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID:

Client ID:	S-7		
Analyte	Method	Result	PQL
Antimony	6010B	ND	5.8
Arsenic	6010B	ND	12
Beryllium	6010B	ND	0.58
Cadmium	6010B	ND	0.58
Chromium	6010B	31	0.58
Copper	6010B	83	0.58
Lead	6010B	ри	5.8
Mercury	7471A	ND	0.29
Nickel	6010B	41	1.2
Selenium	6010B	ND	12
Silver	6010B	0.64	0.58
Thallium	6010B	ND	5.8
Zinc	601 0B	59	2.9

Lab Traveler: 11-232 Project: 0-93M-00087-0 T7

TOTAL METALS EPA 6010B/7471A

Date Extracted:
Date Analyzed:

12-4&7-00 12-5,6&8-00

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID:

11-232-08

Client ID:

S-8

Chent ID.	0-0		
Analyte	Method	Result	PQL
Antimony	6010B	ND	5.7
Arsenic	6010B	ND	11
Beryllium	6010B	ND	0.57
Cadmium	6010B	ND	0.57
Chromium	6010B	23 ·	0.57
Copper	6010B	96	0.57
Lead	601CB	ND	5.7
Mercury	7471A	ND	0.29
-	6010B	43	1.1
Nickel	6010B	ND	11
Selenium		ND	0.57
Silver	6010B	ND	5.7
Thallium	6010B		2.9
Zinc	6010B	68	2.5

Lab Traveler: 11-232

Project: 0-93M-00087-0 T7

TOTAL COPPER EPA 6010B

Date Extracted:

12-4-00

Date Analyzed:

12-6-00

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID:

11-232-09

Client ID:

S-9

Analyte

Method

Result

PQL

Copper

6010B

100

0.58

Lab Traveler: 11-232 Project: 0-93M-00087-0 T7

TOTAL METALS EPA 6010B/7471A METHOD BLANK QUALITY CONTROL

Date Extracted:

12-4&7-00

Date Analyzed:

12-5,6&8-00

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID:

MB1204S2,MB1207S2&MB1207S5

Analyte	Method	Result	PQL
Antimony	6010B	ND	5.0
Arsenic	6010B	ND	10
Beryllium	6010B	ND	0.50
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Copper	6010B	ND	0.50
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.25
Nickel	6010B	ND	1.0
Selenium	6010B	ND	10
Silver	6010B	ND	0.50
Thallium	6010B	ND ·	1.0
Zinc	6010B	ND	2.5

Date of Report: December 8, 2000 Samples Submitted: November 30, 2000 Lab Traveler: 11-232

Project: 0-93M-00087-0 T7

TOTAL METALS EPA 6010B/7471A DUPLICATE QUALITY CONTROL

Date Extracted:

12-4&7-00

Date Analyzed:

12-5,6&8-00

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID:

de	Sample Result	Duplicate Result	RPD	PQL	Flags
ony	ND	ND	NA	5.0	
ic .	ND	ND	NA	10	
ium	ND	ND	NA	0.50	
nium	ND	ND	NA	0.50	
mium	17.5	19.0	8.2	0.50	
oer	73.7	80.2	8.5	0.50	
	ND	ND	NA	5.0	
	ND	ND	NA	0.25	
	28.2	31.7	12	1.0	
	ND	ND	NA	10	
	ND	ND	NA	0.50	
•	ND	ND	NA	1.0	
	72.0	75.7	5.1	2.5	
	te sony nic lium nium mium per l cury et snium er	te Result hony ND hic ND hic ND hium ND hium ND mium 17.5 her 73.7 h ND houry ND et 28.2 hium ND hium ND himium ND himium ND himium ND himium ND himium ND himium ND	te Result Result fony ND ND ND ND	Result Result RPD ND ND NA Sury ND ND NA ND ND ND ND ND ND <tr< th=""><th>Result Result RPD PQL ND ND NA 5.0 ND ND NA 10 ND ND NA 0.50 Inium ND ND NA 0.50 Inium 17.5 19.0 8.2 0.50 Inium ND ND NA 5.0 Surry ND ND NA 0.25 Inium ND ND NA 10 Inium ND ND NA 1.0 Inium ND ND NA 1.0</th></tr<>	Result Result RPD PQL ND ND NA 5.0 ND ND NA 10 ND ND NA 0.50 Inium ND ND NA 0.50 Inium 17.5 19.0 8.2 0.50 Inium ND ND NA 5.0 Surry ND ND NA 0.25 Inium ND ND NA 10 Inium ND ND NA 1.0 Inium ND ND NA 1.0

Lab Traveler: 11-232 Project: 0-93M-00087-0 T7

TOTAL METALS EPA 6010B/7471A MS/MSD QUALITY CONTROL

Date Extracted:

12-4&7-00

Date Analyzed:

12-5,6&8-00

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID:

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Antimony	500	43.5	8.7	41.2	8.2	5.5	V
Arsenic	100	80.5	81	73.7	74	8.8	
Beryllium	50	42.3	85	42.5	85	0.38	
Cadmium	50	43.9	88	43.3	87	1.5	
Chromium	100	106	89	106	89	0	
Copper	50	126	105	128	108	1.0	
Lead	250	208	83	209	84	0.62	
Mercury	1.0	1.01	101	1.12	112	11	
Nickel	200	209	91	214	93	2.0	
Selenium	100	82.4	82	83.8	84	1.7	
Silver	50	43.2	86	42.4	85	2.0	
Thallium	190	81.5	81	84.4	84	3.6	
Zinc	50	116	88	121	97	4.0	

Lab Traveler: 11-232 Project: 0-93M-00087-0 T7

> TOTAL COPPER **EPA 6010B**

Date Extracted:

12-4-00

Date Analyzed:

12-6-00

Матлх:

Soil

Units:

mg/kg (ppm)

Lab ID:

11-232-02

Client ID:

S-2

PQL Result Method Analyte 0.57 89 6010B Copper

Lab Traveler: 11-232 Project: 0-93M-00087-0 T7

> TOTAL COPPER EPA 6010B

Date Extracted:

12-4-00

Date Analyzed:

12-6-00

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID:

11-232-04

Client ID:

S-4

Analyte Method Result PQL
Copper 6010B 77 0.56

Date of Report: December 8, 2000

Samples Submitted: November 30, 2000 Lab Traveler: 11-232 Project: 0-93M-00087-0 T7

TOTAL COPPER **EPA 6010B**

Date Extracted:

12-4-00

Date Analyzed:

12-6-00

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID:

11-232-06

Client ID:

S-6

Analyte

Method

Result

PQL

Copper

6010B

110

0.56

Lab Traveler: 11-232 Project: 0-93M-00087-0 T7

> TOTAL COPPER EPA 6010B

Date Extracted:

12-4-00

Date Analyzed:

12-6-00

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID:

11-232-10

Client ID:

S-10

Analyte

Method

Result

PQL

Copper

6010B

88

0.55

Lab Traveler: 11-232 Project: 0-93M-00087-0 T7

TOTAL COPPER
EPA 6010B
METHOD BLANK QUALITY CONTROL

Date Extracted:

12-4-00

Date Analyzed:

12-6-00

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID:

MB1204S2

Analyte Method Result PQL
Copper 6010B ND 0.50

Lab Traveler: 11-232 Project: 0-93M-00087-0 T7

TOTAL COPPER
EPA 6010B
DUPLICATE QUALITY CONTROL

Date Extracted:

12-4-00

Date Analyzed:

12-6-00

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID:

Analyte _	Sample Result	Duplicate Result	RPD	PQL	Flags
Copper	73.7	80.2	8.5	0.50	

17

Date of Report: December 8, 2000 Samples Submitted: November 30, 2000

Lab Traveler: 11-232 Project: 0-93M-00087-0 T7

TOTAL COPPER EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted:

12-4-00

Date Analyzed:

12-6-00

Matrix:

Soil

Units:

mg/kg (ppm)

Lab ID:

Analyte	Spike Leve	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Copper	50	126	105	128	108	1.0	

01/04/01 11:50 FAX

18

Date of Report: December 8, 2000 Samples Submitted: November 30, 2000

Lab Traveler: 11-232 Project: 0-93M-00087-0 T7

% MOISTURE

Date Analyzed: 12-4-00

Client ID	Lab ID	% Moisture
	11-232-01	11
S-1	11-232-02	12
S-2	11-232-03	15
S-3	11-232-04	12
S-4	11-232-05	10
S-5	11-232-06	10
S-6 S-7	11-232-07	14
	11-232-08	13
S-8 S-9	11-232-09	14
S-10	11-232-10	9.0

DATA QUALIFIERS AND ABBREVIATIONS

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery
data.
B - The analyte indicated was also found in the blank sample.
C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
D - Data from 1: dilution.
E - The value reported exceeds the quantitation range, and is an estimate.
F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
G - Insufficient sample quantity for duplicate analysis.
H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
! - Compound recovery is outside of the control limits.
I. The value reported was below the practical quantitation limit. The value is an estimate.
K - Sample duplicate RPD is outside control limits due to sample inhomogeniety. The sample was re-extracted and re-analyzed with similar results.
L - The RPD is outside of the control limits.
M - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
O - Hydrocarbons outside the defined gasoline range are present in the sample; NWTPH-Dx recommended.
P - The RPD of the detected concentrations between the two columns is greater than 40.
Q - Surrogate recovery is outside of the control limits.
S - Surrogate recovery data is not available due to the necessary dilution of the sample.
T - The sample chromatogram is not similar to a typical
U - The analyte was analyzed for, but was not detected above the reported sample quantitation lines.
 V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects. The Spike Blank recovery for Antimony equals 94%.
W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
X - Sample extract treated with a silica gel cleanup procedure.
Y - Sample extract treated with an acid cleanup procedure.
Z -
ND - Not Detected at PQL
MRL - Method Reporting Limit
PQL - Practical Quantitation Limit RPD - Relative Percent Difference
I/L C - Labour - Labo