Pre-Filed Testimony of Greg Wingard Submitted on behalf of Appellant **Airport Communities Coalition PCHB No. 01-160** ACC & CASE v. Dept. of Ecology & Port of Seattle February 22, 2002 **DECLARATION OF GREG WINGARD - 1**

Smith & Lowney, p.l.l.c. 2317 East John Street Seattle, Washington 98112 (206) 860-2883

 I, Greg Wingard, declare as follows:

- 1. The following is based on personal knowledge to which I am competent to testify before the Board. A copy of my resume is attached to this statement as Exhibit A.
- 2. I have worked extensively on issues related to the SeaTac International Airport's NPDES permit since 1994 in my capacity as a consultant, at various times, to CASE, the City of Des Moines, the Airport Communities Coalition, and individual area residents, and in my capacity as the Executive Director of Waste Action Project. This work has included reviewing NPDES permit applications, working on NPDES permit appeals, reviewing of discharge monitoring reports from 1994 to present, participating in site inspections, including inspection of the airport's listed NPDES permitted outfalls, site sampling activities, and photographing of the site. I have reviewed Discharge Monitoring Reports for Sea-Tac International Airport related to permit #WA-002465-1 from 1994, to December of 2001, annual stormwater reports for the airport from 1996 to 2001, and construction related sampling data from 1998 to October of 2001. My review of documents included the Port of Seattle's 1996 Section 404 application, which was later withdrawn in 1998, as well as the existing Section 401 certification-related materials.
- 3. As an environmental consultant for the past 18 years and in my capacity as

 Executive Director of Waste Action Project since 1994, I have thoroughly reviewed well over
 one hundred Department of Ecology NPDES permit files and become very familiar with

 Ecology's administration of the NPDES program, especially including public comment processes.
- 4. I have filed a number of record requests under the Public Disclosure Act with Ecology that are relevant to the Airport Community Coalition's pending appeal of the 401 Certification. On June 5, I asked for all records related to monitoring of construction related DECLARATION OF GREG WINGARD 2

DECLARATION OF GREG WINGARD - 3

outfalls at Sea-Tac International Airport, based on Ecology's representation that they had such information. On August 13, I asked for all upstream and downstream monitoring for each phase of construction at Sea-Tac, based on Ecology's claim in the NPDES Permit Modification Responsiveness Summary that such data had been collected. On September 24, I requested copies of Sea-Tac's recent Discharge Monitoring Reports for April through August 2001.

- 5. Ecology was unable to provide even one record related to construction outfall monitoring, or upstream downstream monitoring of phases of construction. They did provide the four months of DMRs, but failed to provide a copy of the June 14, 2001 explanation letter for the TSS violations from May. When I talked with Department of Ecology Water Quality Section Supervisor John Drabek about this, Mr. Drabek told me that Ecology does not have any of the records requested in my June and August PDA requests -- that is, records of monitoring of construction related outfalls at Sea-Tac International Airport, and records of upstream and downstream monitoring for each phase of construction at Sea-Tac. He explained that the records exist, but said I would need to contact Tom Hubbard at the Port of Seattle and get them from him.
- 6. I contacted Mr. Hubbard and obtained copies of the Port's construction site stormwater monitoring reports from 1998 to October 2001. The construction stormwater monitoring reports show repeated violations of the Washington State water quality criteria for turbidity, as found in WAC 173-201A-030. The water quality standard for turbidity is violated when a discharge increases the turbidity of the surface water by more than 5 NTU (when the background level is 50 NTU or less), or by more than 10% (when the background level is more than 50 NTU). WAC 173-201A-030(1)(c)(vi). The Port's construction stormwater discharges

violated this water quality standard before the issuance of the 401 Certification, and have continued to do so since the issuance of the 401 Certification. This is in spite of the implementation of Best Management Practices that are supposed to prevent such violations and protect surface water quality.

7. Attached as Exhibit B to this declaration are examples of "STIA Construction Site Stormwater Monitoring" reports from June, September, October, and November 2001. These exhibits show the following violations of the water quality criteria for turbidity:

Table 1: Examples of Violations of the Water Quality Standard for Turbidity Resulting From Construction-Related Stormwater Discharges at STIA

DATE	SITE	UPSTREAM	DOWNSTREAM	DIFFERENCE	EX B PAGE
10/16/00	Tvee Pond	13.2	18.4	5.2	1
10/20/00	Air Traffic	50.6	176.2	125.6	2
10/20/00	S.T.E.P. North	31.5	61.6	30.1	3
11/8/00	S.T.E.P. North	62.0	74.0	12.0	4
11/26/00	Air Traffic	36.0	45.0	9	5
6/28/01	SR 509/S. Temp.	9	_33	24	6
9/26/01	S.T.E.P.	16.4	33.6	17.2	7
9/26/01	S.T.E.P.	16,4	31	14.6	7

8. I have reviewed the Port of Seattle's Discharge Monitoring Reports to determine whether the Port has notified Ecology about the existence of this monitoring data, as required by Permit Condition S.3.F. None of the Discharge Monitoring Reports or other correspondence submitted by the Port provide any such notification to Ecology. Attached as Exhibit C is the Discharge Monitoring Reports from the most recent month for which reports are available -- December 2001. I would also note that the Port does not include any summary of this construction-related discharge monitoring data in its Annual Stormwater Monitoring Reports -- an apparent violation of Permit Condition S.2.E (see also, S.3.E).

DECLARATION OF GREG WINGARD - 4

Smith & Lowney, p.l.l.c. 2317 East John Street Seattle, Washington 98112 (206) 860-2883

- 9. The Port's NPDES Permit plainly requires the Port to notify Ecology of any instances of noncompliance with the permit. *See*, Permit Condition S.3.G ("Noncompliance Notification"). The Port's failure to submit any such notification concerning the violations of the state water quality standard for turbidity at its construction sites indicates to me that the Port does not believe that violations of water quality standards constitute violations of its NPDES Permit. This is gravely disturbing given Ecology's reliance on the NPDES permit to safeguard water quality standards.
- 10. As my discussion with then-Permit Manager John Drabek indicates (*see*, Paragraph 5 above), Ecology was unaware of these violations -- and unaware of the failure of the Port's Best Management Practices to prevent violations of the water quality standards for turbidity. Further, since the construction related discharge and non-reporting violations have been going on for at least the last two or three years, this means that Ecology's certification that the Port was in compliance with its permit was mistaken. It also means that the Port was out of compliance with its NPDES Permit at the time Ecology issued the 401 Certification, and that the Port remains out of compliance with its permit today.

Water Quality Sampling During ACC Site Visits

11. I attended both of ACC's Site Visits to STIA. On Monday, January 28, 2002, I participated in water quality sampling at two stormwater outfalls -- SDS1 (003) and SDS3 (005). We obtained a total of nine grab samples -- six at outfall SDS1, and three at Outfall SDS3. At both sampling sites, we used sampling bottles that were supplied, and appropriately prepped, by Analytical Resources, Inc. -- an accredited lab. I assisted in part by recording the necessary information on the labels affixed to each individual sample bottle. I also dried the bottles, which DECLARATION OF GREG WINGARD - 5

were then stored in a cooler for the return trip to the lab. I took the cooler and samples back to the lab before 6:00 p.m. that day, and also filled out a "Chain of Custody Record & Laboratory Analysis Request."

During the second ACC Site Visit, on Thursday, January 31, 2002, I took three grab samples at Outfall SDS3. Once again, I used sample bottles that Analytical Resources, Inc. had provided and prepped. I filled out the individual labels for each sample, dried the bottles, and stored them in the cooler for the return trip to the lab. I took the cooler and samples back to the lab before 6:00 p.m. that day, and also filled out a "Chain of Custody Record & Laboratory Analysis Request." The results of the water quality samples taken on both site visits, as reported by Analytical Resources, Inc., along with the cover letters and Chain of Custody documents, are attached to this declaration as Exhibit D.

The Port of Seattle's Acceptance of Contaminated Soil from the Black River Site for Use as Fill in the Third Runway Embankment

12. I have reviewed the soil quality testing reports attached to this declaration as Exhibit E. These reports indicate even though laboratory analyses confirmed that soil from the Black River Site exceeded the acceptable screening criteria for copper, the Port accepted and used that soil for use in the Third Runway Embankment. *See*, Exh. E at Table 1 (page following page 6). The Port's apparent inability to control the turbidity levels in stormwater discharges from its construction sites, as discussed above, provides cause for concern that the contaminated soils from the Black River Site will be discharged directly to surface waters notwithstanding the Port's construction site BMPs.

DECLARATION OF GREG WINGARD - 6

Smith & Lowney, p.l.l.c. 2317 East John Street Seattle, Washington 98112 (206) 860-2883

2

3 4

5 6

7 8

9

10 11

12

13

14

15

16

17

18

19

20 21

22

23 24

25

26

27

28

29

The Port of Seattle's NPDES Permit Renewal Application

SMITH&LOWNEY

13. I have reviewed the application to renew NPDES Permit WA-002465-1, submitted by the Port of Seattle to Ecology on December 20, 2001. A copy of the application is attached as Exhibit F to this declaration. The application confirms that the Port is proposing to use waters of the state to dilute the contaminated stormwater runoff from STIA. The application also indicates that the Port has proposed to consolidate and/or change the location of several stormwater outfalls and related monitoring stations. If implemented, these changes will result in the dilution of several waste streams and will degrade the ability of regulators to track the origin of discharge contaminates by the discharging basin.

Declared under penalty of perjury in Seattle, Washington on this 22nd day of February, 2002.

g Wingard

Pre-Filed Testimony of Greg Wingard

INDEX TO EXHIBITS

- A. Curriculum Vitae of Greg Wingard
- B. STIA Construction Site Stormwater Monitoring reports dated 10/16/00, 6/27/01, and 9/26/01
- C. Sample DMR reports
- D. Reports dated 2/11/02 from Analytical Resources, Inc. with results of sample analysis
- E. December 12, 2001, Chemical Characterization Report from the Black River Quarry, prepared for Port by HartCrowser
- F. December 20, 2001, NPDES Renewal Application

GREG WINGARD

Environmental Consultant

P.O. Box 4051 Seattle Wa. 98104-0051 (206) 322 -3061

ENVIRONMENTAL EXPERTISE

Project management, negotiation, pre-litigation and litigation support, document procurement and research, community relations, advisor to agencies and local government on environmental matters, policy and regulation, community and environmental activist.

EXPERIENCE SUMMARY

Mr. Wingard has been active in environmental issues for 20 years and operated his own firm for 12 years. He has performed services in site sampling, assessments, environmental research, PRP searches, CERCLA/RCRA/MTCA listed hazardous waste site research and negotiations, advised environmental groups, advisor to the Mayor of Kent, WA., and has provided services for over 30 clients. He is proficient with various Environmental Acts: Resource Conservation and Recovery Act, Superfund Law and Amendments (CERCLA/SARA/Title III), Clean Water Act, Solid Waste Disposal Act, National and State Environmental Policy Acts.

COMMITTEES/AWARDS

1984 - 97:

Kent, Wa.- Advisor to the Mayor for; Storm Water Drainage, the Kent Lagoon Project, Midway and Kent Highland Superfund Site Closures, Solid Waste, Sensitive Areas and Surface Water, SARA/Title III Emergency Planning, and Chair of the Wetland Ordinance Committee.

1986-89:

Puget Sound Air Pollution Control Agency Advisory Board.

1987-92:

South King County Ground Water Advisory Committee.

1988-90:

Department of Ecology, Ground Water Task Force.

1990:

Received Washington State Environmental Excellence Award for hazardous

waste site cleanup work

1992-present:

King County Extension/Washington State University, Wetland Steward

1994-96:

Department of Ecology, Ground Water Quality Criteria Work Group

1998-00

Department of Ecology, MTCA Policy Advisory Group

EMPLOYMENT HISTORY

1983 - Present:

Sole proprietor/environmental consultant

1990 - 94:

Manager of Environmental Division, Reliant Inc.

1994 - Present:

President(to 1998)/Executive Director of Waste Action Project

KEY PROJECTS

On Scene Coordinator and litigation consultant for NW Auto Wrecking, MTCA site. Responsible for assessing site, advising client on storm water permit, negotiating with agencies, screening contractors and litigation support. Complaint includes Tort and Model Toxics Control Act claims.

Project Manager for Red Table Mountain Environmental Assessment. Responsible for hiring and coordination of subcontractors, community relations plan, assisted lead agency (US Forest Service) in development of the interagency Disciplinary Team, scheduling and time-line management and development of the administrative record for the client, Federal Aviation Administration/US Forest Service.

Assisted in hiring technical consultants, served as on-site representative, researched environmental laws, assisted in negotiations with EPA/Ecology, researched Potentially Responsible Parties (PRP's) and provided litigation support in action against PRPs at the Western Processing Superfund Site. The complaint pioneered the use of RICO environmental litigation.

Assisted client in negotiations with EPA and Ecology to prepare community relations plan, site closure consistent with RCRA and MTCA. Prepared client to develop a Remedial Investigation/Feasibility Study (RI/FS); performed on-site surveys, sampling and historical review, advised on legal parameters, data collection and contractor duties.

Advised/represented Association of Bainbridge Communities in negotiations with County/Ecology/EPA for Preliminary Assessment, Hazard Ranking, and Interim Remedial Measure. Reviewed technical data and reports by consultants and agencies, briefed clients on issues and impacts, assisted in developing strategies.

As President/Executive Director of Waste Action Project, has directed over thirty cases brought under federal environmental statutes. Responsibilities include hiring and directing attorneys, consultants and staff, negotiation with defendants and day to day operation of the organization. Has directed in excess of \$500,000 from settlement funds to environmental projects throughout Washington State.

Advised Airport Communities Coalition, Regional Coalition on Airport Affairs, and Citizens Against Seatac Expansion on environmental issues. Tasks included site inspection, environmental regulation/policy, litigation assistance, hiring of consultants, and negotiation with government agencies.

REFERENCES

Ching-Pi Wang, Senior Hydrogeologist Department of Ecology (206)649-7134

Peter Eglick, Esq. Heisell Fetterman (206) 292-1144

Larry Hard, Esq. LeSourd & Patten (206) 624-1040

STIA CONSTRUCTION SITE STORMWATER MONITORING Date: 10/16/00
Rainfall (depth@date/time): 0.51"@10/16/00 - 1800
Samplers: JL, RS

110	11116	ain.	Пď	COMMISSION
Logistics Site Development	-			
site discharge: unnamed catch basin d/s of treatment facility	2026	182.7	9.57	·
u/s: Tvee pond (south end)		13.2	7.24	
d/s: Tyee Pond outfall to Des Moines Ck		18.4	7.22	
IWS Lagoon 3 Construction				
site discharge: treatment facility** (see notes end				
of last page)	2045	;	!	not pumping.
				5+ ft of freeboard on holding pond
u/s: SDS3-594		l	1	
d/s: SDS-3 outfall weir		ł	1	·
Airfield Improvement				
site discharge: ditch west of construction staging			1	
area	2100	174.8	7.43	flow est. $(a) < or = 1$ gps
				/dp si amorao 003 do -1 -1 1 ;;
u/s; ditch parallel to SR 509 onramp		1	1	ditch parallel to SR 509 Ullianip is dif
d/s: ditch parallel to SR 509 onramp		1	1	ditch parallel to SR 509 of all pis dis
			1	
site discharge: SDS-7 outfall	2115	3.2	1.72	
site discharge: SDS-6 outfall	2121	15.8	7.62	(H)
site discharge: SDS3-594	2200	62.1	8.56	difficult to hold sampler in correct outland
u/s: none		1	1	
d/s: Northwest Ponds outlet	_	1	1	failed to collect sample nere.

STIA CONSTRUCTION SITE STORMWATER MONITORING

Rainfall (depth@date/time): 0.72"@10/20/00 - 0550 Date: 10/20/00 Samplers: JB, RS

	SITE	Time	Turb	рН	Comments
E4-611 0810	Dobbs Flight Kitchen Remodel				
	site discharge: manhole SDE4-611	0810	-	-	no active construction
if no access, see 0903 578* 10.83	***************************************				no disturbed soil
	for west side construction:				
(if no access, see 0903 578* 10.83	u/s: SDE4-607		1	1	
(if no access, see 0903 578* 10.83	d/s: SDE4-615		-	***	
(if no access, see 0903 578* 10.83					
	for east side construction:			•	
3 *(if no access, see 0903 578* 10.83 fall in vault 0913 50.6 8.40	u/s: SDE4-601 or SDE4-602		-	1	
3 *(if no access, see 0903 578* 10.83 ffall in vault 0913 50.6 8.40	d/s: SDE4-615		1	1	
3 *(if no access, see 0903 578* 10.83 ffall in vault 0913 50.6 8.40	Booster Pump Station				
3 *(if no access, see 0903 578* 10.83 tfall in vault 0913 50.6 8.40	site discharge: SDE4-911	0843	11.6	6.71	
wer -948 *(if no access, see 0903 578* 10.83 outfall in vault 0913 50.6 8.40					
wer -948 *(if no access, see 0903 578* 10.83 outfall in vault 0913 50.6 8.40	u/s: SDE4-911			1	
wer -948 *(if no access, see 0903 578* 10.83 outfall in vault 0913 50.6 8.40	d/s: SDE4-918		-	-	
-948 *(if no access, see 0903 578* 10.83 outfall in vault 0913 50.6 8.40	Air Traffic Control Tower				
0903 578* 10.83 outfall in vault 0913 50.6 8.40	site discharge: SDE4-948 *(if no access, see				
lt 0913 50.6 8.40	notes end of last page)	0903	578*	10.83	*cut sample 50% w/ DI water twice.
lt 0913 50.6 8.40					multiplied value by 4 to get this result.
	u/s: SDE4-948 from N. outfall in vault	0913	9.03	8.40	d/s - u/s > 5 NTU
176.2 10.31	d/s: SDE4-958	0915	176.2	10.31	notified KL and DJ

STIA CONSTRUCTION SITE STORMWATER MONITORING

Date: 10/20/00 Rainfall (depth@date/time): 0.72"@10/20/00 - 0550

Samplers: JB, RS

SITE	Time	Turb	Hd	Comments
Feeder 104/204 Replacement				
site discharge: catchbasin in grass ~10' fm				
International Blvd curb	0830		1	no construction activity
u/s: catchbasin at International Bivd curb due east				
of site discharge		ţ	1	
d/s: catchbasin at International Bive curb due				
south of u/s location			1	
South Terminal Expansion Project, North Ductbank	ank			
site discharge: (A), SDE4-118		-	i.	covered by heavy steel plates
site discharge: (B), outfall of culvert under				
sidewalk, west of Entry Drive near flag pavilion		<u>.</u>	1	no flow
site discharge: (C), SDE4-121		1	1	no flow
site discharge: SDE4-111	1000	49.3	7.99	
u/s: SDE4-059	1003	31.5	8.02	d/s - u/s > 5 NTU. Notified KL
d/s: SDE4-064	1017	61.6	7.58	
South Terminal Expansion Project				
site discharge: SDE4-065B	1030	-	1	no discharge
site discharge: unnamed manhole on 24th Ave				•
north of S. 188 St.	1045	104.6	11.09	
u/s: SDE4-059	1003	31.5	8.02	u/s - d/s > 5 N I U. Notified KL
d/s: SDE4-074	1054	16.3	8.31	

STIA CONSTRUCTION SITE STORMWATER MONITORING

Rainfall (depth@date - time): 0.61" @ 11/8/00, 0600

Samplers: R. Simmons, S. Currie

Feeder 104/204 Replacement	Time	Turb	Ha	Comments
site discharge: catchbasin in grass,~10' fm	0945			No construction
International Blvd curb				
u/s: catchbasin at International Blvd curb due east of		1	1	
site discharge				
d/s: catchbasin at International Blve curb due south of		•		
u/s location				
South Terminal Expansion Project, North Ductbank	Time	Turb	Hd	Comments
site discharge: (A), SDE4-118	1010	1040.0	8.80	3 dilutions (8x130 NTU). Low flow, <1 gps.
site discharge: (B), outfall of culvert under sidewalk,	1015	•	,	No flow. Hillside stabilized with hydro seeded
west of Entry Drive near flag pavilion				grass
site discharge: (C), SDE4-121	1020	•	•	No flow into vault here
site discharge: SDE4-111	1030	44.4	6.69	
u/s: SDE4-059	1050	62.0	8.20	
d/s: SDE4-064	1040	74.0	6.80	lots of flow.
South Terminal Expansion Project	Time	Turb	рН	Comments
site discharge: SDE4-065B	1103	62.1	7.21	flow surges small dollop of water every 20 sec.
site discharge: unnamed manhole on 24th Ave north	1110	,	•	low flow, <0.1 gps
of S. 188 St.				
u/s: SDE4-059	1050	62.0	8.20	,
d/s: SDE4-074	1120	10.8	6.29	

STIA CONSTRUCTION SITE STORMWATER MONITORING

Rainfall (depth@date - time): 0.52" @ 11/26/00, 1145 Rainfall (depth@date - time): 0.72" @ 11/26/00, 1345 Rainfall (depth@date - time): 0.84" @ 11/26/00, 1730 Date: 11/26/00 Samplers: R. Simmons, S. Currie

	i			
Dobbs Flight Kitchen Kemodel	Time	lurb	Ha	Comments
site discharge: manhole SDE4-611	1320	•	ŧ	No construction @ Dobbs. Construction on east
				side of the HMS - Host Distribution Center.
for west side construction:				
u/s: SDE4-607		•	-	
d/s: SDE4-615		•	•	
for east side construction:				
u/s: SDE4-601 or SDE4-602		ı	1	
d/s: SDE4-615		,		
Booster Pump Station	Time	Turb	Hd	Comments
site discharge: SDE4-911	1345	22.2	5.71	
u/s: SDE4-911		•	•	
d/s: SDE4-918			٠	
trol Tower	Time	Turb	된	Comments
site discharge: SDE4-948 * (if no access, see notes	1400	t	1	No access to site so -
end of last page)				
u/s: SDE4-948 from N. outfall in vault	1410	36.0	90.9	sample taken at SDE4-930, (Manhole lid marked
			·	w/ "SEWER")
d/s: SDE4-958	1425	45.0	6.28	flow about 3-5 gps

AR 015238

STIA CONSTRUCTION SITE STORMWATER MONITORING

Samplers: K. Ludwa, J. Brandt

Date: 6/28/01

Rainfall (depth@date/time): 0.51 @ 2308, 6/27/01 Rainfall (depth@date/time): 0.52 @ 0500, 6/28/01

(18) Third Runway Enbankment Phase 4	Time	Turb	Į	Sheen? (Yes (No)	Commente
S. 160th St. Detention Ponds				Olicelli (Teatho)	
site discharge; observe where runoff fm pond construction	0955			•	Pond not constructed yet - Discharge being collected and pumped to S. 157th PL
enters Miller CK.					detention pond
ille. Miller C'h abave point urbere rimelf entere					
d/s: Miller Ck below point where ninoff enters			•	1	
		•	•		
* THIS POND BEST DONE AFTER #(15)					
S. 157th Pl. Detention Pond					
site discharge: observe where runoff fm pond construction enters Miller Ck.	1000	1			No discharge.
u/s: Miller Ck above point where runoff enters		•			
d/s: Miller Ck below point where runoff enters		•	1	•	
(19) North Safety Fill Construction	Time	Turb	돐	Sheen? (Yes/No)	Comments
site discharge: diffuser pipe from settling pond	1020				No discharge.
u/s: Miller Ck. at culvert under road		•		•	
d/s; Miller Ck, at dam structure		•		•	
(20) Third Runway Embankment Phase 3	Time	Turb	Η	Sheen? (Yes/No)	Commente
site discharge: outfall in catchbasin vault on S. 156th Way	1015	•		(auto)	No discharae
near Miller Ck.	2		,	1	
u/s: Miller Ck. north of S. 156 Way				•	
d/s; Miller Ck, south of S. 156 Way		•		•	
(21) SR 509/S. 176th St. Temp. Interchange	Time	Turb	Ξ	Sheen? (Yes/No)	Comments
site discharge: two cell pond W. of SR509 below Walker Ck. outfall under SR509	0820	128	6.71	no	
u/s: Wetland 44a in concentrated channel above const.	0755	6	6.9	2	Same as u/s for Emb. Ph 3 const. & Stocknile
d/s: Wetland 43 100' below s/d two cell pond	0820	33	6.7	01.0	
site discharge; pond W. of SR509 S. of S. 168th St	0650	203	7.08	ou	No discharge.
Wis everland 44a in concentrated channel above const.		•	•	•	
drs. Wetland 43 July below s/d pond nr 3, room 3t.			-	-	
(xx) Logistic Site (golf course)	Time	Turb	ЬН	Sheen? (Yes/No)	Comments
site discharge: golf course catchbasin	1250	•		OU	Not enough flow to sample.
u/s: Tyee bond (south end)					
d/s: Tyee Pond outfall to Des Moines Ck					
Notes:					

Notes:

(1) if no access do s/d @ SDE4-958, u/s @ SDE4-930 (or SDE4-925), d/s @ SDE4-958

(2) if treating (or not pumping), no measurement required. If pumping w/ no treatment, measure @ spigot on ground line

between settling tanks and holding pond.

(3) if treating (or not pumping), no measurement required. If pumping w/ no treatment, measure @ catchbasin in grass about 100' W. of intersection of 112th Ave S and 173 Ct.

K:\working\2912\55291201\35monito\consbrn_monitoring_data_00-01.xls

STIA CONSTRUCTION SITE STORMWATER MONITORING

Samplers: R. Simmons, S. Currie

Date: 9/26/01

Rainfall (depth@date/time):

0.50" @ 9/26/01, 1110 0.51" @ 9/26/01, 1254 Rainfall (depth@date/time):

Rainfall (depth@date/time):

0.43" @ 9/26/01, 1500

Booster Pump Station	Time	Turb	μd	Sheen? (Yes/No) Comments	Comments
site discharge: SDE4-911	1240	•	-	•	Grass lawn and landscaping. No runoff in contact with open work area
u/s: SDE4-911		•	-	-	
d/s: SDE4-918			,		
Air Traffic Control Tower	Time	Turb	ΡΗ	Sheen? (Yes/No)	Comments
site discharge: SDE4-948 (if no access, see note (1) at end of the last page)	1300	65.5	6.27	011	very low flow
u/s: SDE4-948 from N. outfall in vault	1300	27.5	90.9	OL.	
d/s: SDE4-958	1310	28.0	6.33	ΠO	THE PROPERTY OF THE PROPERTY O
Roadway Lighting Upgrades	Time	Turb	ΡΗ	Sheen? (Yes/No)	Comments
site discharge:	1318	,			No runoff in contact with open work area. Noted that exposed soil around man-
					hole 34 was poorly covered with straw and manhole 22 was poorly covered with
u/s;		٠			windblown tarp.
d/s;		•	,	•	
Feeder 104/204 Replacement	Time	Turb	Hd	Sheen? (Yes/No)	Comments
site discharge: catchbasin in grass ~10' fm International Bivd curb	1321	•			No exposed soil or work activity.
u/s: catchbasin at International Blvd curb due east of site discharge		•	-	•	
d/s: catchbasin at International Bive curb due south of s/d location			•	þ	
Roads and Bridges Upgrades	Time	Turb	표	Sheen? (Yes/No)	Comments
site discharge: SDE4-282	1340	23.8	7.48	OL.	Low flow.
site discharge: SDE4-059	1345	16.4	7.65	ο <u>Γ</u>	Low flow.
u/s: SDE4-996				•	
d/s: SDE4-064		i			
South Terminal Expansion Project	Time	Turb	돒	Sheen? (Yes/No)	Comments
A. site discharge: SDE4-118	1335				Dry.
B. site discharge: outfall of culvert under sidewalk	1334				Dry.
C. site discharge: SDE4-121	1333				Dry.
D. site discharge: SDE4-111	1330	394	8.17	00	Very low flow. 2X dilution (98.5) x 4 = 394. Left mssg for D. Jenkins.
u/s: SDE4-059	1345	16.4	7.65	ПО	Low flow.
d/s; SDE4-064	1410	33.6	7.26	no	Moderate flow.
E. site discharge; SDE4-0658		•	•	•	Covered by tarp/sandbags from construction (2001 Airfield Improvement - 17)
F. site discharge: unnamed manhole on 24th Ave	1535	172	7.76	no	Very low flow.
u/s: SDE4-059	1345	16.4	7.65	02	Low flow
d/s; SDE4-074	1548	31	7.32	2	Moderate flow

> .	· ;
9	
Thill four negative of Ecology According to Pering the Department of Ecology According to Perint Condition 538, the Port is operated. Condition \$2 was performed.	
ឆ	
ŏ	
יַיַ	Agrif Agrif
5	
<u>a</u>	
8	
Q	
ភទ្ធ	
支토	
7,4	
7 8	
ğ a	ğ
2	KAI.
W 52	, , , , , , , , , , , , , , , , , , ,
7 E	
8 0	į 8
A 22.	
שוני	Õ
្លប័	
. S. ₹	5
_ J	a
12.0	* 5
170	N
6 7	ā !
ι υ _.	F. Tek reported as F. Dieset and Mouse Lit.
1 11 11	
5点計	# 1
	Y !
o y	Ď.
֓֞֓֓֓֓֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	ğ
ğğ	8
7 P #	¥
E 0 E	CL Fr
1. 米世	Ψ .

• 1 66 €	Permittee Name/Address Include Name/Location (if different)	dress (if different)		ZU	ATIONAL PO	ELUTANT DISC	CHARGE ELIM	NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM DISCHARGE MONITORING REPORT(DMR)	EW	NOTE: Re completing	NOTE: Read instructions before completing this form.	before
72 ž	NAME SEA-TAC	C AIRPORT		#681	WA-00	WA-002465-1	0	(SNI) 100		Dischar	Discharge Location	
₹C,	ADDRESS PORT OF	F SEATTLE		<u></u>	PERMIT	NUMBER	Disc	DISCHARGE NUMBER	el el	Ties of	70.24. 7"	z
	P.0.	BOX 68727, SE	SEATTLE 98168	ا ھ			RING P			201	22° 20' 7"	32
Ţ.	SACITION SAME AS	S ABOVE			YEAR	Ş	,	Q.	2	NO DK	NO DISCHARGE	
۔ ي	SAME			\	FROM 2001	D&C 01	70 Z001	L DEC 31			,	
4 <u> </u>		H	QUANTITY	ITY OR LOADING	DING	QUA	LITY OR CON	QUALITY OR CONCENTRATION		No. 04	Trequency	Sample
***	Parameter		Average	Maximum	Units	Minimum	Average	Maximum	Units	Exceed- ances	of Analysis	Type
		Sampte	*****	4500	GPM	******	*****	*****	† *	٥	17/31	3xShift
	TOMA	Permit	*****	4,800	··	******	******	****			. rd/ro	CONT.
		Sample	*****	****	* * * * *	6.3	*****	6.63	STD	0	3/17	Grab
	rd.	Permit	*****	*****	1	6.0	******	9.0	UNITS		01/02	GRAB
		Sample	****	****	* *	******	<5	V	ng/L	0	3/17	Grab
	OIL AND GREASE	Permi	****	****		*****	8	1.5			01/07	GRAB
		Semple	******	****	* *	*****	10.7	13	mg/L	0	3/17	Comp.
	n n	Perail	*****	***		******	23	. 33			01/07	COMP.
radint:		Sample	*****	******	***	*****	150	150	Mg/L	0	1/17	Comb.
-	BOD.	Permit	*****	*****		****	******	REPORT	,		01/30	COMP
		Sample	‡	*****	*	****	64.7	104.9	Mg/L	0	8/17	Comp.
	TOTAL GEYCOLS	Permit	1	****		******	*****	REPORT			01/30	COMP
		Seaple	4	***	*	******	. 73/1.65	73/1.65	Mg/L	¢	1/17	Grab.
A	TPH	Permit Memory	******	******		******	****	REPORT			1/30	GRAB
R			1 H							TELEPHONE	JNE .	DATE
015	NAME/TITLE	PRINCIPAL EXECUTIVE OFFICER	- 4 -			DENECTED OF SURBATS TONE TO TO ASSURE THAT	1		•			
242			CHALITIEN PERSONEL INFORMATION SUBMITS	HALIT(E) PRESENTA FORESTY GATLE AND ENGAGES TO MACHINE THE MACHINE THE MACHINE THE SERVICE OR THE PRESENCE OR THOUSENESS OF THE PERSON OR THOUSE ENGAGES DIRECTLY.	PROFESSION WATER AND EXPLORATE THE FERSON FIRE SYSTEM; OR TROSE PERSONS DIRECTLY	THE FERSON OR US DIRECTLY	11.11	OFFINITE	Inter	-		00/Net / 0000
2	Micha Director,	el D. Feldman, Aviation Facilities		MESCHELLE, FOR CAPITATIVE THE LIFEOPARTICON, THE EMPERATION SHARTED IS, TO THE GETS OF IN IMPORTACION MAD SELECT, THAT SHARTED IS, TO THE MEST HART THAT THERE ARE	ENFORMATION, THE ENFORMATION TY, NACHALEDGE AND SELLEF, THIS MARKET THISE ARE	E EMPONATION SELIÇÍ, TRUE, ARE	SIGNATURE OF	PRIE	ر اه	-		YEAR NO DAY
:. :.	1.5	Camming	S SGRI FECK	ES 20	SUBMITITION INCHES INDOMNATION, OF THE PAIN INCH SCHOOL TON	BOSHATICH, BERKT FOR	EXECUTIV	executive deficer or actionized agent		CODE	A-C-GIVED	FD
	N. OTHER		SHOWING WICEATIONS	VIOS.		to here!						
	COMPENT AND EXPLANATION OF ANY CICKAGANNS (MAKET	PALION OF PAY W	COLPATAONS IMP	CNS (Reference all							בינים ז שענה	200

LEB-17-SQOS LHR 11:41 WW NMKO ECK CE LEB-55-05 LHI 15:22 LW ZWILH&LOWNEY

	•
	(XADOZ)
•	ŝ
	96-8
	Rev.
	3320-1
	FOIR
	E P
	for
	Substitute

P. 04

POS SeaTac Airport IWTP Water Processing Log -- December 2001

Date	Average Flow Rate (gpm)	Volume (Gallons)
1-Dec-01	1669	2,403,000
2-Dec-01	2500	3,600,000
3-Dec-01	1500	2,160,000
4-Dec-01	1500	720,000
5-Dec-01	440	198,000
6-Dec-01	2504	3,606,000
7-Dec-01	2100	1,764,000
8-Dec-01	0	0
9-Dec-01	• 0	0
10-Dec-01	. 0	0
11-Dec-01	1207	1,086,000
12-Dec-01	1400	2,016,000
13-Dec-01	2588	3,726,000
14-Dec-01	3600	5,184,000
15-Dec-01	4200	6,048,000
16-Dec-01	3375	4,860,000
17-Dec-01	4500	6,480,000
18-Dec-01	3406	4,905,000
19-Dec-01	1500	2,160,000
20-Dec-01	3000	1,440,000
21-Dec-01	0	. 0
22-Dec-01	O .	0
23-Dec-01	0	0
24-Dec-01	0	0
25-Dec-01	. 0	0
26-Dec-01	0	0
27-Dec-01	, 0	Ô
28-Dec-01	0	0
29-Dec-01		0
30-Dec-01	. 0	٥

Total December 2001 Flow (Gallons)

52,356,000

11, February 2002

Richard A. Poulin Smith & Lowney, P.L.L.C. 2317 East John Street Seattle, WA 98112

RE: Case 1

Dear Mr. Poulin:

Please find enclosed a sample custody record (COC) and a set of analytical results for the above referenced project. Analytical Resources, Inc. accepted nine water samples on 28, January 2002. Samples were received intact and there were no discrepancies between the container labels and the COC.

Analysis for the requested parameters proceeded without incident. Quality control analysis results are included for your review.

Copies of the reports and all associated raw data will be kept on file at ARI. If you have any questions or require additional information, please contact your project manager.

Sincerely, ANALYICAL RESOURCES, INC.

Client Services
400 Ninth Avenue North

Seattle, WA 98109

Project Manager: Susan Snyder

cc: file EB25

Chain of Custody Record & Laboratory Analysis Request

Page $\underline{\mathcal{I}}$ of $\underline{\mathcal{I}}$

Turn Around Requested:

V

Analytical Resources, Incorporated Analytical Chemists and Consultants 400 Ninth Avenue North Seattle, WA 98109-4708 206-621-6490 206-621-7523 (fax)

Report to: Grea Wingard	Proj Nam	:CASE	= 1					Anál	y <u>s</u> es	Reque	sted			T	Notes/Comments
Company: CASE	Proj Numi	ber:													
Address: \$0 Box 405/	Sampler:	Petersyle	Mingle	bas him		1	1	2	0						
				0		To 74	17	Disale Disale		nes of					
Phone: 206-322-306/	Shipping I	Method:],	7	5	7,5	5.7		9			-	
Fax:	AirBill:			,	12	-		_	9	Š	2				
Sample ID	Sample Date	Sample Time	Sample Matrix	No Con- tainers	15	20	77	CV	711	401	9				
001	1-28-0	11:54			X						X		\top	+	
002	1-28-02	11:54			X								1		
107	1-280	11:08						X	X	X			1	1	
MOLI	1-28-0:	NICK				Χ	X			X				7	
905	1-28-1	17:09						X	Y	X					
006	12800	1209				X	X			$\hat{\mathbf{X}}$		_	1	1.	
107	128-197	1:44				1		X	X	X				7	
008	28-0	1:46				X	X			X			1	1	
109	78.M	1:4			X									7	
		7-70											†	┤ `	
													1		
													\top	\exists	
													1	٦	
						-									
													1		
													 	┪	
													1	\exists	
													1-	1	
												1	十	7	
Relinguished: // //	Relinquist	ned:			Reline	auishe						士	Sper	rial Ir	nstructions/Notes
Relinquished: (Signature) Relinquished: (Signature)	(Signature	·)			(Sign:								Opoc	J	1011 001101101110100
Printed name:	Printed na	me:		-	Printe	ed nan	ne:								
Company.	Company				Comp	oany:									
Date: Time: /-28-02 5:10 pm	Date:		Time:		Date:				Time:						
Reseived by:	Received	by:			Rece	ived b	y:								
Printed name: Debora Toluso	Printed na	me:			Printe	ed nan	ne:					\dashv			
Company:	Company:			<u> </u>	Comp	pany:							mber		
Datey / Time:	Date:		Time:		Dota							Co	oler Te	emp(s):
8/02 /7/10	Date.		ime.		Date:				Time:			ICC	C Sea	ais in	tact? NA

Sample No: Method Blank

Lab Sample ID: 013002MB

OC Report No: EB25-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1194

Project: CASE 1

Matrix: Water

Date Sampled: NA

Data Release Authorized: C/r

Date Received: NA

Reported: 02/01/02

Date Analyzed: 01/30/02

Conc/Dilution Factor: 1:1

CAS Number	Analyte	mg/L		
107-21-1	Ethylene Glycol	5.0 U		
57-55-6	Propylene Glycol	5.0 U		

Glycol Surrogate Recovery

Cyclohexanone

110%

Data Qualifiers

- Indicates an estimated value when that result is less than the J calculated detection limit.
- Indicates a value above the linear range of the detector. Dilution Required
- Indicates no value reported due to saturation of the detector. S
- Indicates the surrogate was diluted out. D
- Indicates compound was analyzed for, but not detected at the U given detection limit.
- Found in associated method blank В
- Indicates compound was not analyzed. NA
- Indicates no recovery due to interferences. NR
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

FORM-1

Sample No: 001

Lab Sample ID: EB25A

QC Report No: EB25-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1194

Project: CASE 1

Matrix: Water

Date Sampled: 01/28/02

CH Date Received: 01/28/02

Data Release Authorized: 2/1/07

Reported: 02/01/02

Date Analyzed: 01/30/02

Conc/Dilution Factor: 1:1

CAS Number	Analyte	mg/L
107-21-1	Ethylene Glycol	5.0 U
57-55-6	Propylene Glycol	13

Glycol Surrogate Recovery

Cyclohexanone

110%

Data Qualifiers

- Indicates an estimated value when that result is less than the calculated detection limit.
- Indicates a value above the linear range of the detector. E Dilution Required
- Indicates no value reported due to saturation of the detector.
- Indicates the surrogate was diluted out.
- Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank В
- Indicates compound was not analyzed.
- Indicates no recovery due to interferences. NR
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No:, 001

MATRIX SPIKE

Lab Sample ID: EB25A-MS

QC Report No: EB25-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1194

Project: CASE 1

Matrix: Water

Date Sampled: 01/28/02

Date Received: 01/28/02

Data Release Authorized: 2/1/02

Reported: 02/01/02

Date Analyzed: 01/30/02

Conc/Dilution Factor: 1:1

CAS Number	Analyte	mg/L
107-21-1	Ethylene Glycol	
57-55-6	Propylene Glycol	

Glycol Surrogate Recovery

Cyclohexanone

110%

Data Qualifiers

- Indicates an estimated value when that result is less than the calculated detection limit.
- Indicates a value above the linear range of the detector. E Dilution Required
- S . Indicates no value reported due to saturation of the detector.
- Indicates the surrogate was diluted out. D
- Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank
- Indicates compound was not analyzed. NA
- Indicates no recovery due to interferences. NR
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

FORM-1

Sample No: 001

SPIKE DUPLICATE

Lab Sample ID: EB25A-MSD

QC Report No: EB25-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1194

Project: CASE 1

Matrix: Water

Date Sampled: 01/28/02 Date Received: 01/28/02

Data Release Authorized: (/+

Reported: 02/01/02

2/1/02

Date Analyzed: 01/30/02

Conc/Dilution Factor: 1:1

CAS Number	Analyte	mg/L
107-21-1	Ethylene Glycol	
57-55-6	Propylene Glycol	

Glycol Surrogate Recovery

Cyclohexanone

106%

Data Qualifiers

- Indicates an estimated value when that result is less than the calculated detection limit.
- Indicates a value above the linear range of the detector. Dilution Required
- Indicates no value reported due to saturation of the detector.
- Indicates the surrogate was diluted out.
- Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank
- Indicates compound was not analyzed. NA
- Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. Y The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: 001

QC Report No: EB25-Smith & Lowney, P.L.L.C.

Project: CASE 1

LIMS ID: 02-1194 Matrix: Water

Date Received: 01/28/02

Data Release Authorized: 6 /r

Reported: 02/01/02

Lab Sample ID: EB25A

2/1/02

MATRIX SPIKE/SPIKE DUPLICATE RECOVERY

CONSTITUENT	SAMPLE VALUE	SPIKE FOUND	SPIKE ADDED	% RECOVERY	RPD
MATRIX SPIKE					
Ethylene Glycol Propylene Glycol	< 5.0 13.0	50.0 70.0	50.0 50.0	100%	
MATRIX SPIKE DUPLICATE					
Ethylene Glycol Propylene Glycol	< 5.0 13.0	68.0 80.0	50.0 50.0	136% 134%	31% 16%

Values reported in parts per million (mg/L)

Glycol SPIKE CONTROL LIMITS Percent Recovery 30-160%

Lab Sample ID: EB25SB

QC Report No: EB25-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1194

Project: CASE 1

Matrix: Water

Data Release Authorized: C/F
Reported: 02/01/02 2/1/02

LABORATORY CONTROL SAMPLE

CONSTITUENT	SPIKE FOUND	SPIKE ADDED	% RECOVERY
Ethylene Glycol	49.0	50.0	98.0%
Propylene Glycol	51.0	50.0	102%

GLYCOL SURROGATE RECOVERIES

Cyclohexanone

98.0%

Values reported in parts per million (mg/L)

GLYCOL SPIKE CONTROL LIMITS
Percent Recovery 30-160%

FORM-III

INORGANICS ANALYSIS DATA SHEET

Sample No: Method Blank

TOTAL METALS

Lab Sample ID: EB25MB

QC Report No: EB25-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1199

Project: CASE 1

Matrix: Water Date Sampled: NA

Date Received: NA

Data Release Authorized

Reported: 02/07/02

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	ug/L
3010A	01/30/02	6010B	02/01/02	7440-70-2	Calcium	50	50 U
200.8	01/30/02	200.8	02/05/02	7440-50-8	Copper	0.5	0.5 U
3010A	01/30/02	6010B	02/01/02	7439-95-4	Magnesium	50	50 U
	01/30/02		02/05/02	7440-66-6	Zinc	4	4 U

Analyte undetected at given RL

Reporting Limit RL

INORGANICS ANALYSIS DATA SHEET

Sample No: 004

TOTAL METALS

Lab Sample ID: EB25D

QC Report No: EB25-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1197

Project: CASE 1

Matrix: Water

Date Sampled: 01/28/02

Date Received: 01/28/02

Data Release Authorized

Reported: 02/07/02

Prep Meth	Prep Date ~	Analysis Method	Analysis Date	CAS Number	Analyte	RL	ug/L
3010A	01/30/02	6010B	02/01/02	7440-70-2	Calcium	50	5,100
200.8	01/30/02	200.8	02/05/02	7440-50-8	Copper	0.5	27.1
3010A	01/30/02	6010B	02/01/02	7439-95-4	Magnesium	50	1,460
200.8	01/30/02	200.8	02/06/02	7440-66-6	Zinc	10	60

Calculated Hardness (mg-CaCO3/L): 19

RL Reporting Limit

U Analyte undetected at given RL

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Sample No: 004

Lab Sample ID: EB25D

LIMS ID: 02-1197

Matrix: Water

QC Report No: EB25-Smith & Lowney, P.L.L.C.

Project: CASE 1

Date Received: 01/28/02

Data Release Authorized Reported: 02/07/02

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Sample	Duplicate		Control	
Analyte	ug/L	ug/L	RPD	Limit	<u>Q</u>
Calcium	5100	5000	2.0%	+/- 20 %	
Copper	27.1	27.5	1.5%	+/- 20 %	
Magnesium	1460	1450	0.7%	+/- 20 %	
Zinc	. 60	60	0.0%	+/- 20 %	

'Q' codes:

* = control limit not met

L = RPD not valid, alternate limit = detection limit

FORM-VI

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Sample No: 004

Lab Sample ID: EB25D

QC Report No: EB25-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1197

Project: CASE 1

Matrix: Water

Date Received: 01/28/02

Data Release Authorized

Reported: 02/07/02

MATRIX SPIKE QUALITY CONTROL REPORT

	Sample	Spike	Spike	%	
Analyte	ug/L	ug/L	Added	Recovery	Q
	•				
Calcium	5100	13800	10000	87.0%	
Copper	27.1	53.3	25.0	105%	
Magnesium	1460	10500	10000	90.4%	
Zinc	64	144	80	100%	

'Q' codes:

N = control limit not met

H = %R not applicable, sample concentration too high

* = RPD control limit not met

NA = Not applicable - analyte not spiked

Control Limits:

Percent Recovery: 75-125%

RPD:

+/-20%

Sample No: 006

TOTAL METALS

Lab Sample ID: EB25F

QC Report No: EB25-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1199

Project: CASE 1

Matrix: Water

Date Sampled: 01/28/02

Date Received: 01/28/02

Data Release Authorized:

Reported: 02/07/02

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	ug/L
3010A	01/30/02	6010B	02/01/02	7440-70-2	Calcium	50	11,900
~	01/30/02	200.8	02/05/02	7440-50-8	Copper	0.5	8.9
3010A	01/30/02	6010B	02/01/02	7439-95-4	Magnesium	50	2,900
	01/30/02	200.8	02/05/02	7440-66-6	Zinc	4	48

Calculated Hardness (mg-CaCO3/L):

Analyte undetected at given RL

RLReporting Limit

Sample No: 008

TOTAL METALS

Lab Sample ID: EB25H

QC Report No: EB25-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1201

Project: CASE 1

Matrix: Water

Date Sampled: 01/28/02

Date Received: 01/28/02

Data Release Authorized:

Reported: 02/07/02

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	ug/L
3010A	01/30/02	6010B	02/01/02	7440-70-2	Calcium	50	39,900
200.8	01/30/02	200.8	02/05/02	7440-50-8	Copper	2	260
3010A	01/30/02	6010B	02/01/02	7439-95-4	Magnesium	50	2,810
200.8	01/30/02	200.8	02/05/02	7440-66-6	Zinc	20	330

Calculated Hardness (mg-CaCO3/L):

Analyte undetected at given RL

RLReporting Limit

METALS ANALYSIS DATA SHEET TOTAL METALS

Sample No: 006

Lab Sample ID: EB25LCS

QC Report No: EB25-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1199

Project: CASE 1

Matrix: Water

Data Release Authorized

Reported: 02/07/02

Date Received: 01/28/02

BLANK SPIKE QUALITY CONTROL REPORT

	Spike	Spike	%	•
Analyte	ug/L	Added	Recovery	<u> 0</u>
Calcium	10200	10000	102%	
Copper	25.6	25.0	102%	
Magnesium	10300	10000	103%	
Zinc	79.0	80.0	98.8%	

'Q' codes:

N = control limit not met

Control Limits:

80-120%

FORM-VII

Sample No: Method Blank

DISSOLVED METALS

Lab Sample ID: EB25MB

QC Report No: EB25-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1200

Project: CASE 1

Matrix: Water

Date Sampled: NA

Date Received: NA

Data Release Authorized

Reported: 02/07/02

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	ug/L
6010B	01/30/02	6010B	02/01/02	7440-70-2	Calcium	50	50 U
	01/30/02		02/05/02	7440-50-8	Copper	0.5	0.5 U
	01/30/02		02/01/02	7439-95-4	Magnesium	50	50 U
	01/30/02	200.8	02/05/02	7440-66-6	Zinc	4	4 U

Analyte undetected at given RL

Reporting Limit RL

Sample No: 003

DISSOLVED METALS

Lab Sample ID: EB25C

QC Report No: EB25-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1196

Project: CASE 1

Matrix: Water

Date Sampled: 01/28/02

Date Received: 01/28/02

Data Release Authorized

Reported: 02/07/02

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL_	ug/L
			/ /	7440-70-2	Calcium	50	4,620
6010B	01/30/02	6010B	02/01/02	7440-70-2	Carcrum		•
200.8	01/30/02	200.8	02/05/02	7440-50-8	Copper	0.5	6.3
	01/30/02		02/01/02	7439-95-4	Magnesium	50	1,030
	01/30/02		02/05/02	7440-66-6	Zinc	4	27

Analyte undetected at given RL

Reporting Limit RL

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Sample No: 003

Lab Sample ID: EB25C

QC Report No: EB25-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1196

Project: CASE 1

Matrix: Water

Date Received: 01/28/02

Data Release Authorized: M

Reported: 02/07/02

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Sample	Duplicate		Control	
Analyte	ug/L	ug/L	RPD	Limit	Q
Calcium	4620	4590	0.7%	+/- 20 %	
Copper	6.3	6.2	1.6%	+/- 20 %	
Magnesium	1030	1030	0.0%	+/- 20 %	
Zinc	27	26	3:8%	+/- 20 %	

'Q' codes:

* = control limit not met

L = RPD not valid, alternate limit = detection limit

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Sample No: 003

Lab Sample ID: EB25C LIMS ID: 02-1196 QC Report No: EB25-Smith & Lowney, P.L.L.C.

Project: CASE 1

Matrix: Water

Date Received: 01/28/02

Data Release Authorized

Reported: 02/07/02

MATRIX SPIKE QUALITY CONTROL REPORT

	Sample	Spike	Spike	*	
Analyte	ug/L	ug/L	Added	Recovery	Q
Calcium	4620	14700	10000	101%	
Copper	6.3	30.4	25.0	96.4%	
Magnesium	1030	11300	10000	103%	
Zinc	27	100	.80	91.2%	

'Q' codes:

N = control limit not met

H = %R not applicable, sample concentration too high

* = RPD control limit not met

NA = Not applicable - analyte not spiked

Control Limits:

Percent Recovery: 75-125%

RPD:

+/-20%

Sample No: 005

DISSOLVED METALS

Lab Sample ID: EB25E

QC Report No: EB25-Smith & Lowney, P.L.L.C.

Project: CASE 1

LIMS ID: 02-1198 Matrix: Water

Date Sampled: 01/28/02

Date Received: 01/28/02

Data Release Authorized

Reported: 02/07/02

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	ug/L
6010B	01/30/02	6010B	02/01/02	7440-70-2	Calcium	50	12,000
	01/30/02		02/05/02	7440-50-8	Copper	0.5	5.8
	01/30/02		02/01/02	7439-95-4	Magnesium	50	2,830
					2	A .	32
200.8	01/30/02	200.8	02/05/02	7440-66-6	Zinc	4	34

U Analyte undetected at given RL

RL Reporting Limit

Sample No:

DISSOLVED METALS

Lab Sample ID: EB25G

QC Report No: EB25-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1200

Project: CASE 1

Matrix: Water

Date Sampled: 01/28/02

Date Received: 01/28/02

Data Release Authorize Reported: 02/07/02

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	ug/L
6010B	01/30/02	6010B	02/01/02	7440-70-2	Calcium	50	44,100
	01/30/02	200.8	02/05/02	7440-50-8	Copper	2	223
	01/30/02	6010B	02/01/02	7439-95-4	Magnesium	50	3,000
	01/30/02	200.8	02/05/02	7440-66-6	Zinc	20	290

Analyte undetected at given RL

RLReporting Limit

METALS ANALYSIS DATA SHEET DISSOLVED METALS

Sample No: 007

Lab Sample ID: EB25LCS

QC Report No: EB25-Smith & Lowney, P.L.L.C.

Project: CASE 1

LIMS ID: 02-1200 Matrix: Water

Date Received: 01/28/02

Data Release Authorized

Reported: 02/07/02

BLANK SPIKE QUALITY CONTROL REPORT

	Spike	Spike	%	
Analyte	ug/L	Added	Recovery	Q
Calcium	10300	10000	103%	
Copper	23.6	25.0	94.4%	
Magnesium	10200	10000	102%	
Zinc	80	80.0	100%	

'Q' codes:

N = control limit not met

Control Limits:

80-120%

QA Report - Method Blank Analysis

QC Report No: EB25-Smith & Lowney, P.L.L.C.

Matrix: Water

Project: CASE 1

Date Received: NA

Data Release Authorized Dr. 4.A. Perkins

METHOD BLANK RESULTS CONVENTIONALS

Analysis Date & Batch	Constituent	Units		Re	sult
01/31/02 01312#1	Total Suspended Solids	mg/L	<	1.0	υ

Final Report

Laboratory Analysis of Conventional Parameters

Sample No: 001

Lab Sample ID: EB25A

QC Report No: EB25-Smith & Lowney, P.L.L.C.

Project: CASE 1

Matrix: Water

LIMS ID: 02-1194

Data Roleage Authorized

Date Sampled: 01/28/02

Date Received: 01/28/02

Reported: 02/08/02 Dr. M.A. Perkins

Analysis

	Analysis					
Analyte	Date & Batch	Method	RL	Units	Result	
Total Suspended Solids	01/31/02 01312#1	EPA 160.2	4.0	mg/L	42	

RL Analytical reporting limit

U Undetected at reported detection limit

Report for EB25 received 01/28/02

Final Report

Laboratory Analysis of Conventional Parameters

Sample No: 002

Lab Sample ID: EB25B

QC Report No: EB25-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1195

Project: CASE 1

Matrix: Water

Date Sampled: 01/28/02

Data Release Authorized: Date Received: 01/28/02

Reported: 02/08/02 Dr. M.A. Perkins

Analysis

and the second s	WHIGTARTS				
Analyte	Date & Batch	Method	RL	Units	Result
Total Suspended Solids	01/31/02	EPA 160.2	1.1	mg/L	10

RL Analytical reporting limit

U Undetected at reported detection limit

Report for EB25 received 01/28/02

Final Report

Laboratory Analysis of Conventional Parameters

Sample No: 009

Lab Sample ID: EB25I

QC Report No: EB25-Smith & Lowney, P.L.L.C.

Project: CASE 1

LIMS ID: 02-1202

Matrix: Water

Data Release Authorized:

Date Sampled: 01/28/02

Date Received: 01/28/02

Reported: 02/08/02 Dr. M.A. Perkins

	Analysis				
Analyte	Date & Batch	Method	RL	Units	Result
Total Suspended Solids	01/31/02 01312#1	EPA 160.2	, 1.1	mg/L	4.6

RL Analytical reporting limit
U Undetected at reported detection limit

Report for EB25 received 01/28/02

11, February 2002

Richard A. Poulin Smith & Lowney, P.L.L.C. 2317 East John Street Seattle, WA 98112

RE: Case 2

Dear Mr. Poulin:

Please find enclosed a sample custody record (COC) and a set of analytical results for the above referenced project. Analytical Resources, Inc. accepted four water samples on 31, January 2002. Samples were received intact and there were no discrepancies between the container labels and the COC.

Analysis for the requested parameters proceeded without incident for metals and conventional's. The glycol's had a continuing calibration outside the acceptable control limits. The samples were re-analyzed outside the recommended holding time. The reanalysis data confirmed the original data. Both sets of data have been reported.

Quality control analysis results are included for your review.

Copies of the reports and all associated raw data will be kept on file at ARI. If you have any questions or require additional information, please contact your project manager.

Sincerely,

ANALYICAL RESOURCES, INC.

Client Services

400 Ninth Avenue North

Seattle, WA 98109

Project Manager: Susan Snyder

cc: file EB44

E ८५५ Chain of Custody Record & Laboratory Analysis Request

Analytical Resources, Incorporated Analytical Chemists and Consultants 400 Ninth Avenue North Seattle, WA 98109-4708 206-621-6490 206-621-7523 (fax)

Page of	Tur	n Around Red	quested: _							206-62	21-6490	206-621-7523 (fax)
Report to: Lya WL	Proj Name:					~Ar	yses	Reque	sted			Notes/Comments
Company: A	Proj Number:			,	10			10	!			
Address: DB Box 4	Sampler:	teghin	gard		1			John Park				
Phone:	Shipping Meth	od:		1	1							
Fax:	AirBill:			O.B	Σ	8	31	7.3			ł	
Sample ID		ime Sample Matrix	No Con- tainers	9	17		1	2 18				
010	1-31-022	:58 W	/	X								
011	131-023	02 11/				X	\perp	X				_
AIR	1-2/12/3	14 4	1				12	$\langle _ $				_{
013	1-31-023	09 W	17		X[+	-		\vdash		_
				\vdash			+	+-	<u> </u>			1
					\dashv	-	\top	 				
			†·			1						
			 									
			1									
												_
												_
									_			
							\bot			<u> </u>		_
												_
							\perp		4_	<u> </u>	-	
						\perp				<u> </u>		
Flatinguished: 0 0 1	A // Relinquishe	d:		Relin	quished	l:					Spe	cial Instructions/Notes
Relinquished: (Signature)	W/Wagyasignature)				nature)						4	
111	Printed nam	ne:		Print	ed name	e:]	
Gree Wingan	Company:			Com	ipany:							
Date: Time	' 19	Time:		Date	2:		•	Time:				
	Received b	ov:		Rec	eived by	r:					1	
received by:	Printed nai			Prin	ted nam	ie:					-	
Printed name:	ohnson			1							Numb	er of Coolers:
Company:	Company:			Cor	npany:							Temp(s):
PRI	Date:	Time:		Dat	e:			Time:				Seals Intact?
Date/31/07	/8'10	inne.									Bottles	Intact?

Sample No: Method Blank

Lab Sample ID: 020602MB

LIMS ID: 02-1274

Matrix: Water

QC Report No: EB44-Smith & Lowney, P.L.L.C.

Project: CASE

Date Sampled: NA

Date Received: NA

Data Release Authorized: [

Reported: 02/11/02

Date Analyzed: 02/06/02

Conc/Dilution Factor: 1:1

mg/L	Analyte	CAS Number	
5.0 U	Ethylene Glycol	107-21-1	
5.0 ປັ	Propylene Glycol	57-55-6	

Glycol Surrogate Recovery

Cyclohexanone

70.0%

Data Qualifiers

- Indicates an estimated value when that result is less than the J calculated detection limit.
- Indicates a value above the linear range of the detector. E Dilution Required
- Indicates no value reported due to saturation of the detector.
- Indicates the surrogate was diluted out. D
- Indicates compound was analyzed for, but not detected at the U given detection limit.
- Found in associated method blank В
- Indicates compound was not analyzed.
- Indicates no recovery due to interferences. NR
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: 010

Lab Sample ID: EB44A

LIMS ID: 02-1274 Matrix: Water

QC Report No: EB44-Smith & Lowney, P.L.L.C.

Project: CASE

Date Sampled: 01/31/02

Date Received: 01/31/02

Data Release Authorized: N

Reported: 02/11/02

Date Analyzed: 02/06/02

Conc/Dilution Factor: 1:1

CAS Number	Analyte	mg/L	
•			
107-21-1	Ethylene Glycol	5.0 U	
57-55-6	Propylene Glycol	11	

Glycol Surrogate Recovery

Cyclohexanone

120%

Data Qualifiers

- Indicates an estimated value when that result is less than the calculated detection limit.
- Indicates a value above the linear range of the detector. E Dilution Required
- Indicates no value reported due to saturation of the detector. S
- Indicates the surrogate was diluted out. D
- Indicates compound was analyzed for, but not detected at the U given detection limit.
- Found in associated method blank В
- Indicates compound was not analyzed. NA
- Indicates no recovery due to interferences. NR
- Indicates a raised reporting limit due to matrix interferences. Y The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: 010

MATRIX SPIKE

Lab Sample ID: EB44A-MS

LIMS ID: 02-1274

Matrix: Water

QC Report No: EB44-Smith & Lowney, P.L.L.C.

Project:

CASE

Date Sampled:

01/31/02

Date Received: 01/31/02

Data Release Authorized:

Reported: 02/11/02

Date Analyzed: 02/06/02

Conc/Dilution Factor: 1:1

CAS Number	Analyte	mg/l	
107-21-1	Ethylene Glycol		
57-55-6	Propylene Glycol		

Glycol Surrogate Recovery

Cyclohexanone

76.0%

Data Qualifiers

- Indicates an estimated value when that result is less than the J calculated detection limit.
- Indicates a value above the linear range of the detector. Ε Dilution Required
- Indicates no value reported due to saturation of the detector. s
- Indicates the surrogate was diluted out. D
- Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank В
- Indicates compound was not analyzed. NA
- Indicates no recovery due to interferences. NR
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: 010

SPIKE DUPLICATE

Lab Sample ID: EB44A-MSD

LIMS ID: 02-1274

Matrix: Water

Data Release Authorized: Reported: 02/11/02

QC Report No: EB44-Smith & Lowney, P.L.L.C.

Project: CASE

Date Sampled: 01/31/02 Date Received: 01/31/02

Date Analyzed: 02/06/02

Conc/Dilution Factor: 1:1

CAS Number	Analyte	mg/L
107-21-1	Ethylene Glycol	
57-55-6	Propylene Glycol	

Glycol Surrogate Recovery

Cyclohexanone

126%

Data Qualifiers

- Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences.

 The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Lab Sample ID: EB44A

LIMS ID: 02-1274

Matrix: Water

Data Release Authorized:

Reported: 02/11/02

Sample No: 010

QC Report No: EB44-Smith & Lowney, P.L.L.C.

Project: CASE

Date Received: 01/31/02

MATRIX SPIKE/SPIKE DUPLICATE RECOVERY

CONSTITUENT	SAMPLE VALUE	SPIKE FOUND	SPIKE ADDED	% RECOVERY	RPD
MATRIX SPIKE					
Ethylene Glycol Propylene Glycol	< 5.0 11.0	46.0 54.0	50.0 50.0	92.0% 86.0%	
MATRIX SPIKE DUPLICATE					
Ethylene Glycol Propylene Glycol	< 5.0 11.0	66.0 71.0	50.0 50.0	132% 120%	36% 33%

Values reported in parts per million (mg/L)

Glycol SPIKE CONTROL LIMITS 30-160% Percent Recovery

Lab Sample ID: EB44SB

LIMS ID: 02-1274 Matrix: Water QC Report No: EB44-Smith & Lowney, P.L.L.C.

Project: CASE

Data Release Authorized:

Reported: 02/11/02

LABORATORY CONTROL SAMPLE

CONSTITUENT	SPIKE FOUND	SPIKE ADDED	% RECOVERY
Ethylene Glycol	37.0	50.0	74.0%
Propylene Glycol	45.0	50.0	90.0%

GLYCOL SURROGATE RECOVERIES

Cyclohexanone

106 %

Values reported in parts per million (mg/L)

GLYCOL SPIKE CONTROL LIMITS
Percent Recovery 30-160%

FORM-III

Sample No: Method Blank

Lab Sample ID: 020802MB

LIMS ID: 02-1690

Matrix: Water

QC Report No: EB44-Smith & Lowney, P.L.L.C.

Project: CASE

Date Sampled:

Date Received: NA

Data Release Authorized:

Reported: 02/11/02

Date Analyzed: 02/08/02 Conc/Dilution Factor: 1:1

CAS Number	AS Number Analyte	
107-21-1	Ethylene Glycol	5.0 U
57-55-6	Propylene Glycol	5.0 U

Glycol Surrogate Recovery

Cyclohexanone

132%

Data Qualifiers

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector.
 Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: 010

Lab Sample ID: EB44A

QC Report No: EB44-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1690

Project: CASE

Date Sampled: 01/31/02

Matrix: Water

Reported: 02/11/02

Data Release Authori

Date Received: 01/31/02

Date Analyzed: 02/09/02

Conc/Dilution Factor: 1:1

CAS Number	Analyte	mg/L		
107-21-1	Ethylene Glycol	5.0 ປ		
57-55-6	Propylene Glycol	11		

Glycol Surrogate Recovery

Cyclohexanone

80.0%

Data Qualifiers

- J Indicates an estimated value when that result is less than the calculated detection limit.
- Ε Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- Indicates the surrogate was diluted out. D
- Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: 010

MATRIX SPIKE

Lab Sample ID: EB44A-MS

QC Report No: EB44-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1690

Project:

CASE

Matrix: Water

Date Sampled:

01/31/02

Data Release Authorized

Reported: 02/11/02

Date Received: 01/31/02

Date Analyzed: 02/09/02

Conc/Dilution Factor: 1:1

CAS Number	Analyte	mg/L
107-21-1	Ethylene Glycol	
57~55-6	Propylene Glycol	

Glycol Surrogate Recovery

Cyclohexanone

90.0%

Data Qualifiers

- Indicates an estimated value when that result is less than the calculated detection limit.
- Indicates a value above the linear range of the detector. E Dilution Required
- s Indicates no value reported due to saturation of the detector.
- Indicates the surrogate was diluted out.
- Indicates compound was analyzed for, but not detected at the given detection limit.
- В Found in associated method blank
- NA Indicates compound was not analyzed.
- Indicates no recovery due to interferences. NR
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: 010

SPIKE DUPLICATE

Lab Sample ID: EB44A-MSD

QC Report No: EB44-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1690

Project: CASE

Matrix: Water

Date Sampled: 01/31/02

Date Received: 01/31/02

Data Release Authorized Reported: 02/11/02

Date Analyzed: 02/09/02

Conc/Dilution Factor: 1:1

CAS Number	Analyte	mg/L
107-21-1	Ethylene Glycol	
57-55-6	Propylene Glycol	

Glycol Surrogate Recovery

Cyclohexanone

90.0%

Data Oualifiers

- Indicates an estimated value when that result is less than the calculated detection limit.
- Indicates a value above the linear range of the detector. Dilution Required
- Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank В
- NA Indicates compound was not analyzed.
- Indicates no recovery due to interferences. NR
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: 010

Lab Sample ID: EB44A

QC Report No: EB44-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1690

Project: CASE

Matrix: Water

Data Release Authorized

Reported: 02/11/02

Date Received: 01/31/02

MATRIX SPIKE/SPIKE DUPLICATE RECOVERY

	SAMPLE	SPIKE	SPIKE	· %	
CONSTITUENT	VALUE	FOUND	ADDED	RECOVERY	RPD
MATRIX SPIKE					
Ethylene Glycol	< 5.0	62.0	50.0	124%	
Propylene Glycol	11.0	60.0	50.0	98.0%	
MATRIX SPIKE DUPLICAT	E				
Ethylene Glycol	< 5.0	47.0	50.0	94.0%	28%
Propylene Glycol	11.0	55.0	50.0	88.0%	11%

Values reported in parts per million (mg/L)

Glycol SPIKE CONTROL LIMITS Percent Recovery 30-160%

Lab Sample ID: EB44SB

LIMS ID: 02-1690 Matrix: Water

QC Report No: EB44-Smith & Lowney, P.L.L.C.

Project: CASE

Data Release Authorized

Reported: 02/11/02

LABORATORY CONTROL SAMPLE

CONSTITUENT	SPIKE	SPIKE	%
	FOUND	ADDED	RECOVERY
Ethylene Glycol	47.0	50.0	94.0%
Propylene Glycol	48.0	50.0	96.0%

GLYCOL SURROGATE RECOVERIES

Cyclohexanone

76.0%

Values reported in parts per million (mg/L)

GLYCOL SPIKE CONTROL LIMITS Percent Recovery 30-160%

Sample No: Method Blank

TOTAL METALS

Lab Sample ID: EB44MB

QC Report No: EB44-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1276 Project: CASE

Matrix: Water

Date Sampled: NA

Date Received: NA

Data Release Authorized

Reported: 02/07/02

Prep	Prep	Analysis	Analysis		_^		
Meth	Date	Method	Date	CAS Number	Analyte	RL_	ug/L
3010A	02/04/02	6010B	02/06/02	7440-70-2	Calcium	50	50 U
200.8	02/04/02	200.8	02/05/02	7440-50-8	Copper	0.5	0.5 U
3010A	02/04/02	6010B	02/06/02	7439-95-4	Magnesium	50	50 U
200.8	02/04/02	200.8	02/05/02	7440-66-6	Zinc	4	· 4 U

U Analyte undetected at given RL

RL Reporting Limit

TOTAL METALS

Sample No: 012

Lab Sample ID: EB44C

QC Report No: EB44-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1276

Project: CASE

Matrix: Water

Date Sampled: 01/31/02

Date Received: 01/31/02

Data Release Authorized:

Reported: 02/07/02

Prep	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	ug/L
Meth	Date	Method	Date	CHD Hamber			
3010A	02/04/02	6010B	02/06/02	7440-70-2	Calcium	50	15,600
200.8	02/04/02	200.8	02/05/02	7440-50-8	Copper	0.5	41.1
3010A	02/04/02	6010B	02/06/02	7439-95-4	Magnesium	50	2,000
*	02/04/02		02/05/02	7440-66-6	Zinc	4	36

Calculated Hardness (mg-CaCO3/L): 47

Analyte undetected at given RL Ū

RL Reporting Limit

METALS ANALYSIS DATA SHEET TOTAL METALS

Sample No: 012

Lab Sample ID: EB44LCS

QC Report No: EB44-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1276

Project: CASE

Matrix: Water

Project. CASI

Data Release Authorized

Reported: 02/07/02

Date Received: 01/31/02

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Spike ug/L	Spike Added	% Recovery	Q
Calcium	10100	10000	101%	
Copper	26.6	25.0	106%	
Magnesium	· 10200	10000	102%	
Zinc	81.0	80.0	101%	

'Q' codes:

N = control limit not met

Control Limits:

80-120%

FORM-VII

Sample No: Method Blank

DISSOLVED METALS

Lab Sample ID: EB44MB

QC Report No: EB44-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1275

Project: CASE

Matrix: Water

Date Sampled: NA

Date Received: NA

Data Release Authorized

Reported: 02/07/02

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	ug/L
6010B	02/04/02	6010B	02/06/02	7440-70-2	Calcium	50	50 U
	02/04/02	200.8	02/05/02	7440-50-8	Copper	0.5	0.5 U
	02/04/02	6010B	02/06/02	7439-95-4	Magnesium	50	50 U
	02/04/02	200.8	02/05/02	7440-66-6	Zinc	4	4 U

Analyte undetected at given RL U

Reporting Limit RL

Sample No: 011

DISSOLVED METALS

Lab Sample ID: EB44B

QC Report No: EB44-Smith & Lowney, P.L.L.C.

Project: CASE

LIMS ID: 02-1275 Matrix: Water

Date Sampled: 01/31/02

Date Received: 01/31/02

Data Release Authorized

Reported: 02/07/02

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	ug/L
			/ /	5440 50 0	6 -1-4	F.0	16,000
6010B	02/04/02	6010B	02/06/02	7440-70-2	Calcium	50	10,000
200.8	02/04/02	200.8	02/05/02	7440-50-8	Copper	0.5	35.4
6010B	02/04/02	6010B	02/06/02	7439-95-4	Magnesium	50 '	2,040
200.8	02/04/02	200.8	02/05/02	7440-66-6	Zinc	4	24
Calcu	lated Diss	solved Hard	lness (mg-0	CaCO3/L): 4	В .		

Analyte undetected at given RL U

Reporting Limit RL

METALS ANALYSIS DATA SHEET DISSOLVED METALS

Sample No: 011

Lab Sample ID: EB44LCS

QC Report No: EB44-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1275

Matrix: Water

Project: CASE

Date Received: 01/31/02

Data Release Authorized Reported: 02/07/02

BLANK SPIKE QUALITY CONTROL REPORT

Analyte		Spike ug/L	Spike Added	% Recovery	Q
Calcium		10300	10000	103%	
Copper		24.0	25.0	96.0%	
Magnesium	•	10500	10000	105%	
Zinc		80	80.0	100%	

'Q' codes:

N = control limit not met

Control Limits:

80-120%

FORM-VII

QA Report - Method Blank Analysis

QC Report No: EB44-Smith & Lowney, P.L.L.C.

Matrix: Water

Project: CASE

Date Received: NA

Data Release Authorized:

Reported: 02/08/02 D

Dr. M.A. Perkins

METHOD BLANK RESULTS CONVENTIONALS

Analysis Date & Batch	Constituent	Units		Result
02/05/02 02052#1	Total Suspended Solids	mg/L	<	1.0 · U

Final Report

Laboratory Analysis of Conventional Parameters

Sample No: 013

Lab Sample ID: EB44D

QC Report No: EB44-Smith & Lowney, P.L.L.C.

LIMS ID: 02-1277

Project: CASE

Matrix: Water

Date Sampled: 01/31/02

Data Release Authorized:

Date Received: 01/31/02

Reported: 02/08/02 Dr. M.A. Perkins

Analysis

	marysis				
Analyte	Date & Batch	Method	RL	Units	Result
Total Suspended Solids	02/05/02 02052#1	EPA 160.2	1.1	mg/L	3 - 3

RL Analytical reporting limit

U Undetected at reported detection limit

Report for EB44 received 01/31/02

HARTCROWSER
Delivering smarter solutions

Third Runway Project
Off-Site Borrow Source
Baseline Chemical Characterization
Black River Quarry
Renton, Washington

Prepared for Port of Seattle

December 12, 2001 4978-06

Delivering smarter solutions

Anchorage

Third Runway Project
Off-Site Borrow Source
Baseline Chemical Characterization
Black River Quarry
Renton, Washington

Boston

Chicago

Prepared for Port of Seattle

Denver

December 12, 2001 4978-06

Fairbanks

Prepared by **Hart Crowser, Inc.**

Jersey City

Neil F. MortonProject Toxicologist

Richard F. Moore Senior Associate Environmental Specialist

Mil 7. Mlda

Long Beach

Juneau

Portland

Seattle

CONTENTS	<u>Page</u>
CHEMICAL ANALYSIS RESULTS AND CONCLUSIONS	2
SAMPLING METHODOLOGY AND SOILS DESCRIPTION	3
Sample Collection and Soils Description Sample Handling and Transfer	3
Decontamination	. 4
CHEMICAL DATA QUALITY REVIEW	4
LIMITATIONS	5

TABLES

- 1 Black River Quarry Sampling, Total Metals Analytical Results
- 2 Black River Quarry Sampling, Soil Sample Descriptions

FIGURES

- 1 Site Plan Schematic
- 2 Stockpile Schematic and Sample Location Map

APPENDIX A
LABORATORY ANALYTICAL DOCUMENTATION
NORTH CREEK ANALYTICAL, INC.

THIRD RUNWAY PROJECT OFF-SITE BORROW SOURCE BASELINE CHEMICAL CHARACTERIZATION BLACK RIVER QUARRY, RENTON, WASHINGTON

This data package presents information compiled by Hart Crowser following the collection and chemical analysis of soil samples at the Black River Quarry for the Third Runway Project. The Black River Quarry is operated by City Transfer Incorporated (CTI) and is a source of soil borrow fill material for the Third Runway embankment that is currently being constructed at the Sea-Tac International Airport. Soils at the Black River Quarry consist of native sand and gravel derived from glacial and related alluvial deposits. Work for the project was completed pursuant to our contract with HNTB dated May 1, 1998, as amended, and the sampling and analysis strategy described in the Hart Crowser proposal dated October 5, 2001. Hart Crowser collected the samples on October 3, 2001, at the stockpile locations identified on Figure 1. All site sampling work was conducted following approval and site access authorization from CTI and the Black River Quarry personnel.

The objective of the pit sampling and analysis was to perform a baseline chemical characterization of *in situ* soils from active portions of the Black River Quarry. The soils were analyzed for total metals (priority pollutant metals plus barium) and total petroleum hydrocarbons. Additionally, Synthetic Precipitation Leaching Procedure (SPLP) analyses were conducted for any metal with a total metals concentration that exceeded fill screening criteria listed in the Port of Seattle's (Port's) Section 401 Water Quality Certification (Order #1996-4-0325, Amended –1) dated September 21, 2001.

Six representative soil samples from the Black River Quarry were submitted for laboratory analysis at North Creek Analytical, Inc. (NCA; Bothell, Washington).

This data package contains the following:

- CHEMICAL ANALYSIS RESULTS AND CONCLUSIONS;
- SAMPLING METHODOLOGY AND SOILS DESCRIPTION;
- CHEMICAL DATA QUALITY REVIEW; and
- LIMITATIONS.

Figure 1 is the Site Plan Schematic showing the stockpile that was sampled and the sample locations. Table 1 presents the total metals chemical analysis results. Table 2 presents soil sample descriptions.

Hart Crowser 4978-06 December 12, 2001

CHEMICAL ANALYSIS RESULTS AND CONCLUSIONS

Total metals results for the Black River Quarry soil samples, presented in Table 1, were compared against the Section 401 fill criteria (Condition E.1.B). As shown in Table 1, the chromium concentrations from samples BRQ-SP-Comp2 (44.7 mg/kg) and BRQ-SP-Comp6 (46.3 mg/kg) marginally exceeded the chromium fill criterion of 42 mg/kg. Copper concentrations from the six samples (97.5 to 131 mg/kg) exceed the copper fill criterion of 36 mg/kg.

As a result of the chromium and copper exceedences, samples BRQ-SP-Comp2 and BRQ-SP-Comp5 were analyzed for chromium and the six samples were analyzed for copper via SPLP in accordance with Attachment E of the Section 401 Certification (Section 401 Certification SPLP Work Plan). Chromium and copper were not detected in any sample above the reporting limit of 0.05 milligrams per liter (mg/L) using the SPLP methodology.

Based on a comparison of the nickel concentrations in samples BRQ-SP-Comp2 (49.3 mg/kg) and BRQ-SP-Comp3 (70.5 mg/kg) and a screening level of 48 mg/kg, these two samples were analyzed for nickel via SPLP in accordance with Attachment E of the Section 401 Certification (Section 401 Certification SPLP Work Plan). However, based on the fill criteria from Condition E.1.b of Section 401 Certification, the SPLP analysis of nickel was not required (see Table 1). Nickel was not detected in either sample above the reporting limit of 0.05 milligrams per liter (mg/L) using the SPLP methodology.

As discussed below in the **CHEMICAL DATA QUALITY REVIEW** section, Black River Quarry antimony sample analysis results from NCA laboratories were initially rejected based on failure of the laboratory quality control samples. Antimony analysis results for samples collected from five other off-site borrow sources (Kent Kangley Pit, CTI Pit No. 3, Lakeland Hills Pit, Marine View Pit, and the Lincoln and Summit Stockpile) were also initially rejected, indicating a systematic laboratory condition. Soil samples from the Lakeland Hills Pit (LH Comp 5), the Kent Kangley Pit (TP-2 Comp 1) and CTI Pit No. 3 (CTI Comp 6), were then resubmitted to Columbia Analytical Services, Inc. (CAS) laboratory for reanalysis of antimony. CAS analyzed each sample using the same extraction method (EPA Method 3050B) and similar analytical method (EPA 200.8 versus EPA 6020) that NCA used. In addition, the Kent Kangley sample (TP-2 Comp 1) was extracted using an optional extraction procedure designed to improve to solubility and recovery of antimony (EPA Method 3050B; Section 7.5).

Page 2

As described in the **CHEMICAL DATA QUALITY REVIEW** section of the Lakeland Hills Pit, CTI Pit No. 3, and Kent Kangley Pit baseline chemical characterization reports, the CAS antimony results were determined to be acceptable, based on the results of reanalysis. The analytical results from NCA and CAS are also well below the 401 Certification antimony fill criterion of 16 mg/kg. Because the CAS antimony results are acceptable, and are below the NCA Black River Quarry antimony reporting limits, the NCA Black River Quarry antimony results were also determined to be acceptable. Additionally, according to Shacklette and Boerngen's Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States (1984), the mean antimony concentration in the western U.S. is 0.47 mg/kg, and the observed range is less than 1 to 2.6 mg/kg.

In conclusion, the results presented in Table 1, along with the discussion in this section, show that the total metal concentrations in the soils from the Black River Quarry are less than those defined by the 401 fill criteria.

SAMPLING METHODOLOGY AND SOILS DESCRIPTION

The following sections describe the specific exploration and sample collection methods used. This description includes sample handling and transfer, and decontamination procedures.

Sample Collection and Soils Description

Hart Crowser collected six composite samples from the Black River Quarry on October 3, 2001. Six samples were collected from the Black River Quarry active stockpile, which was approximately 64 feet long, 54 feet wide, with a stockpile face of approximately 48 feet at the time of sampling (Figure 1).

Stockpile Soil Samples

The soil samples (BRQ-SP-Comp1 through BRQ-SP-Comp6) represent three-point composite samples. The approximate locations of the individual sample aliquots for each composite sample are shown on Figure 1. Each sample aliquot was collected at a minimum of about 1 foot below the surface. The Black River Quarry stockpile soils generally consisted of angular, cobbly, gravelly sand, representative of materials shipped for embankment fill for the Third Runway Project. These materials were derived from pit areas at the Black River Quarry

To form each composite sample, material at each sample aliquot location was collected using a stainless steel spoon and mixed together in a stainless steel

Page 3

bowl, with each resulting composite sample was then transferred to pre-cleaned, labeled sample jars for laboratory analyses.

Sample Handling and Transfer

After compositing each sample, each sample jar was wiped clean and capped with a Teflon-lined lid, and then placed in an insulated ice chest with ice. Samples were shipped on October 4, 2001, to NCA under a chain of custody form for laboratory analyses. The samples were transported with blue ice and were received at the laboratory in good condition.

Decontamination

Sampling equipment was cleaned prior to and between each sample. The spoons, bowls, and other hand sampling equipment were brush-scrubbed using an Alconox detergent solution followed by successive rinses of tap and deionized water.

CHEMICAL DATA QUALITY REVIEW

This data quality review evaluates the data included in the NCA data groups B1J0132 and B1J0187. This data group includes data for soil samples collected at the Black River Quarry, the Lincoln and Summit Stockpile, and the Marine View Pit (Type 1B and Il Soils). In total, 24 soil samples were collected for this data group on October 3 and 4, 2001, including the six samples from the Black River Quarry. These samples were analyzed for the following:

■ Total Metals (silver, arsenic, barium, beryllium, cadmium, chromium, copper, mercury, nickel, lead, antimony, selenium, thallium, and zinc via EPA 6000 and 7000 series methods).

Following the above analyses, a subset of the 24 samples were further analyzed by NCA for leachable beryllium, cadmium, chromium, copper, and/or nickel using the SPLP procedure via method EPA Method 1312 metals (beryllium via EPA Method 6010B and cadmium, chromium, copper, and nickel via EPA Method 6020).

The following criteria were evaluated in the standard data quality review process:

■ Holding times;

- Method blanks;
- Surrogate recoveries;
- Matrix spike/matrix spike duplicate (MS/MSD) recoveries; and
- Laboratory relative percent difference (RPD).

Total Metals. All required holding times were met. No method blank contamination was detected. Lab control sample/lab control sample duplicate (LCS/LCSD) and MS/MSD recoveries were within control limits with the following exceptions. The percent recovery for barium in the MS/MSD samples prepared on October 10, 2001, was less than the control limit (33.3/38.3 percent versus 70 to 130 percent). MVP-1B-Comp 2 (Marine View Pit) was the only sample associated with the October 10, 2001, MS/MSD sample and the barium detection of 74.6 mg/kg was flagged as estimated (")"). In addition, the percent recoveries for antimony in the MS/MSD samples (less than 5 percent) were significantly less than the control limit (70 to 130 percent). In addition, the MS/MSD RPD for antimony was greater than the control limit. A post-digestion spike on the same source sample that was used as the MS/MSD sample had an acceptable percent recovery for antimony. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (dated February 1998) requires that non-detected results be rejected when the MS/MSD percent recoveries are less than 30 percent. Although it is not unusual for antimony recoveries to be low in many types of soil, the antimony MS/MSD recoveries are significantly below 30 percent requiring that all the antimony (non-detect) results be rejected. It should be noted, however, that antimony was not detected in any of the Black River Quarry soil samples. The soil quality data, with the exception of antimony, are acceptable for use as qualified.

SPLP Metals. All required holding times were met. No method blank contamination was detected. LCS/LCSD and MS/MSD recoveries were within control limits. The data are acceptable for use without qualification.

LIMITATIONS -

Work for this project was performed, and this report prepared, in accordance with generally accepted professional practices for the nature and conditions of the work completed in the same or similar localities, at the time the work was performed. It is intended for the exclusive use of the Port of Seattle for specific application to the referenced property. This report is not meant to represent a legal opinion. No other warranty, express or implied, is made.

Any questions regarding our work and this report, the presentation of the information, and the interpretation of the data are welcome. We trust that this report meets your needs.

F:\docs\jobs\497806\BRQPitDraftDataPkg.doc

Hart Crowser 4978-06 December 12, 2001 Page 6

Table 1 - Black River Quarry Sampling, Total Metals Analytical Results

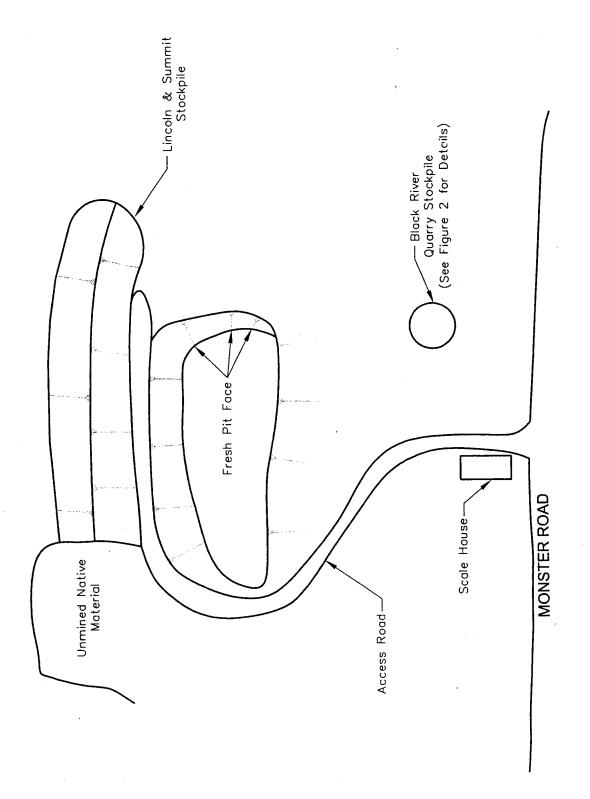
					7	Total Metals Concentration in mg/kg	oncentra	tion in mg/k	6)					
Sample Location/	Antimony Arsenic Barium	Arsenic	Barium	Beryllium	Cadmium	Beryllium Cadmium Chromium Copper		Lead	Mercury	Nickel	Selenium Silver Thallium Zinc	Silver	Thallium	Zinc
Screening Level ^a	16	20	NE	9.0	2	42/2000 ^b	36	220/250 ^b	2	100/110 ⁵	5	5	2	85
Black River Quarry														
BRQ-SP-Comp1	0.4UJ 1.47	1.47	28.2	0.40	0.40	36.7	97.5	2.35	0.2U	41.8	l	0.40	0.40	58.8
BRQ-SP-Comp2	0.403	1.17	41.3	0.40	0.40	7.44	115	2.21	0.20	49.3	0.479	0.40	0.40	64.5
BRQ-SP-Comp3	0.403	5.20	25.2	0.40	0.40	32.7	107	2.82	0.20	70.5	l	0.40	0.610	6.99
BRQ-SP-Comp4	0.5UJ	0.866	27.8	0.50	0.5U	42.0	131	1.84	0.20	42.5		0.5U	0.50	67.3
BRQ-SP-Comp5	0.5UJ	0.839	29.1	0.5U	0.5U	18.8	131	2.60	0.20	45.5	0.554	0.50	0.5U	58.1
BRQ-SP-Comp6	0.5UJ	0.927	27.2	0.5U	0.5U	46.3	111.0	1.85	0.20	44.4	0.639	0.5U	0.5U	57.6

Soil samples collected by Hart Crowser on July 3, 2001.

Bolded and underlined value exceeds Section 401 fill criteria screening level.

Samples analyzed by NCA.

a Fill criteria from Condition E.1.b of Section 401 Certification.


b Criteria vary depending on where fill is placed in embankment (see Condition E.1.b of 401 Certification). Unot detected above laboratory analytical reporting limit.

NE Not established.

Table 2 - Black River Quarry Sampling, Soil Sample Descriptions

Sample Location	Sample Description
Black River Quarry	
BRQ-SP-Comp1	Damp, brown, angular, cobbly, gravelly SAND
BRQ-SP-Comp2	Damp, brown, angular, cobbly, gravelly SAND
BRQ-SP-Comp3	Damp, brown, angular, cobbly, gravelly SAND
BRQ-SP-Comp4	Damp, brown, angular, cobbly, gravelly SAND
BRQ-SP-Comp5	Damp, brown, angular, cobbly, gravelly SAND
BRQ-SP-Comp6	Damp, brown, angular, cobbly, gravelly SAND

Site Plan Schematic Black River Quarry

HARTCROWSER 4978-06 12/01 Figure 1

497806112

Stockpile Schematic and Sample Location Map Black River Quarry

© BRQ-SP-Comp 3 Composite Sample Location and Number BRQ-SP-Cdmp 2 BRQ-SP-Comp 3 BRQ-SP-Comp 1 BRQ-SP-Comp 4 вва-ѕР-сомр в BRQ-SE 4978-06 12/01 Figure 2

Not to Scale

AR 015307

APPENDIX A LABORATORY ANALYTICAL DOCUMENTATION NORTH CREEK ANALYTICAL, INC.

30 October 2001

Rick Moore Hart Crowser, Inc. - WA 1910 Fairview Ave. E. Seattle, WA 98102

RE: Third Runway/Pit Samples

Enclosed are **amended** results of analyses for samples received by the laboratory on 10/04/01 15:35. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Scott A. Woerman

Project Manager

Project: Third Runway/Pit Samples

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report Issued: 10/30/01 19:55

ANALYTICAL REPORT FOR SAMPLES - Ameneded

		_		
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MVP-1B- COMP 1	B1J0187-01	Soil	10/04/01 09:25	10/04/01 15:35
MVP-1B- COMP 2	B1J0187-02	Soil	10/04/01 09:35	10/04/01 15:35
MVP-1B- COMP 3	B1J0187-03	Soil	10/04/01 09:50	10/04/01 15:35
MVP-1B- COMP 4	B1J0187-04	Soil	10/04/01 10:00	10/04/01 15:35
MVP-1B- COMP 5	B1J0187-05	Soil	10/04/01 10:05	10/04/01 15:35
MVP-1B- COMP 6	B1J0187-06	Soil	10/04/01 10:15	10/04/01 15:35
BRQ-LS- COMP 1	B1J0187-07	Soil	10/04/01 14:05	10/04/01 15:35
BRQ-LS- COMP 2	B1J0187-08	Soil	10/04/01 14:10	10/04/01 15:35
BRQ-LS- COMP 3	B1J0187-09	Soil	10/04/01 14:15	10/04/01 15:35
BRQ-LS- COMP 4	B1J0187-10	Soil	10/04/01 14:25	10/04/01 15:35
BRQ-LS- COMP 5	B1J0187-11	Soil	10/04/01 14:35	10/04/01 15:35
BRQ-LS- COMP 6	B1J0187-12	Soil	10/04/01 14:45	10/04/01 15:35
•				

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. W-

Scott A. Woerman, Project Manager

Page 1 of 19

Project: Third Runway/Pit Samples

1910 Fairview Ave. E. Seattle WA, 98102

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report Issued: 10/30/01 19:55

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MVP-1B- COMP 1 (B1J0187-01) Soil	Sampled: 10/04	/01 09:25	Received:	10/04/01 1	5:35				
Silver	ND	0.385	mg/kg dry	1	1J08034	10/08/01	10/10/01	EPA 6020	
Arsenic	2.59	0.385	"	-	**	н	*	т .	
Barium	60.6	3.85	**	#	**	*	•	Ħ	
Beryllium	0.392	0.385	**	n	**	11	n	#	
Cadmium	1.03	0.385	N	n	**	"	**	н	
Chromium	25.0	0.385	**	,,	ŧr	**		н	
Copper	16.8	0.385	**	11	**	"	"	11	
Mercury	ND	0.200	**	**	1J10040	10/10/01	10/11/01	EPA 7471A	
Nickel	29.1	0.385		H	1J08034	10/08/01	10/10/01	EPA 6020	
Lead	3.11	0.385	n		**				
Antimony	ND 🍑	0.385		**		"	"	*	
Selenium	ND	0.385		**	••	**			
Thallium	ND	0.385	. 11	11	н	H	11	**	
Zinc	39.0	3.85	"	#	**	•	н	#	
MVP-1B- COMP 2 (B1J0187-02) Soil	Sampled: 10/04	/01 09:35	Received:	10/04/01	15:35				
Silver	ND	0.455	mg/kg dry	1	1J09035	10/09/01	10/10/01	EPA 6020	
Arsenic	2.94	0.455	*	*	Ħ	**	**	•	
Barium	74.6 J	4.55	**	**	н	**	н	**	
Beryllium	ND	0.455	n	"	**	n	10/11/01	#	
Cadmium	ND	0.455	11	"	n	11	10/10/01		
Chromium	21.2	0.455	n	#		*	10/11/01	*	
Copper	16.0	0.455		**	**	•	10/10/01	•	
Mercury	ND	0.200		**	1J10040	10/10/01	10/11/01	EPA 7471A	
Nickel	24.6	0.455	*1	"	1J09035	10/09/01	10/11/01	EPA 6020	
Lead	2.36	0.455	**	**			10/10/01	•	
Selenium	ND	0.455	**	*	n	"	"	**	
Thallium	ND	0.455	,,	19	n	11	**	m.	
Zinc	31.8	4.55	#	**		**	"	*	

NFM

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. Wa-

Scott A. Woerman, Project Manager

Page 2 of 19

Hart Crowser, Inc. - WA 1910 Fairview Ave. E.

Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19

Amended Report Issued: 10/30/01 19:55

Project Manager: Rick Moore

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MVP-1B- COMP 2 (B1J0187-02RE1) So	il Sampled:	10/04/01 0	9:35 Recei	ved: 10/04	/01 15:35				
Antimony	NDI	0.500	mg/kg dry	1	1J11031	10/11/01	10/12/01	EPA 6020	
MVP-1B- COMP 3 (B1J0187-03) Soil	Sampled: 10/0-	4/01.09:50	Received:	10/04/01 1	15:35				
Silver	ND	0.379	mg/kg dry	1	1J08034	10/08/01	10/10/01	EPA 6020	
Arsenic	2.88	0.379	#	**	#	"	· ·	11	
Barium	55.1	3.79	tt	11	**	**	**	н	
Beryllium	ND	0.379	**	11	#	**		n	
Cadmium	ND	0.379	,,		**	**	**		
Chromium	28.9	0.379	"	**			•	n	
Copper	12.5	0.379	**	**	**	11	11	H	
Mercury	ND	0.200	"	"	1J10040	10/10/01	10/11/01	EPA 7471A	
Nickel	31.8	0.379	*1	**	1J08034	10/08/01	10/10/01	EPA 6020	
Lead	2.19	0.379	**			*	"	n	
Antimony	NDJ	0.379	"	*	"	**	**	11-	
Selenium	ND	0.379	**	**	n	#	**	n	
Thallium	ND	0.379	•	"	11	n	"	Ħ	
Zinc	33.7	3.79	**	"	н	"	•	n	
MVP-1B- COMP 4 (B1J0187-04) Soil	Sampled: 10/0	4/01 10:00	Received	10/04/01	15:35	, .			
Silver	ND	0.417	mg/kg dry	1	1J08034	10/08/01	10/10/01	EPA 6020	
Arsenic	1.36	0.417		**	*	*	**	**	
Barium	59.6	4.17	"	**	**	"	11	"	
Beryllium	ND	0.417	"	**		**	*	•	
Cadmium	0.748	0.417	**	n	"	u	**	n	
Chromium	25.1	0.417	#	**	**		**	H .	
Copper	13.4	0.417		*	**	**	"	#	
Mercury	ND	0.200	**	**	1J10040	10/10/01	10/11/01	EPA 7471A	
Nickel	27.9	0.417	•	н	1J08034	10/08/01	10/10/01	EPA 6020	
Lead	2.20	0.417	"	"	11	*	Ħ	*	
Antimony	\mathcal{I}_{DN}	0.417	**	H		11	."	11	
Selenium	ND	0.417	п	"	**	n	*	*	
Thallium	ND	0.417	"	"	**	**	ч	**	
Zinc	34.9	4.17	n	#	**	**	"	•	
NFK	· n/u/or								

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

Page 3 of 19

Project: Third Runway/Pit Samples

Project Number: 4978-19 Project Manager: Rick Moore Amended Report Issued: 10/30/01 19:55

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MVP-1B- COMP 5 (B1J0187-05) Soil	Sampled: 10/04	/01 10:05	Received:	10/04/01	15:35				
Silver	ND	0.407	mg/kg dry	1	1J08034	10/08/01	10/10/01	EPA 6020	
Arsenic	2.30	0.407	**	11	**	"	**	•	
Barium	47.7	4.07	H	P	n	"		"	
Beryllium	ND	0.407	н	"	**	**	•	n	
Cadmium	0.783	0.407	H	n	"	"	**	**	
Chromium	26.0	0.407	n		**	11	*	n	
Copper	13.2	0.407	n	н	17	Ħ	19	r	
Mercury	ND	0.200	**		1J10040	10/10/01	10/11/01	EPA 7471A	
Nickel	27.2	0.407	n	**	1J08034	10/08/01	10/10/01	EPA 6020	
Lead	2.04	0.407	11		**	**	n	n	
Antimony	NDJ	0.407	11	**	H	n	*	n	
Selenium	ND	0.407	n	H	Hr.	H	"	"	
Thallium	ND	0.407	,	"	**	H	**	n	
Zinc	33.7	4.07		11	**	**	"		
MVP-1B- COMP 6 (B1J0187-06) Soil	Sampled: 10/04	1 /01 10:15	Received	10/04/01	15:35				
Silver	ND	0.309	mg/kg dry	1	1J08034	10/08/01	10/10/01	EPA 6020	
Arsenic	2.48	0.309	"	"	n	н	11	n	
Barium	57.5	3.09	17	"	**	"	n	H	
Beryllium	0.340	0.309		,	11	**	**	n	
Cadmium	0.818	0.309	,	#	n	*	**	,	
Chromium	23.5	0.309	"	*	н	n n	19	11	,
Copper	19.1	0.309	n	**	н	н		н	
Mercury	ND	0.200			1J10040	10/10/01	10/11/01	EPA 7471A	
Nickel	27.5	0.309	"	**	1J08034	10/08/01	10/10/01	EPA 6020	
Lead	5.00	0.309	"	*	n		н .	n	
Antimony	NDI	0.309	"		н	**	41	"	
Selenium	ND	0.309	"	*	11	11	n	**	
Thallium	ND	0.309	Ħ	n		н	11	Ħ	
Zinc	40.0	3.09	н	"	19	"	÷	11	

NFMilo

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. W-

Scott A. Woerman, Project Manager

Page 4 of 19

1910 Fairview Ave. E.

Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report

Issued: 10/30/01 19:55

Total Metals by EPA 6000/7000 Series Methods

North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
BRQ-LS- COMP 1 (B1J0187-07) Soil	Sampled: 10/0	4/01 14:05	Received:	10/04/01	15:35				
Silver	ND	0.368	mg/kg dry	1	1J08034	10/08/01	10/10/01	EPA 6020	
Arsenic	2.73	0.368	11		Ħ	n	"	H	
Barium	74.5	3.68	**	**	**	*	n	71	
Beryllium	ND	0.368	**	"	**	Ħ	10/11/01	H	
Cadmium	0.605	0.368	n	**	**	**	10/10/01	H	
Chromium	36.8	0.368	н	*	**		10/11/01	11	
Copper	26.4	0.368	"	11	•	**	10/10/01	"	
Mercury	ND	0.200	**	"	1J10040	10/10/01	10/11/01	EPA 7471A	
Nickel	41.8	0.368	"	•	1J08034	10/08/01	10/11/01	EPA 6020	
Lead	3.12	0.368	**	*	**	11	10/10/01	1+	
Antimony	NDJ	0.368	"	"	n	*		*1	
Selenium	ND	0.368	**	**	n		**	**	
Thallium	ND	0.368	Ħ	**	•	**	**	**	
Zinc	42.7	3.68	11	"	"	Ħ	**	n	
BRQ-LS- COMP 2 (B1J0187-08) Soil	Sampled: 10/0	04/01 14:10	Received	: 10/04/01	15:35				
Silver	ND	0.379	mg/kg dry	1	1J08034	10/08/01	10/10/01	EPA 6020	
Arsenic	3.00	0.379	**	п	н	"	n	н	
Barium	76.9	3.79	**		"	H	11	11	
Beryllium	ND	0.379	n	**	н .	"	10/11/01	*	
Cadmium	0.525	0.379	"	**	**	"	10/10/01	**	
Chromium	36.0	0.379	. #	"	*	**	10/11/01	**	
Copper	26.7	0.379	**	**	"	11	10/10/01	. "	
Mercury	ND	0.200	**	n	1J10040	10/10/01	10/11/01	EPA 7471A	
Nickel	41.9	0.379	• •	11	1J08034	10/08/01	10/11/01	EPA 6020	
Lead	3.37	0.379	**	*	n	"	10/10/01	**	
Antimony	ND Z	0.379	**	"		Ħ	"	Ħ	
Selenium	ND	0.379	**	"	•	**	**	11	
Thallium	ND	0.379	n	n	**	"	Ħ	ч	
Zinc	42.6	3.79	#1	**	"		11	11	
•									

NFMIRINION

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. Wa-

Scott A. Woerman, Project Manager

Page 5 of 19

Project: Third Runway/Pit Samples

1910 Fairview Ave. E. Seattle WA, 98102

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report Issued: 10/30/01 19:55

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

	Re	porting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BRQ-LS- COMP 3 (B1J0187-09) Soil	Sampled: 10/04	/01 14:1 <u>5</u>	Received:	10/04/01	15:35				
Silver	ND	0.424	mg/kg dry	1	1J08034	10/08/01	10/10/01	EPA 6020	
Arsenic	3.22	0.424	11	n	**	17	**	**	
Barium	85.1	4.24	"	H	*	**	"	**	
Beryllium	ND	0.424	. "	n	"	н	10/11/01	н .	
Cadmium	0.629	0.424	"	H	**		10/10/01	•	
Chromium	40.3	0.424	**	*1	*	"	10/11/01	"	
Copper	22.9	0.424	**	**	11	n	10/10/01	Ħ	
Mercury	ND	0.200	"	"	1J10040	10/10/01	10/11/01	EPA 7471A	
Nickel	45.9	0.424	*	•	1J08034	10/08/01	10/11/01	EPA 6020	
Lead	4.12	0.424	**	11	**	01/18/01	10/10/01	11	
Antimony	NDJ	0.424	11	**	н	10/08/01	**	n	
Selenium	ND	0.424	TT TT	71	•	"	**	**	
Thallium	ND	0.424	n	11			67	**	
Zinc	44.6	4.24	**	n	H	Ħ	**	**	
BRQ-LS- COMP 4 (B1J0187-10) Soil	Sampled: 10/04	/01 14:2:	5 Received	: 10/04/01	15:35				
Silver	ND	0.435	mg/kg dry	1	1J08034	10/08/01	10/10/01	EPA 6020	
Arsenic	2.23	0.435	·		n		"	•	
Barium	63.5	4.35	*	**			"	•	
Beryllium	ND	0.435	n	ri	•	"	10/11/01	"	
Cadmium	0.451	0.435	**	,	*		10/10/01		
Chromium	30.4	0.435	11	n	"	**	10/11/01	H	
Copper	17.3	0.435	н		11	**	10/10/01	*	
Mercury	ND	0.200	Ħ	н	1J10040	10/10/01	10/11/01	EPA 7471A	
Nickel	38.7	0.435	**	*	1J08034	10/08/01	10/11/01	EPA 6020	
Lead	5.29	0.435	n	"	19	•	10/10/01	•	
Antimony	ND J	0.435	"	11	11	"	,,	n	
Selenium	ND	0.435	**	н	"	и .	11	**	
Thallium	ND	0.435	11	**	"	H	H	n	
Zinc	34.6	4.35		11	н	•		ty	

NFM

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. W-

Scott A. Woerman, Project Manager

Page 6 of 19

1910 Fairview Ave. E. Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report Issued: 10/30/01 19:55

Total Metals by EPA 6000/7000 Series Methods

North Creek Analytical - Bothell

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		 							
BRO-LS- COMP 5 (B1J0187-11) Soil				10/04/01					
Silver	ND	0.347	mg/kg dry	1	1J08034	10/08/01	10/10/01	EPA 6020	
Arsenic	2.45	0.347	"	H	•	ŧ	11	**	
Barium	59.9	3.47	н	**	**	,	н	*	
Beryllium	ND	0.347	**	"	*	**	10/11/01	**	
Cadmium	0.433	0.347		n		"	10/10/01	11	
Chromium	31.7	0.347	"	**		**	10/11/01	"	
Copper	15.0	0.347	**	*	*	**	10/10/01	"	
Mercury	ND	0.200	n	"	1J10040	10/10/01	10/11/01	EPA 7471A	
Nickel	39.2	0.347	н	H	1J08034	10/08/01	10/11/01	EPA 6020	
Lead	3.55	0.347		*1	**	*	10/10/01	n	
Antimony	NDJ	0.347		*		n	••	n	
Selenium	ND	0.347	11	**	#	"	11	n	
Thallium	ND	0.347	н		**	n	n	н	
Zinc	33.6	3.47	**	н	•	**	**	"	
BRQ-LS- COMP 6 (B1J0187-12) Soil	Sampled: 10/04	I/01 14:45	Received	: 10/04/01	15:35				
Silver	ND	0.388	mg/kg dry	1	1J08034	10/08/01	10/10/01	EPA 6020	
Arsenic	2.47	0.388	**	**	**	**	"	*	
Barium	64.5	3.88	H	n	77	"	**	n	
Beryllium	ND	0.388	**		**		10/11/01	**	
Cadmium	ND	0.388	ŧŧ	н	"	*	10/10/01	"	
Chromium	32.4	0.388	,		п		10/11/01	H	
Copper	17.6	0.388	**	n	•	н	10/10/01	u	
Mercury	ND	0.200	**	*	1J10040	10/10/01	10/11/01	EPA 7471A	
Nickel	37.4	0.388	**		1J08034	10/08/01	10/11/01	EPA 6020	
Lead	4.16	0.388	*			"	10/10/01	**	
Antimony	ND S	0.388	"			n	"	"	
Selenium	ND C	0.388	**		**	"	"	n	
Thallium	ND	0.388				"	**	11	
Zinc	37.5	3.88	•	H	**	Ħ	v	"	
ZIIIC		2.20							

NEMILIAON

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. W.

Scott A. Woerman, Project Manager

Page 7 of 19

Hart Crowser, Inc. - WA 1910 Fairview Ave. E. Project: Third Runway/Pit Samples

1910 Fairview Ave. E. Seattle WA, 98102

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report

Issued: 10/30/01 19:55

SPLP Metals by EPA 1312/6000/7000 Series Methods

North Ci	reek Anal	ytical - Bo	thell	

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MVP-1B- COMP 1 (B1J0187-01) Soil	Sampled: 10/	04/01 09:25	Received	: 10/04/01 1	5:35				
Cadmium	ND	0.0500	mg/l	50	1J22032	10/22/01	10/23/01	EPA 6020	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its

1. Wa-

Scott A. Woerman, Project Manager

Page 8 of 19

Project: Third Runway/Pit Samples

1910 Fairview Ave. E. Seattle WA, 98102

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report Issued: 10/30/01 19:55

Physical Parameters by APHA/ASTM/EPA Methods

North Creek Analytical - Bothell

	K	eporting							l l
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MVP-1B- COMP 1 (B1J0187-01) Soil	Sampled: 10/04	4/01 09:25	Received	l: 10/04/01	15:35				
Dry Weight	91.6	1.00	%	1	1J10014	10/10/01	10/11/01	BSOPSPL003R07	
MVP-1B- COMP 2 (B1J0187-02) Soil	Sampled: 10/04	<u>4/01 09:35</u>	Received	: 10/04/01 :	15:35				
Dry Weight	90.4	1.00	%	1	1J10014	10/10/01	10/11/01	BSOPSPL003R07	
MVP-1B- COMP 3 (B1J0187-03) Soil	Sampled: 10/0	4/01 09:50	Received	1: 10/04/01	15:35				
Dry Weight	92.1	1.00	%	1	1J10014	10/10/01	10/11/01	BSOPSPL003R07	
MVP-1B- COMP 4 (B1J0187-04) Soil	Sampled: 10/0	4/01 10:00	Received	1: 10/04/01	15:35				
Dry Weight	92.3	1.00	%	1	1J10014	10/10/01	10/11/01	BSOPSPL003R07	
MVP-1B- COMP 5 (B1J0187-05) Soil	Sampled: 10/0	4/01 10:05	Received	1: 10/04/01_	15:35				
Dry Weight	91.6	1.00	%	1	1J10014	10/10/01	10/11/01	BSOPSPL003R07	
MVP-1B- COMP 6 (B1J0187-06) Soil	Sampled: 10/0	4/01 10:15	Received	d: 10/04/01	15:35				
Dry Weight	88.7	1.00	%	1	1J10014	10/10/01	10/11/01	BSOPSPL003R07	
BRQ-LS- COMP 1 (B1J0187-07) Soil	Sampled: 10/0	4/01 14:05	Receive	d: 10/04/01	15:35				
Dry Weight	98.1	1.00	%	1	1J10014	10/10/01	10/11/01	BSOPSPL003R07	
BRQ-LS- COMP 2 (B1J0187-08) Soil	Sampled: 10/0	4/01 14:10	Receive	d: 10/04/01	15:35				
Dry Weight	97.6	1.00	%	1	1J10014	10/10/01	10/11/01	BSOPSPL003R07	
BRQ-LS- COMP 3 (B1J0187-09) Soil	Sampled: 10/0	4/01 14:15	Receive	d: 10/04/01	15:35	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
Dry Weight	98.1	1.00	%	1	1J10014	10/10/01	10/11/01	BSOPSPL003R07	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. Wa-

Scott A. Woerman, Project Manager

Page 9 of 19

Project: Third Runway/Pit Samples

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report Issued: 10/30/01 19:55

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

		Reporting	•••	B11 - 1	D . 1			34 3 3	
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BRQ-LS- COMP 4 (B1J0187-10) Soil	Sampled: 10/0	4/01 14:25	Received	l: 10/04/01	15:35				
Dry Weight	93.8	1.00	%	1	1J10014	10/10/01	10/11/01	BSOPSPL003R07	
BRQ-LS- COMP 5 (B1J0187-11) Soil	Sampled: 10/0	4/01 14:35	Received	1: 10/04/01	15:35				
Dry Weight	97.4	1.00	%	1	1J10014	10/10/01	10/11/01	BSOPSPL003R07	
BRQ-LS- COMP 6 (B1J0187-12) Soil	Sampled: 10/0	4/01 14:45	Received	1: 10/04/01	15:35				
Dry Weight	94.5	1.00	%	1	1J10014	10/10/01	10/11/01	BSOPSPL003R07	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. Wa-

Scott A. Woerman, Project Manager

Page 10 of 19

Hart Crowser, Inc. - WA 1910 Fairview Ave. E.

Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report Issued: 10/30/01 19:55

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD		
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1J08034:	Prepared 10/08/01	Using EPA	A 3050B								
Blank (1J08034-B	LK1)										
Antimony		ND	0.500	mg/kg							
Arsenic		ND	0.500	"							
Barium		ND	5.00	"							
Beryllium		ND	0.500	"							
Cadmium		ND	0.500	**							
Chromium		ND	0.500	Ħ							
Соррег		ND	0.500								
Lead		ND	0.500	**							
Nickel		ND	0.500	"							
Selenium		ND	0.500								
Silver		ND	0.500	*							
Thallium		ND	0.500	"							
Zinc		ND	5.00	"							
LCS (1J08034-BS	S1)										
Antimony		40.6	0.455	mg/kg	36.4		112	80-120			
Arsenic		37.4	0.455	**	36.4		103	70-130			
Barium		39.8	4.55		36.4		109	80-120			
Beryllium		38.9	0.455	*1	36.4		107	80-120			
Cadmium		38.5	0.455	· ·	36.4		106	70-130			
Chromium		39.6	0.455	**	36.4		109	80-120			
Copper		39.9	0.455	н	36.4		110	80-120			
Lead		36.8	0.455	"	36.4		101	80-120			
Nickel		39.1	0.455	ŧı	36.4		107	80-120			
Selenium		35.3	0.455		36.4		97.0	70-130			
Silver		38.9	0.455	**	36.4		107	40-130			
Thallium		36.9	0.455	H	36.4		101	80-120			
Zinc		38.5	4.55	**	36.4		106	70-130			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. Wa-

Scott A. Woerman, Project Manager

Page 11 of 19

Project: Third Runway/Pit Samples

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report Issued: 10/30/01 19:55

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source	<u>-</u>	%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1J08034:	Prepared 10/08/01	Using El	PA 3050B								
LCS Dup (1J0803	4-BSD1)						·				
Antimony		40.8	0.500	mg/kg	37.0		110	80-120	0.491	20	
Arsenic		37.9	0.500	11	37.0		102	70-130	1.33	20	
Barium		40.5	5.00	"	37.0		109	80-120	1.74	20	
Beryllium		40.3	0.500	**	37.0		109	80-120	3.54	20	
Cadmium		38.6	0.500	*	37.0		104	70-130	0.259	20	
Chromium		41.0	0.500	"	37.0		111	80-120	3.47	20	
Copper		40.7	0.500	"	37.0		110	80-120	1.99	20	
Lead		37.5	0.500	,	37.0		101	80-120	1.88	20	
Nickel		39.0	0.500	*	37.0		105	80-120	0.256	20	
Selenium		36.3	0.500	•	37.0		98.1	70-130	2.79	20	
Silver		39.5	0.500	н	37.0		107	40-130	1.53	20	
Thallium		37.4	0.500	•	37.0		101	80-120	1.35	20	
Zinc		39.3	5.00	11	37.0		106	70-130	2.06	20	
Matrix Spike (1Je)8034-MS1)					Source: 1	B1J0187-	01			
Antimony		1.51	0.427	mg/kg dry	37.3	ND	4.05	70-130			Q-13
Arsenic		35.5	0.427	,,	37.3	2.59	88.2	70-130			
Barium		88.9	4.27	**	37.3	60.6	75.9	70-130			
Beryllium		38.1	0.427	•	37.3	ND	101	70-130			
Cadmium		36.2	0.427	11	37.3	1.03	94.3	70-130			
Chromium		66.6	0.427	**	37.3	25.0	112	70-130			
Copper		48.1	0.427	n	37.3	16.8	83.9	70-130			
Lead		38.5	0.427	**	37.3	3.11	94.9	70-130			
Nickel		65.6	0.427	**	37.3	29.1	97.9	70-130			
Selenium		31.9	0.427	"	37.3	ND	84.9	70-130			
Silver		33.4	0.427	. "	37.3	ND	89.5	40-130			
Thallium		36.4	0.427	**	37.3	ND	97.5	70-130			
Zinc		70.3	4.27	*	37.3	39.0	83.9	70-130			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. W

Scott A Woerman Project Manager

Page 12 of 19

Project: Third Runway/Pit Samples

Source

Project Number: 4978-19

Reporting

ND

ND

0.500

5.00

Amended Report

Project Manager: Rick Moore

Issued: 10/30/01 19:55

RPD

%REC

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

]	Reporting		Spike	Source		%REC		KPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1J08034:	Prepared 10/08/01	Using EPA	3050B							···	
Matrix Spike Dup	(1J08034-MSD1)	·				Source: I	31J0187-0)1			
Antimony		1.06	0.410	mg/kg dry	35.8	ND	2.96	70-130	35.0	20	Q-13
Arsenic		34.3	0.410		35.8	2.59	88.6	70-130	3.44	20	
Barium		87.1	4.10	Ħ	35.8	60.6	74.0	70-130	2.05	20	
Beryllium		36.7	0.410	"	35.8	ND	101	70-130	3.74	20	
Cadmium		34.8	0.410	n	35.8	1.03	94.3	70-130	3.94	20	
Chromium		64.1	0.410	*	35.8	25.0	109	70-130	3.83	20	
Copper		49.4	0.410	**	35.8	16.8	91.1	70-130	2.67	20	
Lead		36.9	0.410	#	35.8	3.11	94.4	70-130	4.24	20	
Nickel		66.3	0.410	п	35.8	29.1	104	70-130	1.06	20	
Selenium		30.8	0.410	**	35.8	ND	85.4	70-130	3.51	20	
Silver	-	31.4	0.410	"	35.8	ND	87.7	40-130	6.17	50	
Thallium		34.7	0.410	Ħ	35.8	ND	96.8	70-130	4.78	20	
Zinc		71.2	4.10	**	35.8	39.0	89.9	70-130	1.27	20	
Post Spike (1J080	34-PS1)					Source:	B1J0187-	01			
Antimony		212	1.92	mg/kg dry	210	ND	101	70-130			
Batch 1J09035:	Prepared 10/09/01	Using EP	A 3050B								
Blank (1J09035-B	LK1)										
Arsenic		ND	0.500	mg/kg							
Barium		ND	5.00	**							
Beryllium		ND	0.500	*							
Cadmium		ND	0.500	Ħ							
Chromium		ND	0.500								
Copper		ND	0.500	н							
Lead		ND	0.500	"							
Nickel		ND	0.500	н							
Selenium		ND	0.500	**							
Silver		ND	0.500	н				•			
			0.500								

North Creek Analytical - Bothell

Thallium

Zinc

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. Wan

Scott A. Woerman, Project Manager

Page 13 of 19

Project: Third Runway/Pit Samples

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report Issued: 10/30/01 19:55

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
				Ollita				2111110			
Batch 1J09035:	Prepared 10/09/01	Using El	A 3050B								
LCS (1J09035-BS	1)										
Arsenic		36.8	0.500	mg/kg	39.2		93.9	70-130			
Barium		40.8	5.00	**	39.2		104	80-120			
Beryllium		37.2	0.500	"	39.2		94.9	80-120			
Cadmium		37.8	0.500	**	39.2		96.4	70-130			
Chromium		39.8	0.500	H	39.2		102	80-120			
Copper		39.8	0.500	н	39.2		102	80-120			
Lead		38.5	0.500	11	39.2		98.2	80-120			
Nickel		38.6	0.500	"	39.2		98.5	80-120			
Selenium		34.8	0.500	"	39.2		88.8	70-130			
Silver		38.4	0.500	**	39.2		98.0	40-130			
Thallium		38.2	0.500	"	39.2		97.4	80-120			
Zinc		39.0	5.00	"	39.2		99.5	70-130			
LCS Dup (1J0903	5-BSD1)										
Arsenic		37.6	0.500	mg/kg	39.6		94.9	70-130	2.15	20	
Barium		41.7	5.00	n	39.6		105	80-120	2.18	20	
Beryllium		39.2	0.500	*	39.6		99.0	80-120	5.24	20	
Cadmium		38.4	0.500	•	39.6		97.0	70-130	1.57	20	
Chromium		39.8	0.500	"	39.6		101	80-120	0.00	20	
Copper		40.1	0.500	••	39.6		101	80-120	0.751	20	
Lead		37.4	0.500	n	39.6		94.4	80-120	2.90	20	
Nickel		38.6	0.500	Ħ	39.6		97.5	80-120	0.00	20	
Selenium		36.1	0.500	**	39.6	*	91.2	70-130	3.67	20	
Silver		39.5	0.500	"	39.6		99.7	40-130	2.82	20	
Thallium		36.8	0.500	н	39.6		92.9	80-120	3.73	20	
Zinc		39.5	5.00	**	39.6		99.7	70-130	1.27	20	
Matrix Spike (1J0	9035-MS1)					Source:	B1J0187-	02			
Arsenic		39.7	0.500	mg/kg dry	41.4	2.94	88.8	70-130			
Barium		88.4	5.00	11	41.4	74.6	33.3	70-130			Q-1
Beryllium	•	38.2	0.500	n	41.4	ND	91.7	70-130			
Cadmium		38.5	0.500	11	41.4	ND	92.6	70-130			
Chromium		55.2	0.500	11	41.4	21.2	82.1	70-130			
Copper		54.2	0.500	"	41.4	16.0	92.3	70-130			
Lead		40.3	0.500	н	41.4	2.36	91.6	70-130			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. W.

Scott A. Woerman, Project Manager

Page 14 of 19

Project: Third Runway/Pit Samples

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report Issued: 10/30/01 19:55

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1J09035:	Prepared 10/09/01	Using EP	A 3050B								
Matrix Spike (1J0	9035-MS1)					Source: I	31J0187-0)2			
Nickel		55.1	0.500	mg/kg dry	41.4	24.6	73.7	70-130			
Selenium		33.0	0.500	Ħ	41.4	ND	79.7	70-130			
Silver		37.8	0.500	۳	41.4	ND	91.3	40-130			
Thallium		36.7	0.500	•	41.4	ND	88.4	70-130			
Zinc		69.5	5.00	**	41.4	31.8	91.1	70-130			
Matrix Spike Dup	(1J09035-MSD1)					Source: 1	B1J0187-	02			
Arsenic		38.9	0.500	mg/kg dry	41.0	2.94	87.7	70-130	2.04	20	
Barium		90.3	5.00	**	41.0	74.6	38.3	70-130	2.13	20	Q-15
Beryllium		36.5	0.500	"	41.0	ND	88.5	70-130	4.55	20	
Cadmium		37.7	0.500	м	41.0	ND	91.5	70-130	2.10	20	
Chromium		59.5	0.500	"	41.0	21.2	93.4	70-130	7.50	20	
Copper		55.9	0.500	Ħ	41.0	16.0	97.3	70-130	3.09	20	
Lead		39.4	0.500	#	41.0	2.36	90.3	70-130	2.26	20	
Nickel		59.8	0.500	•	41.0	24.6	85.9	70-130	8.18	20	
Selenium		31.8	0.500	Ħ	41.0	ND	77.6	70-130	3.70	20	
Silver		35.7	0.500	"	41.0	ND	87.1	40-130	5.71	50	
Thallium		37.1	0.500	**	41.0	ND	90.3	70-130	1.08	20	
Zinc		70.8	5.00	H	41.0	31.8	95.1	70-130	1.85	20	
Batch 1J10040:	Prepared 10/10/01	Using EP	A 7471A								
Blank (1J10040-B	LK1)							·			
Mercury		ND	0.200	mg/kg							
LCS (1J10040-BS	1)										
Mercury		0.518	0.200	mg/kg	0.489		106	80-120			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. W-

Scott A. Woerman, Project Manager

Page 15 of 19

Project: Third Runway/Pit Samples

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report Issued: 10/30/01 19:55

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

	n 1	Reporting	T I = i + =	Spike	Source	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	70KEC	Limits	KPD	Limit	Notes
Batch 1J10040: Prepared 10/10/01	Using El	PA 7471A								
LCS Dup (1J10040-BSD1)										
Mercury	0.554	0.200	mg/kg	0.495		112	80-120	6.72	20	
Matrix Spike (1J10040-MS1)					Source: 1	31J0187-)1			
Mercury	0.633	0.200	mg/kg dry	0.541	ND	112	70-130			
Matrix Spike Dup (1J10040-MSD1)					Source: I	B1J0187-	01			
Mercury	0.622	0.200	mg/kg dry	0.538	ND	110	70-130	1.75	30	
Batch 1J11031: Prepared 10/11/01	Using El	PA 3050B				···				
Blank (1J11031-BLK1)										
Antimony	ND	0.500	mg/kg							
LCS (1J11031-BS1)										
Antimony	40.3	0.500	mg/kg	39.2		103	80-120			
LCS Dup (1J11031-BSD1)										
Antimony	41.0	0.500	mg/kg	40.0		102	80-120	1.72	20	
Matrix Spike (1J11031-MS1)					Source: 1	B1J0187-0	2RE1			
Antimony	2.04	0.500	mg/kg dry	42.2	ND	4.83	70-130			Q-13
Matrix Spike Dup (1J11031-MSD1)					Source:	B1J0187-4)2RE1			
Antimony	1.54	0.500	mg/kg dry	41.4	ND	3.72	70-130	27.9	20	Q-13
Post Spike (1J11031-PS1)					Source:	B1J0187-	02RE1			
Antimony	270	2.50	mg/kg dry	274	ND	98.5	70-130			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

Page 16 of 19

Hart Crowser, Inc. - WA 1910 Fairview Ave. E.

Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report

Issued: 10/30/01 19:55

SPLP Metals by EPA 1312/6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1J22032: Prepared 10/22/01	Using EP	A 3020A							<u> </u>	
Blank (1J22032-BLK1)										· · · · · · · · · · · · · · · · · · ·
Cadmium	ND	0.0500	mg/l							
LCS (1J22032-BS1)								 -		
Cadmium	3.60	0.0500	mg/l	4.00		90.0	80-120			
LCS Dup (1J22032-BSD1)										
Cadmium	3.51	0.0500	mg/l	4.00		87.8	80-120	2.53	20	
Matrix Spike (1J22032-MS1)					Source: 1	B1J0132-	01			
Cadmium	3.49	0.0500	mg/l	4.00	ND	87.1	75-125			
Matrix Spike Dup (1J22032-MSD1)					Source: 1	B1J0132-	01			
Cadmium	3.56	0.0500	mg/l	4.00	ND	88.8	75-125	1.99	20	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. W-

Scott A. Woerman, Project Manager

Page 17 of 19

Hart Crowser, Inc. - WA

1910 Fairview Ave. E. Seattle WA, 98102

Dry Weight

Project: Third Runway/Pit Samples

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report

Issued: 10/30/01 19:55

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control North Creek Analytical - Bothell

]	Reporting		Spike	Source	e %REC RPI			RPD)	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch 1J10014:	Prepared 10/10/01	Using Dry	Weight									
Blank (1J10014-BI	.K1)							 				

100

1.00

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. W-

Scott A. Woerman, Project Manager

Page 18 of 19

Hart Crowser, Inc. - WA 1910 Fairview Ave. E. Seatile WA, 98102 Project: Third Runway/Pit Samples

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report Issued: 10/30/01 19:55

Notes and Definitions

Q-13	Multiple analyses indicate the percent recovery is outside the control limits due to a matrix effect.
------	---

Q-15 Analyses are not controlled on matrix spike RPD and/or percent recoveries when the sample concentration is significantly higher than the spike level.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. W.

Scott A. Woerman, Project Manager

Page 19 of 19

Sample Custody Record

Samples Shipped to: .

Ž.

Phone: 206-324-9530 FAX: 206-328-5581 781011R **HARTCROWSER**

1910 Fairview Avenue East Seattle, Washington 98102-3699

Hart Crowser, Inc.

BILLER TOTAL NUMBER OF CONTAINERS COMPOSITING INSTRUCTIONS OBSERVATIONS/COMMENTS/ ☐ STANDARD ☐ 1 WEEK OTHER TURNARDUND TIME: ☐ 72 HOURS X24 FOURS ☐ 48 HOURS NO. OF CONTAINERS STORAGE LOCATION: PLANE BILL BETH CLARK (P.O.S) **REQUESTED ANALYSIS** 63 SPECIAL SHIPMENT HANDLING OR Pert: Peas.# 100936 for Other Contract Requirements Gold to Sample Custodian Accelerant # STORAGE REQUIREMENTS: See Lab Work Order No. COOLER NO.: Lab to Return White Copy to Hart Crowser 10-4-01 1535 MATRIX DATE DATE TIME 7195 0435 04 50 1003 1405 425 8425 1410 1445 TIME COOL 1415 1435 1015 PIT Samperese COMPANYICA HART CROWSER CONTACT NAC MARKETON During. RECEIVED BY RECEIVED BY *15]*[-|01 SIGNATURE C DATE PRINT NAME PRINT NAME SIGNATURE COMPANY Pink to Project Manager LAB NUMBER 8 02. CUR DESCRIPTION 1535 19/4/61 TIME PROJECT NAME 3 12 RUNTANT DATE DATE TIME William 144-54-comple 200-15-com 5000-51-000 700-15-como 3 P1-8-19 801 NP-18-0me Emor OIL-WI 700-15- con 4 WP. 44- Comp ! 14-16- Con NW-96-60-4 120-15-0m Ma-15- com White and Yellow Copies to Lab SAMPLE ID Dymon Morester RELINQUISHED BY RELINQUISHED BY SAMPLED BY: PRINT NAME SIGNATURE COMPANY LAB NO.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Sulte B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

12 November 2001

Rick Moore Hart Crowser, Inc. - WA 1910 Fairview Ave. E. Seattle, WA 98102

RE: Third Runway/Pit Samples

Enclosed are amended results of analyses for samples received by the laboratory on 10/04/01 07:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Scott A. Woerman

Project Manager

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

503.966.9200 fax 503.966.9210 20332 Empire Avenue, Seaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383,9310 fax 541.382.7588

Hart Crowser, Inc. - WA

Project: Third Runway/Pit Samples

1910 Fairview Ave. E. Seattle WA, 98102

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

ANALYTICAL REPORT FOR SAMPLES - Amended

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BRQ-SP-COMP1	B1J0132-01	Soil	10/03/01 12:35	10/04/01 07:30
BRQ-SP-COMP2	B1J0132-02	Soil	10/03/01 12:40	10/04/01 07:30
BRQ-SP-COMP3	B1J0132-03	Soil	10/03/01 12:50	10/04/01 07:30
BRQ-SP-COMP4	B1J0132-04	Soil	10/03/01 13:00	10/04/01 07:30
BRQ-SP-COMP5	B1J0132-05	Soil	10/03/01 13:05	10/04/01 07:30
BRQ-SP-COMP6	B1J0132-06	Soil	10/03/01 13:15	10/04/01 07:30
MVP-COMP1	B1J0132-07	Soil	10/03/01 15:10	10/04/01 07:30
MVP-COMP2	B1J0132-08	Soil	10/03/01 15:25	10/04/01 07:30
MVP-COMP3	B1J0132-09	Soil	10/03/01 15:35	10/04/01 07:30
MVP-COMP4	B1J0132-10	Soil	10/03/01 16:05	10/04/01 07:30
MVP-COMP5	B1J0132-11	Soil	10/03/01 16:15	10/04/01 07:30
MVP-COMP6	B1J0132-12	Soil	10/03/01 16:25	10/04/01 07:30

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 1 of 18

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA

Project: Third Runway/Pit Samples

1910 Fairview Ave. E. Seattle WA, 98102

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

Total Metals by EPA 6000/7000 Series Methods

North Creek Analytical - Bothell

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BRQ-SP-COMP1 (B1J0132-01) Soil	Sampled: 10/03/	01 12:35	Received: 1	0/04/01 07	:30				
Silver	ND	0.431	mg/kg dry	1	1J04056	10/08/01	10/10/01	EPA 6020	
Arsenic	1.47	0.431	•	n	**	"	n	*	
Barium	28.2	4.31	H	11	*	**	*	•	
Beryllium	ND	0.431	*	"	"	**	n	•	
Cadmium	ND	0.431	*	"	n	**		N	
Chromium	36.7	0.431		P	"	**	**	**	
Copper	97.5	0.431	11	*		**	н	11	
Mercury	ND	0.200	•	*	1J08024	10/08/01	10/09/01	EPA 7471A	
Nickel	41.8	0.431			1J04056	10/08/01	10/10/01	EPA 6020	
Lead	2.35	0.431		"	*	*	"		
Antimony	ND J	0.431	n	"	*	H	n	n	•
Selenium	0.580	0.431		*	•		**		
Thallium	ND	0.431	*	n	10	,	"	**	
Zinc	58.8	4.31	**	"	**	"	**	11	
BRQ-SP-COMP2 (B1J0132-02) Soil	Sampled: 10/03/	01 12:40	Received:	10/04/01 0	7:30				
Silver	ND	0.420	mg/kg dry	1	1J04056	10/08/01	10/10/01	EPA 6020	
Arsenic	1.17	0.420	*	**	*	*	**	,,	
Barium	41.3	4.20	Ħ	n	**	*	11	H	
Beryllium	ND	0.420	**	**	•	**	н	"	
Cadmium	ND	0.420	17		**	*	,	**	
Chromium	44.7	0.420		н	n	*	Ħ	**	
Copper	115	0.420	**		*	#	Ħ	11	
Mercury	ND	0.200	**	"	1J08024	10/08/01	10/09/01	EPA 7471A	
Nickel	49.3	0.420	*	**	1304056	10/08/01	10/10/01	EPA 6020	
Lead	2.21	0.420	**	11	**	•	11	Ħ	
Antimony	ND \	0.420	n	*	,	*	n	77	
Selenium	0.479	0.420	n		Ħ		"	,,	
Thallium	ND	0.420	n		11	Ħ		n	
Zinc	64.5	4.20	**	**	"	Ħ	"	11	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. Environmental Laboratory Network

Page 2 of 18

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Sulte F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA 1910 Fairview Ave. E. Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BRQ-SP-COMP3 (B1J0132-03) Soil	Sampled: 10/03	/01 12:50	Received: 1	0/04/01 07	7:30				
Silver	ND	0.382	mg/kg dry	1	1J04056	10/08/01	10/10/01	EPA 6020	
Arsenic	5.20	0.382	H	n	,,	51	#	"	
Barium	25.2	3.82	"	*	*	h	*	*	
Beryllium	ND	0.382	Ħ	и	r	**	**	n	
Cadmium	ND	0.382	"	**	*	**	**	Ħ	
Chromium	32.7	0.382	"	" .	n	**	"	W 1.	
Copper	107	0.382		**	**	H	**	n	
Mercury	ND	0.200	"	**	1J08024	10/08/01	10/09/01	EPA 7471A	
Nickel	70.5	0.382		*	1 J 04056	10/08/01	10/10/01	EPA 6020	
Lead	2.82	0.382	**	"	*	11	**	н	
Antimony	ND J	0.382	"	,,	"	•	n	**	
Selenium	0.487	0.382	**	**		•	**	n	
Thallium	0.610	0.382	Ħ	"		11	n	н	
Zinc	66.9	3.82	n	n	**	Iŧ	**	"	
BRQ-SP-COMP4 (B1J0132-04) Soil	Sampled: 10/03	/01 13:00	Received:	10/04/01 0	7:30				
Silver	ND	0.500	mg/kg dry	1	1J04056	10/08/01	10/10/01	EPA 6020	
Arsenic	0.866	0.500	,,	H	*	**	**	Ħ	
Barium	27.8	5.00	n	**		**	"	**	
Beryllium	ND	0.500	**	**	"	**	**	н	
Cadmium	ND	0.500	*	"		**	n	*	
Chromium	42.0	0.500	**	U		"	Ħ		
Copper	131	0.500	11	n	n	"	"	**	
Mercury	ND	0.200	H	11	1J08024	10/08/01	10/09/01	EPA 7471A	
Nickel	42.5	0.500	11	**	1J04056	10/08/01	10/10/01	EPA 6020	
Lead	1.84	0.500	**	"	10		**	n	
Antimony	NDJ	0.500	*	**	"	n		n	
Selenium	0.555	0.500	*	19	**	,	**	•	
Thallium	ND	0.500	"	11	"	n	n	n	
Zinc	67.3	5.00	н	"	"		**	11	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. Environmental Laboratory Network

Page 3 of 18

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 Porti and

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA

1910 Fairview Ave. E. Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

Silver ND 0.500 mg/kg dry 1 1004/01 07:30 mg/kg dry 1 1004/05 1008/01 1011/01 EPA 6020 Arsenic 0.839 0.500 "					TIONI L	———				
Silver ND 0.500 mg/kg dry 1 104056 1008/01 10110/01 EPA 6020 Arsenic 0.839 0.500 " " " " " " " " " " " " " " " Barium 29.1 5.00 " " " " " " " " " " " " " " " " " "	Analyte			Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Arsenic 0.839 0.500 """"""""""""""""""""""""""""""""""""	BRQ-SP-COMP5 (B1J0132-05) Soil	Sampled: 10/03/	01 13:05	Received: 1	0/04/01 07	7:30				
Beryllium 29.1 5.00 " " " " " " " " " " " " " " " " " "	Silver	ND	0.500	mg/kg dry	1	1J04056	10/08/01	10/10/01	EPA 6020	
Beryllium	Arsenic	0.839	0.500	n	n	n	**	n	н	
Cadmium ND 0.500 " <	Barium	29.1	5.00	•	**	*	*			
Chromium 48.8 0.500 "	Beryllium	ND	0.500	**	11	*	**	H	"	
Copper 131 0.500 """1308024 10/08/01 10/09/01 EPA 7471A Mercury ND 0.200 ""1308024 10/08/01 10/09/01 EPA 7471A Nickel 45.5 0.500 ""1304056 10/08/01 10/10/01 EPA 6020 Lead 2.60 0.500 """"""""""""""""""""""""""""""""""""	Cadmium	ND	0.500	**	"		*		н	
Copper	Chromium	48.8	0.500		11	91	*		n	
Mercury ND 0.200 " 1J08024 10/08/01 10/09/01 EPA 7471A Nickel 45.5 0.500 " 1J04056 10/08/01 10/10/01 EPA 6020 Lead 2.60 0.500 "	Copper	131	0.500	n	*	**	n	•	11	
Nicket 45.5 0.500 " 1J04056 10/08/01 10/10/01 EPA 6020	Mercury	ND	0.200		n	1J08024	10/08/01	10/09/01	EPA 7471A	
Antimony ND	Nickel	45.5	0.500	**	**	1J04056	10/08/01	10/10/01	EPA 6020	
Selenium	Lead	2.60	0.500	**	n	**	n	**	**	
Thallium ND 0.500 """"""""""""""""""""""""""""""""""""	Antimony	ND	0.500	,#	**		Ħ	*	11	
Tailium	Selenium	0.554	0.500	n	,,	u	n	Ħ	**	
BRQ-SP-COMP6 (B1J0132-06) Soil Sampled: 10/03/01 13:15 Received: 10/04/01 07:30 Silver ND 0.500 mg/kg dry 1 1J04056 10/08/01 10/10/01 EPA 6020 Arsenic 0.927 0.500 " " " " " " " " " " " " " " " " " "	Thallium	ND	0.500		*	**			"	
Silver ND 0.500 mg/kg dry 1 1J04056 10/08/01 10/10/01 EPA 6020 Arsenic 0.927 0.500 " " " " " " " " " " " " " " " " " "	Zinc	58.1	5.00	n	**	**	#	11	"	
Arsenic 0.927 0.500 "	BRQ-SP-COMP6 (B1J0132-06) Soil	Sampled: 10/03	/01 13:15	Received: 1	0/04/01 0	7:30				
Arsenic 0.927 0.500 "	Silver	ND	0.500	mg/kg dry	1	1J04056	10/08/01	10/10/01	EPA 6020	
Barium 27.2 5.00 " <	Arsenic	0.927	0.500				•	11	**	
Beryllium ND 0.500 "	Barium	27.2	5.00	**	**	,	71			
Cadmium ND 0.500 " <t< td=""><td>Beryllium</td><td>ND</td><td>0.500</td><td>**</td><td></td><td></td><td>**</td><td>n</td><td>•</td><td></td></t<>	Beryllium	ND	0.500	**			**	n	•	
Chromium 46.3 0.500 "	Cadmium	ND	0.500	**	**		*	n	"	
Copper 111 0.500 Mercury ND 0.200 " 1J08024 10/08/01 10/09/01 EPA 7471A Nickel 44.4 0.500 " 1J04056 10/08/01 10/10/01 EPA 6020 Lead 1.85 0.500 " <td>Chromium</td> <td>46.3</td> <td>0.500</td> <td>•</td> <td></td> <td>*</td> <td>e</td> <td></td> <td></td> <td></td>	Chromium	46.3	0.500	•		*	e			
Mercury ND 0.200 " " 1J08024 10/08/01 10/09/01 EPA 7471A Nickel 44.4 0.500 " 1J04056 10/08/01 10/10/01 EPA 6020 Lead 1.85 0.500 " " " " " " " " Antimony ND 5 0.500 " " " " " " " " " " Selenium 0.639 0.500 " " " " " " " " " " " " Thallium ND 0.500 " " " " " " " " " " " " " " " "	Copper	111	0.500	**	*		•	•	**	
Nickel 44.4 0.500 " 1J04056 10/08/01 10/10/01 EPA 6020 Lead 1.85 0.500 " " " " " " " " Antimony ND 5 0.500 " " " " " " " " " Selenium 0.639 0.500 " " " " " " " " " " " Thallium ND 0.500 " " " " " " " " " " " " "		ND	0.200			1J08024	10/08/01	10/09/01	EPA 7471A	
Lead 1.85 0.500 " " " " " " " " " " " " " " " " " " "	Nickel	44.4	0.500	**	**	1J04056	10/08/01	10/10/01	EPA 6020	
Antimony ND \$\overline{\sigma} 0.500 \qquad \qquad \qquad \qquad \qquad \qquad \qqqq \qqqqq \qqqqq \qqqqqqqqqqqqqqqq	Lead	1.85	0.500	n	•		**	H	n	
Selenium 0.639 0.500 " " " " " " " " " " " " " " " " " " "	Antimony	Z dn	0.500	n	•		*	**	**	
Thallium ND 0.500 " " " " " " "	Selenium			*		n	*		"	
	Thallium		0.500	,,			.m		Ħ	
	Zinc	57.6		"	,			**	**	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 4 of 18

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Sulte F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA

Project: Third Runway/Pit Samples

1910 Fairview Ave. E. Seattle WA, 98102

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

A	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Analyte	Vesuit	Lillit	Onio	Dilution	Daten	1 repared		11104104	
MVP-COMP1 (B1J0132-07) Soil	Sampled: 10/03/01 1	5:10 Re	ceived: 10/0	4/01 07:30					
Silver .	ND	0.500	mg/kg dry	1	1J04056	10/08/01	10/10/01	EPA 6020	
Arsenic	1.83	0.500	"	**	•	"		"	
Barium	92.7	5.00	"	**	*	•		n	
Beryllium	ND	0.500	Ħ	**	11	*	"	*	
Cadmium	ND	0.500	11	11	,	"	"	11	
Chromium	20.9	0.500	**	*	*	•	"	н	
Copper	24.5	0.500	n	Ħ	11	**	11	*	
Mercury	ND	0.200	**	n	1J08024	10/08/01	10/09/01	EPA 7471A	
Nickel	12.0	0.500	•	"	1J04056	10/08/01	10/10/01	EPA 6020	
Lead	4.36	0.500	"	н	"	,,	11	Ħ	
Antimony	ND T	0.500	Ħ	**	**	н	Ħ	H	
Selenium	ND	0.500	R	n	**	"		**	
Thallium	ND	0.500	n			n	**	n	
Zinc	36.8	5.00	n	*	"	**	**	"	
MVP-COMP2 (B1J0132-08) Soil	Sampled: 10/03/01 1	5:25 Re	eceived: 10/0	04/01 07:30)				
Silver	ND	0.400	mg/kg dry	1	1J04056	10/08/01	10/10/01	EPA 6020	
Arsenic	1.73	0.400	"	**	,,	"	11	"	
Barium	128	4.00		n	**	11	"	· ·	
Beryllium	0.583	0.400	"	n	**		"	*	
Cadmium	ND	0.400	11	H			**	"	
Chromium	21.7	0.400	H	**	**	10	n	#1	
Copper	25.2	0.400	,,		"	n	*	**	
Mercury	ND	0.200	**		1J08024	10/08/01	10/09/01	EPA 7471A	
Nickel	12.8	0.400		"	1J04056	10/08/01	10/10/01	EPA 6020	
Lead	5.52	0.400	n	,,	"	**	"	n	
Antimony	NDZ	0.400	11		**	**	*	,,	
Selenium	ND	0.400	. 11	**	II .	"	**		
Thallium	ND	0.400	н	**	"	**	**	*	
Zinc	38.8	4.00	n	н	n	Ħ	•	Ħ	

NPM 12/11/01

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. Environmental Laboratory Network

Page 5 of 18

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383,9310 fax 541.382.7588

Hart Crowser, Inc. - WA

Project: Third Runway/Pit Samples

1910 Fairview Ave. E. Seattle WA, 98102

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MVP-COMP3 (B1J0132-09) Soil	Sampled: 10/03/01	15:35 Re	ceived: 10/0	4/01 07:30	<u> </u>				
Silver	ND	0.455	mg/kg dry	1	1J04056	10/08/01	10/10/01	EPA 6020	
Arsenic	1.40	0.455	*	Ħ	**	#	11	,,	
Barium	163	4.55	"	n	"	**	n	m	
Beryllium	1.01	0.455	H	**	**	**	Ħ	"	
Cadmium	ND	0.455	"	n	*	"	**		
Chromium	30.0	0.455	11	11	11	19 .	"	**	
Copper	20.1	0.455		n	n	**	n	"	
Mercury	. ND	0.200	11	**	1J08024	10/08/01	10/09/01	EPA 7471A	
Nickel	17.7	0.455	**	*	1J04056	10/08/01	10/10/01	EPA 6020	
Lead	6.58	0.455	11	,	**	"	n	n	
Antimony	NDJ	0.455	"	**	*	"	11	H	
Selenium	ND	0.455	H	"		H	n	"	
Thallium	ND	0.455	**	H	"	•	**	"	
Zinc	27.6	4.55	**	**	**	,,	**	**	
MVP-COMP4 (B1J0132-10) Soil	Sampled: 10/03/01	16:05 R	eceived: 10/0	04/01 07:30	0				
Silver	ND	0.500	mg/kg dry	1	1J04056	10/08/01	10/10/01	EPA 6020	
Arsenic	1.82	0.500	*	*	"	"	n	"	
Barium	89.5	5.00	*	**	**	**	**	**	
Beryllium	ND	0.500	11	**	"	11	17	#	
Cadmium	ND	0.500	11		**		11	**	
Chromium	21.5	0.500	,	**	**	17	n	н	
Copper	25.8	0.500	#	Ħ	"		71	*	
Mercury	ND	0.200	**	H	1J08024	10/08/01	10/09/01	EPA 7471A	
Nickel	13.0	0.500	H	r	1J04056	10/08/01	10/10/01	EPA 6020	
Lead	4.46	0.500	**		"	•	•	**	
Antimony	Z DN	0.500	*	,,			*	**	
Selenium	ND	0.500		н	"	"	**	•	
Thallium	ND	0.500	n	11	19	**	"	**	
Zinc	36.2	5.00	**	"	n	H	#	*	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. Environmental Laboratory Network

Page 6 of 18

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA 1910 Fairview Ave. E.

Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

	R	eporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MVP-COMP5 (B1J0132-11) Soil	Sampled: 10/03/01 1	6:15 Re	ceived: 10/0	4/01 07:30					
Silver	ND	0.431	mg/kg dry	l	1J04056	10/08/01	10/10/01	EPA 6020	
Arsenic	1.80	0.431	**	**		10	Ħ	"	
Barium	92.4	4.31	**	**		. и	11	n	
Beryllium	0.602	0.431	**	"		**	n	11	
Cadmium	ND	0.431	,	**	"	H	17	**	
Chromium	19.3	0.431		**	**	"	•	"	
Copper	27.3	0.431	"	"	,,		"	n	
Mercury	ND	0.200	11	"	1J08024	10/08/01	10/09/01	EPA 7471A	
Nickel	11.6	0.431	11	"	1J04056	10/08/01	10/10/01	EPA 6020	
Lead	5.10	0.431	"	10	,,		"	R	
Antimony	NDJ	0.431	11				11	P	
Selenium	ND	0.431	"	"	"	,,	۳	11	
Thallium	ND	0.431	11		. "	**	"	*	
Zinc	38.3	4.31	Ħ	"	*	"	11	**	
MVP-COMP6 (B1J0132-12) Soil	Sampled: 10/03/01 1	6:25 Re	eceived: 10/0	4/01 07:30)				
Silver	ND	0.340	mg/kg dry	1	1J04056	10/08/01	10/10/01	EPA 6020	
Arsenic	1.87	0.340		**	"		"	TI .	
Barium	96.8	3.40	rr .	Ħ	**	**	*	n	
Beryllium	0.572	0.340	"	11	11		n	n	
Cadmium	ND	0.340	n	**	**	н	*	H	
Chromium		0.740		,,		**	71	H	
	22.7	0.340							
Copper	22.7 24.7	0.340	,,	**	**		n	91	
Copper Mercury					" 1J08024	10/08/01	" 10/09/01	" EPA 7471A	
	24.7	0.340	,,	**					
Mercury	24.7 ND	0.340 0.200	n .	11	1 J 08024	10/08/01	10/09/01	EPA 7471A	
Mercury Nickel	24.7 ND 12.2 4.98	0.340 0.200 0.340	n n	11 11	1J08024 1J04056	10/08/01 10/08/01	10/09/01 10/10/01	EPA 7471A EPA 6020	
Mercury Nickel Lead	24.7 ND 12.2	0.340 0.200 0.340 0.340	11 11 12	71 11 11	1J08024 1J04056	10/08/01	10/09/01 10/10/01	EPA 7471A EPA 6020	
Mercury Nickel Lead Antimony	24.7 ND 12.2 4.98 ND \(\subseteq	0.340 0.200 0.340 0.340 0.340	n n n	11 11 11	1J08024 1J04056 "	10/08/01	10/09/01 10/10/01 "	EPA 7471A EPA 6020	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 7 of 18

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 Portland

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA 1910 Fairview Ave. E.

Project: Third Runway/Pit Samples

Seattle WA, 98102

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

SPLP Metals by EPA 1312/6000/7000 Series Methods North Creek Analytical - Bothell

		Reporting							i
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BRQ-SP-COMP1 (B1J0132-01) Soil	Sampled: 10/03	3/01 12:35	Received:	10/04/01 07	7:30				
Copper	ND	0.0500	mg/l	50	1J22032	10/22/01	10/23/01	EPA 6020	
BRQ-SP-COMP2 (B1J0132-02) Soil	Sampled: 10/03	3/01 12:40	Received:	10/04/01 07	7:30				··
Chromium	ND	0.0500	mg/l	50	1J22032	10/22/01	10/23/01	EPA 6020	
Copper	ND	0.0500	**	. "			**	**	
Nickel	ND	0.0500	Ħ	"	10	11	11	#	
BRQ-SP-COMP3 (B1J0132-03) Soil	Sampled: 10/03	3/01 12:50	Received:	10/04/01 0	7:30				
Copper	ND	0.0500	mg/l	50	1J22032	10/22/01	10/23/01	EPA 6020	
Nickel	ND	0.0500	"	n	**	n	"	in	
BRQ-SP-COMP4 (B1J0132-04) Soil	Sampled: 10/0	3/01 13:00	Received:	10/04/01 0	7:30				
Copper	ND	0.0500	mg/l	50	1J22032	10/22/01	10/23/01	EPA 6020	
BRQ-SP-COMP5 (B1J0132-05) Soil	Sampled: 10/0	3/01 13:05	Received:	10/04/01 0	7:30				
Copper	ND	0.0500	mg/l	50	1J22032	10/22/01	10/23/01	EPA 6020	
BRQ-SP-COMP6 (B1J0132-06) Soil	Sampled: 10/0	3/01 13:15	Received:	10/04/01 0	7:30				
Chromium	ND	0.0500	mg/l	50	1J22032	10/22/01	10/23/01	EPA 6020	
Copper	ND	0.0500	'n	**	и	"	"	11	
MVP-COMP3 (B1J0132-09) Soil S	ampled: 10/03/0	1 15:35 R	eceived: 10	/04/01 07:3	0				
Beryllium	ND	0.0500	mg/l	50	1J22032	10/22/01	10/23/01	EPA 6010B	
MVP-COMP5 (B1J0132-11) Soil S	ampled: 10/03/0	1 16:15 R	eceived: 10	/04/01 07:3	0				
Beryllium	ND	0.0500	mg/l	50	1J30011	10/30/01	11/01/01	EPA 6010B	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 8 of 18

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA 1910 Fairview Ave. E. Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

	Re	eporting							ŀ
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BRQ-SP-COMP1 (B1J0132-01) Soil	Sampled: 10/03/0	1 12:35	Received:	10/04/01 07	7:30				
Dry Weight	91.0	1.00	%	1	1J09004	10/09/01	10/10/01	BSOPSPL003R07	
BRQ-SP-COMP2 (B1J0132-02) Soil	Sampled: 10/03/0	1 12:40	Received:	10/04/01 07	7:30				
Dry Weight	89.4	1.00	%	1	1J09004	10/09/01	10/10/01	BSOPSPL003R07	
BRQ-SP-COMP3 (B1J0132-03) Soil	Sampled: 10/03/0	1 12:50	Received:	10/04/01 07	7:30				
Dry Weight	91.1	1.00	%	1	1J09004	10/09/01	10/10/01	BSOPSPL003R07	
BRQ-SP-COMP4 (B1J0132-04) Soil	Sampled: 10/03/0	1 13:00	Received:	10/04/01 07	7:30				
Dry Weight	90.1	1.00	%	1	1J09004	10/09/01	10/10/01	BSOPSPL003R07	
BRQ-SP-COMP5 (B1J0132-05) Soil	Sampled: 10/03/0	1 13:05	Received:	10/04/01 07	7:30				
Dry Weight	92.3	1.00	%	1	1J09004	10/09/01	10/10/01	BSOPSPL003R07	
BRQ-SP-COMP6 (B1J0132-06) Soil	Sampled: 10/03/0	1 13:15	Received:	10/04/01 07	7:30				
Dry Weight	90.5	1.00	%	1	1J09004	10/09/01	10/10/01	BSOPSPL003R07	
MVP-COMP1 (B1J0132-07) Soil Sa	ampled: 10/03/01 1	5:10 R	eceived: 10.	/04/01 07:30)				
Dry Weight	85.6	1.00	%	1	1J09004	10/09/01	10/10/01	BSOPSPL003R07	
MVP-COMP2 (B1J0132-08) Soil S	ampled: 10/03/01 1	5:25 R	eceived: 10	/04/01 07:30)				
Dry Weight	81.4	1.00	%	1	1J09004	10/09/01	10/10/01	BSOPSPL003R07	
MVP-COMP3 (B1J0132-09) Soil S	ampled: 10/03/01 1	5:35 R	eceived: 10	/04/01 07:30)				
Dry Weight	76.3	1.00	%	1	1J09004	10/09/01	10/10/01	BSOPSPL003R07	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. Environmental Laboratory Network

Page 9 of 18

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA 1910 Fairview Ave. E. Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19 Project Manager: Rick Moore Amended Report

Issued: 11/12/01 21:16

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

	I	Reporting										
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
MVP-COMP4 (B1J0132-10) Soil Sampled: 10/03/01 16:05 Received: 10/04/01 07:30												
Dry Weight	85.5	1.00	%	l	1J09004	10/09/01	10/10/01	BSOPSPL003R07				
MVP-COMP5 (B1J0132-11) Soil	Sampled: 10/03/01	6:15 Re	ceived: 10	<u>/04/01 07:30</u>	!							
Dry Weight	82.2	1.00	%	1	1J09004	10/09/01	10/10/01	BSOPSPL003R07				
MVP-COMP6 (B1J0132-12) Soil Sampled: 10/03/01 16:25 Received: 10/04/01 07:30												
Dry Weight	79.2	1.00	%	I	1J09004	10/09/01	10/10/01	BSOPSPL003R07				

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. Environmental Laboratory Network Page 10 of 18

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 Portland

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA

Project: Third Runway/Pit Samples

1910 Fairview Ave. E. Seattle WA, 98102

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1J04056:	Prepared 10/04/01	Using EP	A 3050B								
Blank (1J04056-BI	-K1)										
Antimony		ND	0.500	mg/kg							
Arsenic		ND	0.500	*							
Barium		ND	5.00	"							
Beryllium		ND	0.500	"							
Cadmium		ND	0.500	•							
Chromium		ND	0.500	11							
Copper		ND	0.500	**							
Lead		ND	0.500	**							
Nickel		ND	0.500	*							
Selenium		ND	0.500	**							
Silver		ND	0.500	**							
Thallium		ND	0.500	"			•				
Zinc		ND	5.00	P							
LCS (1J04056-BS1)										
Antimony		44.4	0.500	mg/kg	40.0		111	80-120			
Arsenic		41.8	0.500	"	40.0		104	70-130			
Barium		41.8	5.00	"	40.0		104	80-120			
Beryllium		43.4	0.500	*	40.0		108	80-120			
Cadmium		41.9	0.500	•	40.0		105	70-130			
Chromium		44.0	0.500	11	40.0		110	80-120			
Copper		41.7	0.500	n	40.0		104	80-120			
Lead		41.7	0.500	**	40.0		104	80-120			
Nickel		41.0	0.500	"	40.0		102	80-120			
Selenium		40.1	0.500	**	40.0		100	70-130			
Silver		41.7	0.500	H	40.0		104	40-130			
Thallium		41.7	0.500	**	40.0		104	80-120			
Zinc		41.5	5.00	\$1	40.0		104	70-130			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 11 of 18

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 Portland 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383,9310 fax 541.382.7588

Hart Crowser, Inc. - WA 1910 Fairview Ave. E.

Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

,			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1J04056:	Prepared 10/04/01	Using El	PA 3050B								
LCS Dup (1J04056	6-BSD1)										
Antimony		43.1	0.500	mg/kg	38.5		112	80-120	2.97	20	
Arsenic		40.4	0.500	#	38.5		105	70-130	3.41	20	
Barium		41.1	5.00	*	38.5		107	80-120	1.69	20	
Beryllium		43.3	0.500	*	38.5		112	80-120	0.231	20	
Cadmium		40.5	0.500	,,	38.5		105	70-130	3.40	20	
Chromium		42.7	0.500	n	38.5		111	80-120	3.00	20	
Соррег		40.3	0.500		38.5		105	80-120	3.41	20	
Lead		40.2	0.500		38.5		104	80-120	3.66	20	
Nickel		39.7	0.500	,,	38.5		103	80-120	3.22	20	
Selenium		39.4	0.500	11	38.5		102	70-130	1.76	20	
Silver		40.9	0.500	**	38.5		106	40-130	1.94	20	
Thallium		40.3	0.500		38.5		105	80-120	3.41	20	
Zinc		40.3	5.00	"	38.5		105	70-130	2.93	20	•
Matrix Spike (1J0	4056-MS1)					Source: 1	B1J0132-0	01			
Antimony		1.65	0.500	mg/kg dry	41.5	ND	3.98	70-130			Q-1
Arsenic		40.7	0.500	P .	41.5	1.47	94.5	70-130			
Barium		72.0	5.00	**	41.5	28.2	106	70-130			
Beryllium		42.4	0.500	**	41.5	ND	101	70-130			
Cadmium		41.0	0.500	"	41.5	ND	98.4	70-130			
Chromium		81.2	0.500	"	41.5	36.7	107	70-130			
Copper		140	0.500	n	41.5	97.5	102	70-130			
Lead		43.4	0.500	•	41.5	2.35	98.9	70-130			
Nickel		80.5	0.500	n	41.5	41.8	93.3	70-130			
Selenium		37.8	0.500	11	41.5	0.580	89.7	70-130			
Silver		37.7	0.500	11	41.5	ND	90.5	40-130			
Thallium		41.4	0.500		41.5	ND	99.5	70-130			
Zinc		98.6	5.00		41.5	58.8	95.9	70-130			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 12 of 18

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA

Project: Third Runway/Pit Samples

1910 Fairview Ave. E. Seattle WA, 98102

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1J04056:	Prepared 10/04/01	Using EP	A 3050B			_					
Matrix Spike Dup	(1J04056-MSD1)					Source: I	31J0132-0)1 .			
Antimony		0.876	0.500	mg/kg dry	40.3	ND	2.17	70-130	61.3	20	Q-13
Arsenic		39.5	0.500	*	40.3	1.47	94.4	70-130	2.99	20	
Barium		75.3	5.00	**	40.3	28.2	117	70-130	4.48	20	
Beryllium		41.6	0.500	н	40.3	ND	102	70-130	1.90	20	
Cadmium		39.9	0.500	n	40.3	ND	98.6	70-130	2.72	20	
Chromium		82.9	0.500	**	40.3	36.7	115	70-130	2.07	20	
Copper		141	0.500	**	40.3	97.5	108	70-130	0.712	20	
Lead		42.1	0.500	**	40.3	2.35	98.6	70-130	3.04	20	
Nickel		81.6	0.500	**	40.3	41.8	98.8	70-130	1.36	20	
Selenium		36.5	0.500	**	40.3	0.580	89.1	70-130	3.50	20	
Silver		37.1	0.500	n	40.3	ND	91.7	40-130	1.60	50	
Thallium		40.0	0.500	,	40.3	ND	99.0	70-130	3.44	20	
Zinc		97.9	5.00	n	40.3	58.8	97.0	70-130	0.712	20	
Post Spike (1J040	56-PS1)					Source:	B1J0132-	01			
Antimony		241	2.16	mg/kg dry	237	ND	102	70-130			
Batch 1J08024:	Prepared 10/08/01	Using EP	A 7471A								
Blank (1J08024-B	LK1)										
Mercury		ND	0.200	mg/kg							
LCS (1J08024-BS	1)										
Mercury		0.548	0.200	mg/kg	0.497		110	80-120			
LCS Dup (1J0802	4-BSD1)										
Mercury		0.518	0.200	mg/kg	0.500		104	80-120	5.63	20	
•											

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

Environmental Laboratory Network Page 13 of 18 North Creek Analytical, Inc.

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 Portland 503.906.9200 fax 503.906.9210

%REC

70-130

0.459

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383,9310 fax 541.382.7588

Hart Crowser, Inc. - WA

Project: Third Runway/Pit Samples

0.527

ND

1910 Fairview Ave. E. Seattle WA, 98102

Mercury

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

RPD

30

Total Metals by EPA 6000/7000 Series Methods - Quality Control

North Creek Analytical - Bothell

Reporting

0.200

0.655

Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1J08024:	Prepared 10/08/01	Using EPA	7471A								
Matrix Spike (1J0	8024-MS1)					Source: I	31 J0082- 0	1			
Mercury		0.652	0.200	mg/kg dry	0.525	ND	115	70-130			
Matrix Spike Dun	(1J08024-MSD1)					Source: I	31J0082-0	1			

mg/kg dry

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 14 of 18

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA Project: Third Runway/Pit Samples

1910 Fairview Ave. E. Seattle WA, 98102

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

SPLP Metals by EPA 1312/6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1J22032:	Prepared 10/22/01	Using EP	A 3020A								
Blank (1 J22032-B L	K1)										
Beryllium		ND	0.0500	mg/l							
Chromium		ND	0.0500	**							
Copper		ND	0.0500	**							
Nickel		ND	0.0500	"							
LCS (1J22032-BS1)	•										
Beryllium		3.74	0.0500	mg/l	4.00		93.5	80-120			
Chromium		3.90	0.0500	n	4.00		97.5	80-120			
Copper		3.78	0.0500	*	4.00		94.5	80-120			
Nickel		3.64	0.0500	**	4.00		91.0	80-120			
LCS Dup (1J22032-	·BSD1)										
Beryllium		3.74	0.0500	mg/l	4.00		93.5	80-120	0.00	20	
Chromium		4.01	0.0500	n	4.00		100	80-120	2.78	20	
Copper		3.70	0.0500	n	4.00		92.5	80-120	2.14	20	
Nickel		3.58	0.0500	**	4.00		89.5	80-120	1.66	20	
Matrix Spike (1J22	032-MS1)					Source: 1	B1J0132-0)1			
Beryllium		3.74	0.0500	mg/l	4.00	ND	93.3	75-125			
Chromium		3.98	0.0500	P .	4.00	ND	99.2	64-128			
Copper		3.77	0.0500		4.00	ND	93.8	72-125			
Nickel		3.60	0.0500	11	4.00	ND	89.7	72-125			
Matrix Spike Dup (1J22032-MSD1)					Source: 1	B1J0132-	01			
Beryllium		3.78	0.0500	mg/l	4.00	ND	94.3	75-125	1.06	20	
Chromium		4.06	0.0500	•	4.00	ND	101	64-128	1.99	20	
Copper		3.83	0.0500	•	4.00	ND	95.3	72-125	1.58	20	
Nickel		3.65	0.0500	,,	4.00	ND	90.9	72-125	1.38	20	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 15 of 18

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA

1910 Fairview Ave. E. Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

SPLP Metals by EPA 1312/6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1J30011:	Prepared 10/30/01	Using EP	A 3020A				<u>.</u>				
Blank (1J30011-BL	K1)							· · · · · · · · · · · · · · · · · · ·			
Beryllium		ND	0.0500	mg/l							
LCS (1J30011-BS1)										
Beryllium		3.89	0.0500	mg/l	4.00		97.2	80-120			
LCS Dup (1J30011	-BSD1)										
Beryllium		3.78	0.0500	mg/l	4.00		94.5	80-120	2.87	20	
Matrix Spike (1J30	011-MS1)					Source: 1	B1J0132-1	11			
Beryllium	- 1	3.95	0.0500	mg/l	4.00	ND	98.6	75-125			
Matrix Spike Dup	(1J30011-MSD1)					Source: 1	B1J0132-	11			
Beryllium	3	3.99	0.0500	mg/l	4.00	ND	99.6	75-125	1.01	20	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

Environmental Laboratory Network Page 16 of 18 North Creek Analytical, Inc.

11720 North Creek Plwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383,9310 fax 541.382.7588

Hart Crowser, Inc. - WA 1910 Fairview Ave. E. Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control

North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1J09004:	Prepared 10/09/01	Using Dry	Weight								
Blank (1J09004-B)	LK1)										
Dry Weight		100	1.00	%							

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Environmental Laboratory Network Page 17 of 18

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 **Portland**

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA

Project: Third Runway/Pit Samples

1910 Fairview Ave. E. Seattle WA, 98102

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

Notes and Definitions

SPLP Extraction Blank A-01

Multiple analyses indicate the percent recovery is outside the control limits due to a matrix effect. Q-13

Analyte DETECTED DET

Analyte NOT DETECTED at or above the reporting limit ND

NR

Sample results reported on a dry weight basis dry

Relative Percent Difference RPD

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc.
Environmental Laboratory Network Page 18 of 18

Phone: 206-324-9530 FAX: 206-328-5581 3 6 Z 3 63 S <u>ر</u> 70 Я 9 = ō TOTAL NUMBER OF CONTAINERS COMPOSITING INSTRUCTIONS OBSERVATIONS/COMMENTS/ □ 1 WEEK OTHER TURNAROUND TIME: ☐ 24 HOURS CI 48 HOURS □ 72 HOURS 2 NO. OF CONTAINERS 5 **HARTCROWSER** 5.80 STORAGE LOCATION: Rust TOST, AT STORED ANDER Pour of Scorrey 3 · Bart CAREK ASKLER REQUESTED ANALYSIS SPECIAL SHIPMENT HANDLING OR for Other Contract Requirements Gold to Sample Custodian STORAGE REQUIREMENTS: See Lab Work Order No. Curac AT COOLER NO.: Ber Lab to Return White Copy to Hart Crowser MATRIX 2.30 DATE TIME DATE ろって TIME 1235 1525 TIME 1250 130 3 162.5 242 1300 1603 1315. 150 53 1535 PROJECT NAME 3 2 RUDUNTY / PLT SAMPLEDE RECEIVED BY RECEIVED BY DATE 19761 PRINT NAME Dopuso SIGNATURE HART CROWSER CONTACT NELL HOWFON COMPANY COMPANY Pink to Project Manager LAB NUMBER DESCRIPTION 862. CLASS 0730 10/4/6/ DATE DATE TIME William Bra-st-cong HW-Con 2 424- comp 3 Must come 5 T 233 - 274 100-51-Cam of 120.54. (cond-5 9 Amos - ANH 24-51-Comy 2 Caron-X-10) A-00- 15 - 1016 (White and Yellow Copies to Lab SAMPLE ID 1 2mon- 1/2 PI-8754 BOL Dance OMPANY RELINQUISHED BY RELANQUISHED BY No. Samples Shipped to: SAMPLED BY: PRINT NAME SIGNATURE COMPANY LAB NO.

1910 Fairview Avenue East Seattle, Washington 98102-3699

Hart Crowser, Inc.

りこうこう

Sample Custody Record

SUPPLEMENT ENVIRONMENTAL REVIEW SHEET Airport Project Fill Material

CONTRACTOR/SUPPLIER NAME: CTI

SITE: CIT FIII Sources
SITE LOCATION: Various (see below)
COMMENTS:
Attached is supplemental information for CTI fill sources received since the September 21, 2001 issuance of the 401 Certification. These fill sources include:
Black River Quarry (Renton)Marine View Pit (Tacoma)
Lincoln and Summit Stockpile (Renton)
Lakeland Pit (Sumner)
• CTI Pit No. 3 (Sumner)
• Stoneway/Kent Kangley Pit (Ravensdale)
This information includes test results for additional soil testing conducted in accordance with Condition E of the 401 Certification. This information is intended to supplement reports previously submitted to Ecology under the 1999 Airfield Project Soil Fill Acceptance Criteria.
REVIEWER: E Clark DATE: 12/12/01

Third Runway Project
Off-Site Borrow Source
Baseline Chemical Characterization
Lincoln and Summit Stockpile
(Black River Quarry)
Renton, Washington

Prepared for Port of Seattle

December 12, 2001 4978-06

Delivering smarter solutions

Anchorage

Third Runway Project
Off-Site Borrow Source
Baseline Chemical Characterization
Lincoln and Summit Stockpile
(Black River Quarry)
Renton, Washington

Boston

Chicago

Denver

Prepared for Port of Seattle

Fairbanks

December 12, 2001 4978-06

Jersey City

Prepared by

Hart Crowser, Inc.

Neil F. Morton

Project Toxicologist

Richard F. Moore

Senior Associate

Environmental Specialist

Hill F. Mone

Long Beach

Juneau

Portland

Seattle

<u>Page</u>
2
3
3
4
5

TABLES

- 1 Lincoln and Summit Stockpile Sampling, Total Metals Analytical Results
- 2 Lincoln and Summit Stockpile Sampling, Soil Sample Descriptions

FIGURE

1 Site Plan Schematic and Sample Location Map

APPENDIX A LABORATORY ANALYTICAL DOCUMENTATION NORTH CREEK ANALYTICAL, INC.

THIRD RUNWAY PROJECT OFF-SITE BORROW SOURCE BASELINE CHEMICAL CHARACTERIZATION LINCOLN AND SUMMIT STOCKPILE, RENTON, WASHINGTON

This data package presents information compiled by Hart Crowser following the collection and chemical analysis of soil samples at the Lincoln and Summit Stockpile for the Third Runway Project. The Lincoln and Summit Stockpile is located at the Black River Quarry and is a source of soil borrow fill material for the Third Runway embankment that is currently being constructed at the Sea-Tac International Airport. City Transfer Incorporated (CTI) imported the stockpiled soils from the Lincoln Square and Summit excavation areas located in Bellevue, Washington. CTI operates the Black River Quarry. Soils at the Lincoln and Summit Stockpile consist of native sand and gravel derived from glacial and related alluvial deposits. Work for the project was completed pursuant to our contract with HNTB dated May 1, 1998, as amended, and the sampling and analysis strategy described in the Hart Crowser proposal dated October 5, 2001. Hart Crowser collected the samples on October 4, 2001, at the stockpile locations identified on Figure 1. All site sampling work was conducted following approval and site access authorization from CTI and the Black River Quarry personnel.

The objective of the pit sampling and analysis was to perform a baseline chemical characterization of *in situ* soils from active portions of the Lincoln and Summit Stockpile. The soils were analyzed for total metals (priority pollutant metals plus barium) and total petroleum hydrocarbons. Additionally, Synthetic Precipitation Leaching Procedure (SPLP) analyses were conducted for any metal with a total metals concentration that exceeded fill screening criteria listed in the Port of Seattle's (Port's) Section 401 Water Quality Certification (Order #1996-4-0325, Amended –1) dated September 21, 2001.

Six representative soil samples from the Lincoln and Summit Stockpile were submitted for laboratory analysis at North Creek Analytical, Inc. (NCA; Bothell, Washington).

This data package contains the following:

- CHEMICAL ANALYSIS RESULTS AND CONCLUSIONS;
- SAMPLING METHODOLOGY AND SOILS DESCRIPTION;
- **CHEMICAL DATA QUALITY REVIEW**; and
- LIMITATIONS.

Figure 1 is the Site Plan Schematic showing the stockpile that was sampled and the sample locations. Table 1 presents the total metals chemical analysis results. Table 2 presents soil sample descriptions.

Laboratory analytical documentation from NCA is presented in Appendix A.

CHEMICAL ANALYSIS RESULTS AND CONCLUSIONS

Total metals results for the Lincoln and Summit Stockpile soil samples, presented in Table 1, were compared against the Section 401 fill criteria (Condition E.1.B). As shown in Table 1, all metals were detected at concentrations less than their respective fill criterion. Therefore, no SPLP analyses were necessary.

As discussed below in the **CHEMICAL DATA QUALITY REVIEW** section, Lincoln and Summit antimony sample analysis results from NCA laboratories were initially rejected based on failure of the laboratory quality control samples. Antimony analysis results for samples collected from five other off-site borrow sources (Kent Kangley Pit, CTI Pit No. 3, Lakeland Hills Pit, Black River Quarry, and the Marine View Pit) were also initially rejected, indicating a systematic laboratory condition. Soil samples from the Lakeland Hills Pit (LH Comp 5), the Kent Kangley Pit (TP-2 Comp 1) and CTI Pit No. 3 (CTI Comp 6), were then resubmitted to Columbia Analytical Services, Inc. (CAS) laboratory for reanalysis of antimony. CAS analyzed each sample using the same extraction method (EPA Method 3050B) and similar analytical method (EPA 200.8 versus EPA 6020) that NCA used. In addition, the Kent Kangley sample (TP-2 Comp 1) was extracted using an optional extraction procedure designed to improve to solubility and recovery of antimony (EPA Method 3050B; Section 7.5).

As described in the **CHEMICAL DATA QUALITY REVIEW** section of the Lakeland Hills Pit, CTI Pit No. 3, and Kent Kangley Pit baseline chemical characterization reports, the CAS antimony results were determined to be acceptable based on the results of reanalysis. The analytical results from NCA and CAS are also well below the 401 Certification antimony fill criterion of 16 mg/kg. Because the CAS antimony results are acceptable, and are below the NCA Lincoln and Summit Stockpile antimony reporting limits, the NCA Lincoln and Summit Stockpile antimony results were also determined to be acceptable. Additionally, according to Shacklette and Boerngen's Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States (1984), the mean antimony concentration in the western U.S. is 0.47 mg/kg, and the observed range is less than 1 to 2.6 mg/kg.

Hart Crowser 4978-06 December 12, 2001 Page 2

In conclusion, the results presented in Table 1, along with the discussion in this section, show that the total metal concentrations in the soils from the Lincoln and Summit Stockpile are less than those defined by the 401 fill criteria.

SAMPLING METHODOLOGY AND SOILS DESCRIPTION

The following sections describe the specific exploration and sample collection methods used. This description includes sample handling and transfer, and decontamination procedures.

Sample Collection and Soils Description

Hart Crowser collected six composite samples from the Lincoln and Summit Stockpile on October 4, 2001. Six samples were collected from the stockpile, which was approximately 400 feet long, 50 feet wide, with a stockpile face of approximately 30 feet at the time of sampling (Figure 1).

Stockpile Soil Samples

The soil samples (BRQ-LS-Comp1 through BRQ-LS-Comp6) represent three-point composite samples. The approximate locations of the individual sample aliquots for each composite sample are shown on Figure 1. Each sample aliquot was collected at a minimum of about 1 foot below the surface. The Lincoln and Summit Stockpile soils generally consisted of sandy, gravelly silt, representative of material shipped for embankment fill for the Third Runway Project.

To form each composite sample, material at each sample aliquot location was collected using a stainless steel spoon and mixed together in a stainless steel bowl. Each resulting composite sample was then transferred to pre-cleaned, labeled sample jars for laboratory analyses.

Sample Handling and Transfer

After compositing each sample, each sample jar was wiped clean and capped with a Teflon-lined lid, and then placed in an insulated ice chest with ice. Samples were shipped on October 4, 2001, to NCA under a chain of custody form for laboratory analyses. The samples were transported with blue ice and were received at the laboratory in good condition.

Decontamination

Sampling equipment was cleaned prior to and between each sample. The spoons, bowls, and other hand sampling equipment were brush-scrubbed using an Alconox detergent solution followed by successive rinses of tap and deionized water.

CHEMICAL DATA QUALITY REVIEW

This data quality review evaluates the data included in the NCA data groups B1J0132 and B1J0187. This data group includes data for soil samples collected at the Black River Quarry, the Lincoln and Summit Stockpile, and the Marine View Pit (Type 1B and II Soils). In total, 24 soil samples were collected for this data group on October 3 and 4, 2001, including the six samples from the Lincoln and Summit Stockpile. These samples were analyzed for the following:

■ Total Metals (silver, arsenic, barium, beryllium, cadmium, chromium, copper, mercury, nickel, lead, antimony, selenium, thallium, and zinc via EPA 6000 and 7000 series methods).

Following the above analyses, a subset of the 24 samples were further analyzed by NCA for leachable beryllium, cadmium, chromium, copper, and/or nickelusing the SPLP procedure via method EPA Method 1312 metals (beryllium via EPA Method 6010B and cadmium, chromium, copper, and nickel via EPA Method 6020).

The following criteria were evaluated in the standard data quality review process:

- Holding times;
- Method blanks;
- Surrogate recoveries;
- Matrix spike/matrix spike duplicate (MS/MSD) recoveries; and
- Laboratory relative percent difference (RPD).

Total Metals. All required holding times were met. No method blank contamination was detected. Lab control sample/lab control sample duplicate (LCS/LCSD) and MS/MSD recoveries were within control limits with the

following exceptions. The percent recovery for barium in the MS/MSD samples prepared on October 10, 2001, was less than the control limit (33.3/38.3 percent versus 70 to 130 percent). MVP-1B-Comp 2 (Marine View Pit) was the only sample associated with the October 10, 2001, MS/MSD sample and the barium detection of 74.6 mg/kg was flagged as estimated ("J"). In addition, the percent recoveries for antimony in the MS/MSD samples (less than 5 percent) were significantly less than the control limit (70 to 130 percent). In addition, the MS/MSD RPD for antimony was greater than the control limit. A post-digestion spike on the same source sample that was used as the MS/MSD sample had an acceptable percent recovery for antimony. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (dated February 1998) requires that non-detected results be rejected when the MS/MSD percent recoveries are less than 30 percent. Although it is not unusual for antimony recoveries to be low in many types of soil, the antimony MS/MSD recoveries are significantly below 30 percent requiring that all the antimony (non-detect) results be rejected. It should be noted, however, that antimony was not detected in any of the Black River Quarry soil samples. The soil quality data, with the exception of antimony, are acceptable for use as qualified.

SPLP Metals. All required holding times were met. No method blank contamination was detected. LCS/LCSD and MS/MSD recoveries were within control limits. The data are acceptable for use without qualification.

LIMITATIONS

Work for this project was performed, and this report prepared, in accordance with generally accepted professional practices for the nature and conditions of the work completed in the same or similar localities, at the time the work was performed. It is intended for the exclusive use of the Port of Seattle for specific application to the referenced property. This report is not meant to represent a legal opinion. No other warranty, express or implied, is made.

Any questions regarding our work and this report, the presentation of the information, and the interpretation of the data are welcome. We trust that this report meets your needs.

F:\docs\jobs\497806\LSPitDraftDataPkg.doc

Table 1 - Lincoln and Summit Stockpile Sampling, Total Metals Analytical Results

n/ Antimony Arsenic Barium Beryllium Cadmium Chromium Copper Lead Mercury 16 20 NE 0.6 2 42/2000° 36 220/250° 2 Stockpile 0.4UJ 2.73 74.5 0.4U 0.605 36.8 26.4 3.12 0.2U 0.4UJ 3.02 76.9 0.4U 0.525 36.0 26.7 3.37 0.2U 0.4UJ 3.22 85.1 0.4U 0.629 40.3 22.9 4.12 0.2U 0.4UJ 2.23 63.5 0.4U 0.629 40.3 22.9 4.12 0.2U 0.3UJ 2.45 59.9 0.3U 0.41 0.41 32.4 17.6 4.16 0.2U							Total Metals	Concen	Total Metals Concentration in mg/kg	g/kg					
16 20 NE 0.6 2 42/2000b 36 220/250b 2 Stockpile 0.4UJ 2.73 74.5 0.4U 0.605 36.8 26.4 3.12 0.2U 0.4UJ 3.02 85.1 0.4U 0.629 40.3 22.9 4.12 0.2U 0.4UJ 2.23 63.5 0.4U 0.451 30.4 17.3 5.29 0.2U 0.3UJ 2.45 59.9 0.3U 0.413 32.4 4.16 0.2U 0.4UJ 2.45 69.9 0.3U 0.451 30.4 17.3 5.29 0.2U	Sample Location/	Antimony	Arsenic	Barium	Beryllium		Chromium	Copper	Lead	Mercury	Nickel	Selenium Silver Thallium Zinc	Silver	Thallium	Zinc
Stockpile 0.4UJ 2.73 74.5 0.4U 0.605 36.8 26.4 3.12 0.2U 0.4UJ 3.00 76.9 0.4U 0.525 36.0 26.7 3.37 0.2U 0.4UJ 3.22 85.1 0.4U 0.629 40.3 22.9 4.12 0.2U 0.4UJ 2.23 63.5 0.4U 0.451 30.4 17.3 5.29 0.2U 0.3UJ 2.45 59.9 0.3U 0.413 31.7 15.0 3.55 0.2U 0.4UJ 2.47 64.6 0.3U 0.433 31.7 15.0 3.55 0.2U	Screening Level ^a	16	20	NE	9.0		42/2000 ^b	36	220/250 ^b	2	100/110 ^b	5	5	2	85
0.4UJ 2.73 74.5 0.4U 0.605 36.8 26.4 3.12 0.2U 0.4UJ 3.00 76.9 0.4U 0.525 36.0 26.7 3.37 0.2U 0.4UJ 3.22 85.1 0.4U 0.629 40.3 22.9 4.12 0.2U 0.4UJ 2.23 63.5 0.4U 0.451 30.4 17.3 5.29 0.2U 0.3UJ 2.45 59.9 0.3U 0.413 37.7 15.0 3.55 0.2U 0.4HJ 2.47 64.5 0.4H 0.4H 32.4 17.6 4.16 0.2H	Lincoln-Summit Stoc	kpile													
0.4UJ 3.00 76.9 0.4U 0.525 36.0 26.7 3.37 0.2U 0.4UJ 3.22 85.1 0.4U 0.629 40.3 22.9 4.12 0.2U 0.4UJ 2.23 63.5 0.4U 0.451 30.4 17.3 5.29 0.2U 0.3UJ 2.45 59.9 0.3U 0.433 31.7 15.0 3.55 0.2U 0.4UJ 2.47 64.5 0.4U 0.41 0.41 3.4 4.16 0.2U	BRQ-LS-Comp1	0.4UJ	2.73	74.5	0.40	0.605	36.8	26.4	3.12	0.20	41.8	0.40	0.40	0.40	42.7
0.4UJ 3.22 85.1 0.4U 0.629 40.3 22.9 4.12 0.2U 0.4UJ 2.23 63.5 0.4U 0.451 30.4 17.3 5.29 0.2U 0.3UJ 2.45 59.9 0.3U 0.433 31.7 15.0 3.55 0.2U 0.4UJ 2.45 64.5 0.4U 0.433 31.7 15.0 3.55 0.2U	BRQ-LS-Comp2	0.403	3.00	6.97	0.40	0.525	36.0	26.7	3.37	0.20	41.9	0.40	0.40	ŀ	42.6
0.4UJ 2.23 63.5 0.4U 0.451 30.4 17.3 5.29 0.2U 0.3UJ 2.45 59.9 0.3U 0.433 31.7 15.0 3.55 0.2U 0.4UJ 2.47 64.5 0.4U 0.4U 32.4 17.6 4.16 0.2U	BRQ-LS-Comp3	0.4UJ	3.22	85.1	0.40	0.629	40.3	22.9	4.12	0.20	45.9	0.40	0.40		44.6
0.3UJ 2.45 59.9 0.3U 0.433 31.7 15.0 3.55 0.2U	BRQ-LS-Comp4	0.403	2.23	63.5	0.40	0.451	30.4	17.3	5.29	0.20	38.7	0.40	0.40	0.40	34.6
04111 247 845 0411 0411 324 178 418 0211	BRQ-LS-Comp5	0.3UJ	2.45	59.9	0.3U	0.433	31.7	15.0	3.55	0.20	39.2	0.3U	0.30		33.6
0.403 2.41 0.40 0.40 0.40 0.40	BRQ-LS-Comp6	0.4UJ	2.47	64.5	0.40	0.40	32.4	17.6	4.16	0.20	37.4	0.40	0.40	0.40	37.5

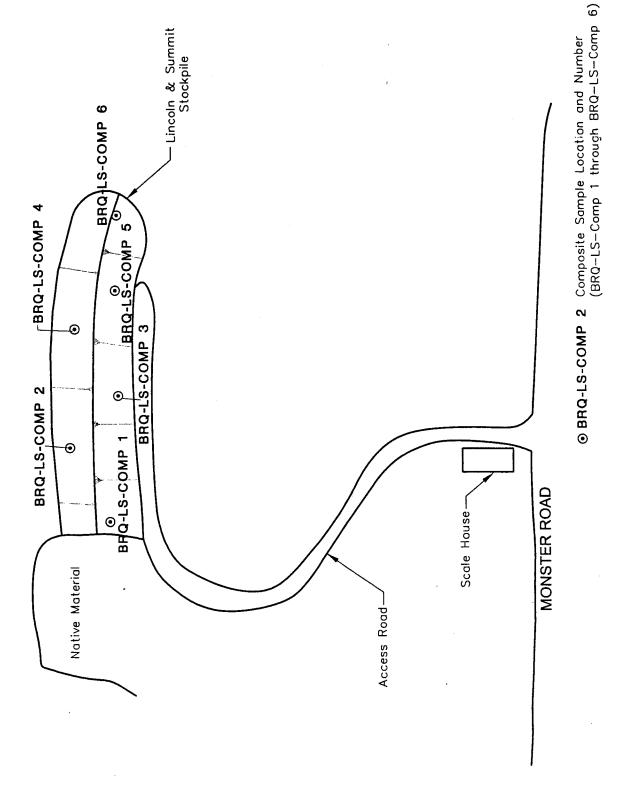
Soil samples collected by Hart Crowser on October 4, 2001.

Bolded and underlined value exceeds Section 401 fill criteria screening level.

Samples analyzed by NCA.

a Fill criteria from Condition E.1.b of Section 401 Certification.
 b Criteria vary depending on where fill is placed in embankment (see Condition E.1.b of 401 Certification).

U Not detected above laboratory analytical reporting limit.


J Estimated.

NE Not established.

Table 2 - Lincoln and Summit Stockpile Sampling, Soil Sample Descriptions

Sample Location	Sample Description	
Lincoln-Summit Sto	ockpile	
BRQ-LS-Comp1	Dry, light gray, slightly sandy, gravelly SILT	
BRQ-LS-Comp2	Dry, light gray, slightly sandy, gravelly SILT	
BRQ-LS-Comp3	Dry, gray, slightly sandy, gravelly SILT	
BRQ-LS-Comp4	Dry to damp, gray to brown, gravelly, sandy SILT	
BRQ-LS-Comp5	Dry, gray, slightly sandy, gravelly SILT	
BRQ-LS-Comp6	Dry to damp, gray to brown, gravelly, sandy SILT	

Site Plan Schematic and Sample Location Map Black River Quarry (Lincoln and Summit Stockpile)

4978-06 Figure 1

12/01

APPENDIX A LABORATORY ANALYTICAL DOCUMENTATION NORTH CREEK ANALYTICAL, INC.

30 October 2001

Rick Moore Hart Crowser, Inc. - WA 1910 Fairview Ave. E. Seattle, WA 98102

RE: Third Runway/Pit Samples

Enclosed are **amended** results of analyses for samples received by the laboratory on 10/04/01 15:35. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Scott A. Woerman

Project Manager

Project: Third Runway/Pit Samples

1910 Fairview Ave. E. Seattle WA, 98102

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report Issued: 10/30/01 19:55

ANALYTICAL REPORT FOR SAMPLES - Ameneded

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MVP-1B- COMP 1	B1J0187-01	Soil	10/04/01 09:25	10/04/01 15:35
MVP-1B- COMP 2	B1J0187-02	Soil	10/04/01 09:35	10/04/01 15:35
MVP-1B- COMP 3	B1J0187-03	Soil	10/04/01 09:50	10/04/01 15:35
MVP-1B- COMP 4	B1J0187-04	Soil	10/04/01 10:00	10/04/01 15:35
MVP-1B- COMP 5	B1J0187-05	Soil	10/04/01 10:05	10/04/01 15:35
MVP-1B- COMP 6	B1J0187-06	Soil	10/04/01 10:15	10/04/01 15:35
BRQ-LS- COMP 1	B1J0187-07	Soil	10/04/01 14:05	10/04/01 15:35
BRQ-LS- COMP 2	B1J0187-08	Soil	10/04/01 14:10	10/04/01 15:35
BRQ-LS- COMP 3	B1J0187-09	Soil	10/04/01 14:15	10/04/01 15:35
BRQ-LS- COMP 4	B1J0187-10	Soil	10/04/01 14:25	10/04/01 15:35
BRQ-LS- COMP 5	B1J0187-11	Soil	10/04/01 14:35	10/04/01 15:35
BRQ-LS- COMP 6	B1J0187-12	Soil	10/04/01 14:45	10/04/01 15:35

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. Wa-

Scott A. Woerman, Project Manager

Page 1 of 19

Project: Third Runway/Pit Samples

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report Issued: 10/30/01 19:55

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

Arsenic Barium 60.6 3.85 8r " " " " " " " " " " " " " " " " " " "	Analyte	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Arsenic 2.59 0.385 " " " " " " " " " " " " " " " " " " "	MVP-1B- COMP 1 (B1J0187-01) Soil	Sampled: 10/04	/01 09:25	Received:	10/04/01	15:35				
Arsenic 2.59 0.385 Barium 60.6 3.85 " " " " " " " " " " " " " " " " " " "	Silver	ND	0.385	mg/kg dry	1	1J08034	10/08/01	10/10/01	EPA 6020	
Barlum	Arsenic	2.59	0.385	•	п		"	*	n	
Beryllium 1.03 0.385 " " " " " " " " " " " " " " " " " " "	Barium	60.6	3.85	n	*	**	n	Ħ	H	
Cadmium 1.03 0.385 "	Beryllium	0.392	0.385	"	"	**	n	н	и	
Copper	Cadmium	1.03	0.385	"		**	*	"	**	
Copper 16.8 0.385 " " 1J10040 10/10/01 10/11/01 EPA 7471A Mercury ND 0.200 " " 1J10040 10/10/01 10/11/01 EPA 6020 Nickel 29.1 0.385 " " " " " " " " " " " " " " " " " "	Chromium	25.0	0.385	Ħ	n	н	Ħ	**	11	
Nickel 29.1 0.385 " "1J08034 10/08/01 10/10/01 EPA 6020 Lead 3.11 0.385 " " " " " " " " " " " " " " " " " " "	Copper	16.8	0.385	**	*	"	H	"		
Antimony ND	Mercury	ND	0.200	Ħ	71	1J10040	10/10/01	10/11/01	EPA 7471A	
Antimony	Nickel	29.1	0.385	H	H	1J08034	10/08/01	10/10/01	EPA 6020	
Antimony Selenium ND 0.385 " " " " " " " " " " " " " " " Thallium ND 0.385 " " " " " " " " " " " " " " " " " " "	Lead		0.385	**		11	**	*	"	
ND 0.385	Antimony	NDJ	0.385	#	Ħ	**	н	**	"	
Thallium	Selenium	ND	0.385	*	•	•	H	H	n	
MVP-1B- COMP 2 (B1J0187-02) Soil Sampled: 10/04/01 09:35 Received: 10/04/01 15:35	Thallium	ND	0.385		•	**	**	н	**	
Silver ND 0.455 mg/kg dry 1 1J09035 10/09/01 10/10/01 EPA 6020 Arsenic 2.94 0.455 " " " " " " " " " " " " " " " " " "	Zinc	39.0	3.85	Ħ	*	н	11	n	**	
Silver ND 0.455 mg/kg dry 1 1J09035 10/09/01 10/10/01 EPA 6020 Arsenic 2.94 0.455 " " " " " " " " " " " " " " " " " "	MVP-1B- COMP 2 (B1J0187-02) Soil	Sampled: 10/04	4/01 09:35	Received	: 10/04/01	15:35				
Arsenic 2.94 0.455 " 10/11/01 " " " 10/10/01 " " " 10/10/01 " " " " 10/10/01 " " " " " 10/10/01 "	Silver	ND	0.455	mg/kg dry	1	1J09035	10/09/01	10/10/01	EPA 6020	
Barium 74.6	Arsenic	2.94	0.455		11	11	*	"	n	
Beryllium ND 0.455 " " 10/11/01 Cadmium ND 0.455 " " " 10/11/01 " Chromium 21.2 0.455 " " " 10/11/01 " Copper 16.0 0.455 " " " 10/10/01 " Mercury ND 0.200 " 1J10040 10/10/01 10/11/01 EPA 7471A Nickel 24.6 0.455 " " " 10/10/01 EPA 6020 Lead 2.36 0.455 " " " " 10/10/01 " Selenium ND 0.455 " " " " " " " Thallium ND 0.455 " " " " " " "	Barium	74.6 J	4.55	*		11	**	"	**	
Cadmium ND 0.455 " " " 10/10/01 " Chromium 21.2 0.455 " " " 10/11/01 " Copper 16.0 0.455 " " " 10/10/01 " Mercury ND 0.200 " " 1J10040 10/10/01 10/11/01 EPA 7471A Nickel 24.6 0.455 " " 1J09035 10/09/01 10/11/01 EPA 6020 Lead 2.36 0.455 " " " " 10/10/01 " Selenium ND 0.455 "	Beryllium	ND	0.455	**	n	*	**	10/11/01	"	
Chromium 21.2 0.435 " " " 10/10/01 " 10/10/01 Copper 16.0 0.455 " " 1J10040 10/10/01 10/11/01 EPA 7471A Mercury ND 0.200 " 1J10040 10/10/01 10/11/01 EPA 6020 Lead 2.36 0.455 " " " 10/10/01 " " " " " " " " " " " " " " " " " " "	Cadmium	ND	0.455	"	"	**	*	10/10/01	•	
Copper 16.0 0.455 " 1J10040 10/10/01 10/11/01 EPA 7471A Mercury ND 0.200 " 1J10040 10/10/01 10/11/01 EPA 7471A Nickel 24.6 0.455 " 1J09035 10/09/01 10/11/01 EPA 6020 Lead 2.36 0.455 " " " " 10/10/01 " " " " " " " " " " " " " " " " " " "	Chromium	21.2	0.455	•	*		"	10/11/01	•	
Mercury ND 0.200 " " 1J10040 10/10/01 10/11/01 EPA 7471A Nickel 24.6 0.455 " 1J09035 10/09/01 10/11/01 EPA 6020 Lead 2.36 0.455 " " " 10/10/01 " Selenium ND 0.455 " " " " " " Thallium ND 0.455 " " " " " "	Copper	16.0	0.455	*	н	**		10/10/01	•	
Nickel 24.6 0.455 " " 1J09035 10/09/01 10/11/01 EPA 6020 Lead 2.36 0.455 " " " 10/10/01 " Selenium ND 0.455 " " " " " " Thallium ND 0.455 " " " " " "	• •	ND	0.200			1J10040	10/10/01	10/11/01	EPA 7471A	
Lead 2.36 0.455 " " " " " " " " " " " " " " " " " " "	Nickel	24.6	0.455	**	**	1J09035	10/09/01	10/11/01	EPA 6020	
Selenium ND 0.455 " " " " " " " " " " " " " " " " " " "	Lead	2.36	0.455	n	*	**	*	10/10/01		
Thallium ND 0.455 " " " " " "	Selenium	ND	0.455	n	•	н	н	"	н	
		ND	0.455	n	H	**	**			
	Zinc	31.8	4.55	11	**	n	н	n	н	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

Page 2 of 19

Project: Third Runway/Pit Samples

1910 Fairview Ave. E. Seattle WA, 98102 Project Number: 4978-19
Project Manager: Rick Moore

Amended Report

Issued: 10/30/01 19:55

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MVP-1B- COMP 2 (B1J0187-02RE1) S	Soil Sampled: 1	0/04/01 0	9:35 Recei	ved: 10/04	/01_15:35				
Antimony	NDI	0.500	mg/kg dry	1	1J11031	10/11/01	10/12/01	EPA 6020	
MVP-1B- COMP 3 (B1J0187-03) Soil	Sampled: 10/04	/01 09:50	Received:	10/04/01 1	15:35				
Silver	ND	0.379	mg/kg dry	1	1J08034	10/08/01	10/10/01	EPA 6020	
Arsenic	2.88	0.379	*	•	*	#	"	**	
Barium	55.1	3.79		n	Ħ	**	II	"	
Beryllium	ND	0.379	"	•	*	"	n	**	
Cadmium	ND	0.379	"	**	"	**	"		
Chromium	28.9	0.379	**	**	"	H	11	•	
Copper	12.5	0.379	•	"	**	**	*	**	
Mercury	ND	0.200	"	**	1J10040	10/10/01	10/11/01	EPA 7471A	
Nickel	31.8	0.379	"	н	1J08034	10/08/01	10/10/01	EPA 6020	
Lead	2.19	0.379	*	**		n	Ħ	11	
Antimony	NDJ	0.379	**	"	*	*	**	•	
Selenium	ND	0.379	**	"	n	**	Ħ	**	
Thallium	ND	0.379	"	"	н	n	"	**	
Zinc	33.7	3.79	**	**	"	H	**	*	
MVP-1B- COMP 4 (B1J0187-04) Soil	Sampled: 10/0	4/01 10:00	Received	10/04/01	15:35				
Silver	ND	0.417	mg/kg dry	1	1J08034	10/08/01	10/10/01	EPA 6020	
Arsenic	1.36	0.417	"		Ħ	**	"	**	
Barium	59.6	4.17	**	**	H	"	"	**	
Beryllium	ND	0.417	n	*	**	•	, "	н	
Cadmium	0.748	0.417	*	*	"	n	. #	**	
Chromium	25.1	0.417	*	n	*	"			
Copper	13.4	0.417	**	"	н	**	#	H	
Mercury	ND	0.200		**	1J10040	10/10/01	10/11/01	EPA 7471A	
Nickel	27.9	0.417	**	*	1J08034	10/08/01	10/10/01	EPA 6020	
Lead	2.20	0.417	н	#	"	*1	**	"	
Antimony	DDV	0.417	11	n	*	"	. "	H	
Selenium	ND	0.417	**	"	**	•	"	#	
Thallium	ND	0.417	н	**	IT	"	"	**	
Zinc	34.9	4.17	H	н	н	н	**	H	
μF	n pluloi								

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. Wa-

Page 3 of 19

1910 Fairview Ave. E. Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report Issued: 10/30/01 19:55

Total Metals by EPA 6000/7000 Series Methods

North Creek Analytical - Bothell

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MVP-1B- COMP 5 (B1J0187-05) Soil	Sampled: 10/0	4/01 10:05	Received:	10/04/01 1	15:35		***		
Silver	ND	0.407	mg/kg dry	1	1J08034	10/08/01	10/10/01	EPA 6020	
Arsenic	2.30	0.407	. *	•	*	"	•	n	
Barium	47.7	4.07		*	"		n	**	
Beryllium	ND	0.407	*	**	"	*	*	n	
Cadmium	0.783	0.407	n	n		11	**	н	
Chromium	26.0	0.407	•	n	*	"	**	n	
Copper	13.2	0.407		**	"	*	•	n	
Mercury	ND	0.200	*	n	1J10040	10/10/01	10/11/01	EPA 7471A	
Nickel	27.2	0.407	n	"	1J08034	10/08/01	10/10/01	EPA 6020	
Lead	2.04	0.407	H	*	*	"	"	**	
Antimony	NDJ	0.407	*	**	"	"	H	•	
Selenium	ND	0.407	n		**	**	n	n	
Thallium	ND	0.407	H		**	"	"	H	
Zinc	33.7	4.07	H	*	**	•	n	"	
MVP-1B- COMP 6 (B1J0187-06) Soil	Sampled: 10/04	4/01 10:15	Received:	10/04/01 1	15:35				
Silver	ND	0.309	mg/kg dry	1	1J08034	10/08/01	10/10/01	EPA 6020	
Arsenic	2.48	0.309	"	**	**	"	n	"	
Barium	57.5	3.09	H	"	H	**	**	*	
Beryllium	0.340	0.309		n	*	*		**	
Cadmium	0.818	0.309	н	. "		n	*	11	
Chromium	23.5	0.309	n	n	**	"	**	**	
Copper	19.1	0.309	n			•	**	**	
Mercury	ND	0.200	н	n	IJ10040	10/10/01	10/11/01	EPA 7471A	
Nickel	27.5	0.309		n	1J08034	10/08/01	10/10/01	EPA 6020	
Lead	5.00	0.309	H	**	70	11	10 -	**	
Antimony	NDI	0.309		"	**	11	n	n n	
Selenium	ND	0.309	H	**	**	n	"	**	
Thallium	ND	0.309		**		n	."	11	
Zinc [.]	40.0	3.09	*	**		**	H	n	

NFMilor

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. W-

Scott A. Woerman, Project Manager

Page 4 of 19

1910 Fairview Ave. E.

Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report

Issued: 10/30/01 19:55

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

Analyte	Result	Leporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BRQ-LS- COMP 1 (B1J0187-07) Soil	Sampled: 10/0	4/01 14:05	Received:	10/04/01	15:35				
Silver	ND	0.368	mg/kg dry	1	1J08034	10/08/01	10/10/01	EPA 6020	
Arsenic	2.73	0.368	"	•	"	"	"	*	
Barium	74.5	3.68	н	71	11	n	,	**	
Beryllium	ND	0.368	**	**	**	"	10/11/01	**	
Cadmium	0.605	0.368	**	"	"	**	10/10/01	•	
Chromium	36.8	0.368	n	**	**	•	10/11/01	н ,	
Copper	26.4	0.368	11	**	**	**	10/10/01	n	
Mercury	ND	0.200	н		1J10040	10/10/01	10/11/01	EPA 7471A	
Nickel	41.8	0.368	19	"	1J08034	10/08/01	10/11/01	EPA 6020	
Lead	3.12	0.368	H	"	**	**	10/10/01	11	
Antimony	NDJ	0.368	***	"	**	11	10	"	
Selenium	ND	0.368	11	*	. "	**	**	"	
Thallium	ND	0.368	H.	**	**	*	"	Ħ	
Zinc	42.7	3.68	**	"	,	Ħ	H	"	
BRQ-LS- COMP 2 (B1J0187-08) Soil	Sampled: 10/0	4/01 14:10	Received	10/04/01	15:35			·	
Silver	ND	0.379	mg/kg dry	1	1J08034	10/08/01	10/10/01	EPA 6020	
Arsenic	3.00	0.379	*	**	**	"		*	
Barium	76.9	3.79	•	"	Ħ	**	**	n	
Beryllium	ND	0.379	**	**	"	11	10/11/01	н	
Cadmium	0.525	0.379	н	"	**	**	10/10/01	"	
Chromium	36.0	0.379	n	**	**		10/11/01	**	
Copper	26.7	0.379	н	**	"	**	10/10/01	"	
Mercury	ND	0.200	**	и	1J10040	10/10/01	10/11/01	EPA 7471A	
Nickel	41.9	0.379	n	11	1J08034	10/08/01	10/11/01	EPA 6020	
Lead	3.37	0.379	"	"	n	•	10/10/01	n	
Antimony	ND Z	0.379	**	"		"	**	"	
Selenium	ND	0.379	"	•	**	"	**	"	
Thallium	ND	0.379	"	11	**	•	*	ŧ	
Zinc	42.6	3.79	"	n	**	н	11"	н	

NFMINION

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. Wan

Scott A. Woerman, Project Manager

Page 5 of 19

Project: Third Runway/Pit Samples

Project Number: 4978-19
Froject Manager: Rick Moore

Amended Report Issued: 10/30/01 19:55

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

	Re	eporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BRQ-LS- COMP 3 (B1J0187-09) Soil	Sampled: 10/04	/01 14:1:	5 Received:	10/04/01	15:35				
Silver	ND	0.424	mg/kg dry	1	1J08034	10/08/01	10/10/01	EPA 6020	
Arsenic	3.22	0.424	*	•		•	n	**	
Barium	85.1	4.24	н	н	*	•	n	**	
Beryllium	ND	0.424	*	Ħ	"	•	10/11/01	H	
Cadmium	0.629	0.424	н .	**	**		10/10/01	н	
Chromium	40.3	0.424	n	11	*	"	10/11/01	**	
Copper	22.9	0.424	**	**	**	n	10/10/01	n	
Mercury	ND	0.200	n	11	1J10040	10/10/01	10/11/01	EPA 7471A	
Nickel	45.9	0.424	ï	n	1J08034	10/08/01	10/11/01	EPA 6020	
Lead	4.12	0.424	11	n	Ħ	01/18/01	10/10/01	Ħ	
Antimony	NDJ	0.424	**	n	**	10/08/01	*	H	
Selenium	ND	0.424	Ħ	Ħ	•	n	*	H	
Thallium	ND	0.424	11	**	**	11	*	**	
Zinc	44.6	4.24	*	"	н	"	11	n	
BRQ-LS- COMP 4 (B1J0187-10) Soil	Sampled: 10/04	/01 14:25	5 Received:	10/04/01	15:35				
Silver	ND	0.435	mg/kg dry	1	1J08034	10/08/01	10/10/01	EPA 6020	
Arsenic	2.23	0.435	•	•	•	"	**	*	
Barium	63.5	4.35	•	н .	**	"	n	n	
Beryllium	ND	0.435	•	*	•	*	10/11/01	Ħ	
Cadmium	0.451	0.435	*	*	•	*	10/10/01	r	
Chromium	30.4	0.435	"	**	•	"	10/11/01	н	
Copper	17.3	0.435	"	*	**	**	10/10/01	H	
Mercury	ND	0.200	п	**	1J10040	10/10/01	10/11/01	EPA 7471A	
Nickel	38.7	0.435	n	**	1J08034	10/08/01	10/11/01	EPA 6020	
Lead	5.29	0.435	**	**	n	н	10/10/01	*	
Antimony	ND J	0.435	"	**	n	n	n		
Selenium	ND	0.435	**	н	10	**	**	**	
Thallium	ND	0.435	11	**	*	**	**	**	
Zinc	34.6	4.35	"	**	**	*	• 11	11	

NFM

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. W-

Scott A. Woerman, Project Manager

Page 6 of 19

1910 Fairview Ave. E. Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report Issued: 10/30/01 19:55

Total Metals by EPA 6000/7000 Series Methods

North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Analyte	- Kesini	Linit	Onits	Dilation	Daten	Trepareu	Allalyzeu	Method	Note
BRQ-LS- COMP 5 (B1J0187-11) Soil	Sampled: 10/0	4/01 14:35	Received:	10/04/01	15:35				
Silver	ND	0.347	mg/kg dry	1	1J08034	10/08/01	10/10/01	EPA 6020	
Arsenic	2.45	0.347	7	**	"	H	"	*	
Barium	59.9	3.47	*	**	"	"	*	m ·	
Beryllium	ND	0.347	*	"	**	**	10/11/01		
Cadmium	0.433	0.347	"	*	`#	"	10/10/01	*	
Chromium	31.7	0.347	*		**	*	10/11/01	**	
Copper	15.0	0.347	*	**	•	**	10/10/01	•	
Mercury	ND	0.200	"	**	1J10040	10/10/01	10/11/01	EPA 7471A	
Nickel	39.2	0.347	"	**	1J08034	10/08/01	10/11/01	EPA 6020	
Lead	3.55	0.347	**	*	*	**	10/10/01	n	
Antimony	NDJ	0.347		•		#	"	*	
Selenium	ND	0.347	"	*		**	n	. н	
Thallium	ND	0.347	H	Ħ	"	**	H	n	
Zinc	33.6	3.47	"	*	**	•	"	19	
BRQ-LS- COMP 6 (B1J0187-12) Soil	Sampled: 10/0	04/01 14:4:	Received	10/04/01	15:35				
Silver	ND	0.388	mg/kg dry	1	1J08034	10/08/01	10/10/01	EPA 6020	
Arsenic	2.47	0.388	**	**	н	*		11	
Barium	64.5	3.88	H	*		*	"	H	
Beryllium	ND	0.388		н		11	10/11/01		
Cadmium	ND	0.388		"	н	n	10/10/01	"	
Chromium	32.4	0.388	•	*	"		10/11/01	н	
Copper	17.6	0.388	**	**		**	10/10/01	H	
Mercury	ND	0.200	*	*	1J10040	10/10/01	10/11/01	EPA 7471A	
Nickel	37.4	0.388	*		1J08034	10/08/01	10/11/01	EPA 6020	
Lead	4.16	0.388	,	•	**	"	10/10/01	#	
Antimony	ND S	0.388	**	**	,,	H	н	h	
Selenium	ND	0.388	"	**	••	IP	H	19	
Thallium	NĐ	0.388	**		11	н	n	11	
Zinc	37.5	3.88	"		**	**	٠,,	,,	

NEM

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. W-

Scott A. Woerman, Project Manager

Page 7 of 19

Hart Crowser, Inc. - WA 1910 Fairview Ave. E. Project: Third Runway/Pit Samples

Project Number: 4978-19

Amended Report
Issued: 10/30/01 19:55

Scattle WA, 98102

Project Manager: Rick Moore

SPLP Metals by EPA 1312/6000/7000 Series Methods

North Creek Analytical - Bothell

]	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		0.4/0.1.00.05	D	. 10/04/01 1	F-25				
MVP-1B- COMP 1 (B1J0187-01) Soil	Sampled: 10/0	04/01 09:25	Received	: 10/04/01 1	5:35				

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. W-

Scott A. Woerman, Project Manager

Page 8 of 19

Project: Third Runway/Pit Samples

1910 Fairview Ave. E.

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report
Issued: 10/30/01 19:55

Seattle WA, 98102

Physical Parameters by APHA/ASTM/EPA Methods

North Creek Analytical - Bothell

	j	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MVP-1B- COMP 1 (B1J0187-01) Soil	Sampled: 10/0	4/01 09:25	Received	: 10/04/01	15:35				
Dry Weight	91.6	1.00	%	1	1J10014	10/10/01	10/11/01	BSOPSPL003R07	
MVP-1B- COMP 2 (B1J0187-02) Soil	Sampled: 10/0	4/01 09:35	Received	: 10/04/01	15:35			······································	,
Dry Weight	90.4	1.00	%	1	1J10014	10/10/01	10/11/01	BSOPSPL003R07	
MVP-1B- COMP 3 (B1J0187-03) Soil	Sampled: 10/0	04/01 09:50	Received	: 10/04/01	15:35				
Dry Weight	92.1	1.00	%	1	1J10014	10/10/01	10/11/01	BSOPSPL003R07	
MVP-1B- COMP 4 (B1J0187-04) Soil	Sampled: 10/0	04/01 10:00	Received	: 10/04/01	15:35				
Dry Weight	92.3	1.00	%	1	1J10014	10/10/01	10/11/01	BSOPSPL003R07	
MVP-1B- COMP 5 (B1J0187-05) Soil	Sampled: 10/0	04/01 10:05	Received	: 10/04/01	15:35				
Dry Weight	91.6	1.00	%	1	1 J10014	10/10/01	10/11/01	BSOPSPL003R07	
MVP-1B- COMP 6 (B1J0187-06) Soil	Sampled: 10/0	04/01 10:15	Received	: 10/04/01	15:35	-			
Dry Weight	88.7	1.00	%	1	1J10014	10/10/01	10/11/01	BSOPSPL003R07	
BRQ-LS- COMP 1 (B1J0187-07) Soil	Sampled: 10/0	04/01 14:05	Received	l: 10/04/01	15:35				
Dry Weight	98.1	1.00	%	1	1J10014	10/10/01	10/11/01	BSOPSPL003R07	
BRQ-LS- COMP 2 (B1J0187-08) Soil	Sampled: 10/	04/01 14:10	Received	l: 10/04/01	15:35				
Dry Weight	97.6	1.00	%	1	1J10014	10/10/01	10/11/01	BSOPSPL003R07	
BRO-LS- COMP 3 (B1J0187-09) Soil	Sampled: 10/	04/01 14:15	Received	1: 10/04/ <u>01</u>	15:35				
Dry Weight	98.1	1.00	%	1	1J10014	10/10/01	10/11/01	BSOPSPL003R07	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. Wa-

Scott A. Woerman, Project Manager

Page 9 of 19

Project: Third Runway/Pit Samples

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report
Issued: 10/30/01 19:55

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

	R	eporting				·			
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BRQ-LS- COMP 4 (B1J0187-10) Soil	Sampled: 10/0	4/01 14:25	Received	l: 10/04/01	15:35				
Dry Weight	93.8	1.00	%	1	1J10014	10/10/01	10/11/01	BSOPSPL003R07	
BRQ-LS- COMP 5 (B1J0187-11) Soil	Sampled: 10/0	4/01 14:35	Received	1: 10/04/01	15:35				
Dry Weight	97.4	1.00	%	1	1J10014	10/10/01	10/11/01	BSOPSPL003R07	
BRQ-LS- COMP 6 (B1J0187-12) Soil	Sampled: 10/0-	4/01 14:45	Received	l: 10/04/01	15:35				
Dry Weight	94.5	1.00	%	1	1J10014	10/10/01	10/11/01	BSOPSPL003R07	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. Wa-

Scott A. Woerman, Project Manager

Page 10 of 19

1910 Fairview Ave. E. Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report Issued: 10/30/01 19:55

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

			Reporting	** *.	Spike	Source	WREC	%REC	ממת	RPD	Mass
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1J08034:	Prepared 10/08/01	Using EPA	A 3050B							· · · · · · · · · · · · · · · · · · ·	
Blank (1J08034-B	LK1)	· ,			-						
Antimony		ND	0.500	mg/kg							
Arsenic		ND	0.500	**							
Barium		ND	5.00	"							
Beryllium		ND	0.500	4							
Cadmium		ND	0.500	"							
Chromium		ND	0.500	•							
Соррег		ND	0.500	*							
Lead		ND	0.500	*							
Nickel		ND	0.500	n							
Selenium		ND	0.500	n							
Silver		ND	0.500	*							
Thallium		ND	0.500	*							
Zinc		ND	5.00	**							
LCS (1J08034-BS	1)										,
Antimony		40.6	0.455	mg/kg	36.4		112	80-120			
Arsenic		37.4	0.455	Ħ	36.4		103	70-130			
Barium		39.8	4.55	**	36.4		109	80-120			
Beryllium		38.9	0.455	n	36.4		107	80-120			
Cadmium		38.5	0.455		36.4		106	70-130			
Chromium		39.6	0.455	n	36.4		109	80-120			
Соррег		39.9	0.455	н	36.4		110	80-120			
Lead		36.8	0.455	*	36.4		101	80-120			
Nickel		39.1	0.455		36.4		107	80-120			
Selenium		35.3	0.455		36.4		97.0	70-130			
Silver		38.9	0.455	"	36.4		107	40-130			
Thallium		36.9	0.455	н	36.4		101	80-120			
Zinc		38.5	4.55	,,	36.4		106	70-130			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. W-

Scott A. Woerman, Project Manager

Page 11 of 19

Project: Third Runway/Pit Samples

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report
Issued: 10/30/01 19:55

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

Batch 1J08034: Prepared 10/08/01 Using EPA 3050B Using EPA 3050B				Reporting		Spike	Source	.==	%REC		RPD	
Martinony 40.8 0.500 mg/kg 37.0 110 80-120 0.491 20 20 20 20 20 20 20 2	Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Antimony 40.8 0.500 mg/kg 37.0 110 80-120 0.491 20 Arsenic 37.9 0.500 " 37.0 102 70-130 1.33 20 Barium 40.5 5.00 " 37.0 109 80-120 1.74 20 Berlium 40.3 0.500 " 37.0 109 80-120 3.54 20 Cadmium 38.6 0.500 " 37.0 109 80-120 3.54 20 Chromium 41.0 0.500 " 37.0 111 80-120 3.47 20 Copper 40.7 0.500 " 37.0 111 80-120 1.99 20 Chromium 37.5 0.500 " 37.0 111 80-120 1.99 20 Chromium 37.5 0.500 " 37.0 101 80-120 1.88 20 Chromium 38.6 0.500 " 37.0 101 80-120 1.88 20 Chromium 38.6 30.500 " 37.0 101 80-120 1.88 20 Chromium 38.3 0.500 " 37.0 101 80-120 1.88 20 Chromium 38.3 0.500 " 37.0 101 80-120 1.83 20 Chromium 38.3 0.500 " 37.0 101 80-120 1.83 20 Chromium 38.3 0.500 " 37.0 105 80-120 0.256 20 Chromium 38.3 0.500 " 37.0 105 80-120 0.256 20 Chromium 39.3 5.0 0.500 " 37.0 105 80-120 0.256 20 Chromium 39.3 5.0 0.500 " 37.0 105 80-120 0.256 20 Chromium 39.3 5.0 0.500 " 37.0 107 40-130 1.53 20 Chromium 39.5 0.500 " 37.0 107 40-130 1.53 20 Chromium 39.5 0.500 " 37.0 106 70-130 2.79 20 Chromium 39.5 0.500 " 37.0 106 70-130 2.79 20 Chromium 39.5 0.427 " 37.3 0.0 106 70-130 2.06 20 Chromium 39.5 0.427 " 37.3 0.0 106 70-130 2.06 20 Chromium 39.5 0.427 " 37.3 0.0 0.6 75.9 70-130 Chromium 39.1 0.427 " 37.3 10.3 94.3 70-130 Chromium 66.6 0.427 " 37.3 10.3 94.3 70-130 Chromium 66.6 0.427 " 37.3 10.8 83.9 70-130 Chromium 66.6 0.427 " 37.3 11.9 94.9 70-130 Chromium 66.6 0.427 " 37.3 11.9 94.9 70-130 Chromium 39.1 0.427 " 37.3 11.9 94.9 70-130 Chromium 39.5 0.427 " 37.3 11.9 94.9 70-130 Chromium 39.5 0.427 " 37.3 11.9 94.9 70-130 Chromium 39.4 30.4 0.427 " 37.3 31.9 94.9 70-130 Chromium 39.4 30.4 0.427 " 37.3 31.9 94.9 70-130 Chromium 39.4 30.4 0.427 " 37.3 31.9 94.9 70-130 Chromium 39.4 30.4 0.427 " 37.3 31.9 94.9 70-130 Chromium 39.4 30.4 0.427 " 37.3 31.9 94.9 70-130 Chromium 39.4 30.4 0.427 " 37.3 31.9 94.9 70-130 Chromium 39.4 30.4 0.427 " 37.3 31.9 94.9 70-130 Chromium 39.4 30.4 0.427 " 37.3 31.9 94.9 70-130 Chromium 39.4 30.4 0.427 " 37.3 31.9 94.9 70-130 Chromium 39.4 30.4 0.427 " 37.3 31.9 94.9 70-130 Chromium 39.4 30.4 0.427 " 37.3	Batch 1J08034:	Prepared 10/08/01	Using EP	A 3050B								
Arsenic 37.9 0.500 " 37.0 102 70-130 1.33 20 Arsenic Barium 40.5 5.00 " 37.0 109 80-120 1.74 20 Beryllium 40.3 0.500 " 37.0 109 80-120 1.74 20 Beryllium 41.0 0.500 " 37.0 104 70-130 0.259 20 Chromium 41.0 0.500 " 37.0 111 80-120 1.47 20 Copper 40.7 0.500 " 37.0 111 80-120 1.47 20 Copper 40.7 0.500 " 37.0 111 80-120 1.88 20 Nickel 39.0 0.500 " 37.0 101 80-120 1.88 20 Nickel 39.0 0.500 " 37.0 101 80-120 1.88 20 Copper 80.6 30.500 " 37.0 105 80-120 0.256 20 Selenium 36.3 0.500 " 37.0 105 80-120 0.256 20 Selenium 37.4 0.500 " 37.0 107 40-130 1.53 20 Thallium 37.4 0.500 " 37.0 107 40-130 1.53 20 Thallium 37.4 0.500 " 37.0 101 80-120 1.35 20 Thallium 37.4 0.500 " 37.0 101 80-120 1.35 20 Thallium 37.4 0.500 " 37.0 101 80-120 1.35 20 Thallium 37.4 0.500 " 37.0 101 80-120 1.35 20 Thallium 37.4 0.500 " 37.0 101 80-120 1.35 20 Thallium 37.4 0.500 " 37.0 101 80-120 1.35 20 Thallium 38.1 0.427 " 37.3 0.500 88.2 70-130 2.06 20 Thallium 38.1 0.427 " 37.3 ND 4.05 70-130 2.06 20 Beryllium 38.1 0.427 " 37.3 ND 4.05 70-130 40-130 1.50 40-120	LCS Dup (1J0803	4-BSD1)	··-									
Barium 40.5 5.00 " 37.0 109 80-120 1.74 20 Beryllium 40.3 0.500 " 37.0 109 80-120 3.54 20 Cadmium 38.6 0.500 " 37.0 110 80-120 3.54 20 Chromium 41.0 0.500 " 37.0 111 80-120 3.47 20 Copper 40.7 0.500 " 37.0 110 80-120 1.88 20 Lead 37.5 0.500 " 37.0 110 80-120 1.88 20 Nickel 39.0 0.500 " 37.0 101 80-120 1.88 20 Selenium 36.3 0.500 " 37.0 105 80-120 0.256 20 Selenium 37.4 0.500 " 37.0 101 80-120 1.88 20 Silver 39.5 0.500 " 37.0 101 80-120 1.88 20 Thallium 37.4 0.500 " 37.0 101 80-120 1.85 20 Zinc 39.3 5.00 " 37.0 101 80-120 1.55 20 Zinc 39.3 5.00 " 37.0 101 80-120 1.55 20 Matrix Spike (1J08034-MS1) Arsenic 35.5 0.427 " 37.3 ND 4.05 70-130 Beryllium 38.1 0.427 " 37.3 1.03 94.3 70-130 Chromium 66.6 0.427 " 37.3 1.03 94.3 70-130 Chromium 66.5 0.427 " 37.3 1.03 94.3 70-130 Chromium 66.5 0.427 " 37.3 ND 89.5 40-130 Selenium 31.9 0.427 " 37.3 ND 89.5 40-130 Silver 33.4 0.427 " 37.3 ND 89.5 40-130	Antimony		40.8	0.500	mg/kg	37.0		110	80-120			
Barulium 40.3 0.500 " 37.0 109 80-120 3.54 20 Beryllium 40.0 0.500 " 37.0 104 70-130 0.259 20 Chromium 41.0 0.500 " 37.0 111 80-120 3.47 20 Copper 40.7 0.500 " 37.0 110 80-120 1.99 20 Lead 37.5 0.500 " 37.0 101 80-120 1.88 20 Nickel 39.0 0.500 " 37.0 105 80-120 0.256 20 Selenium 36.3 0.500 " 37.0 105 80-120 0.256 20 Selenium 36.3 0.500 " 37.0 105 80-120 0.256 20 Silver 39.5 0.500 " 37.0 105 80-120 0.256 20 Silver 39.5 0.500 " 37.0 105 80-120 0.256 20 Silver 39.5 0.500 " 37.0 105 80-120 0.256 20 Silver 39.5 0.500 " 37.0 107 40-130 1.53 20 Thallium 37.4 0.500 " 37.0 107 40-130 1.53 20 Thallium 37.4 0.500 " 37.0 106 70-130 2.06 20 Matrix Spike (1J08034-MS1) **Source: B1J0187-01** **Arsenic 35.5 0.427 " 37.3 ND 4.05 70-130 Barium 88.9 4.27 " 37.3 ND 4.05 70-130 Barium 88.9 4.27 " 37.3 ND 101 70-130 Cadmium 36.2 0.427 " 37.3 ND 101 70-130 Cadmium 36.5 0.427 " 37.3 ND 101 70-130 Chromium 66.6 0.427 " 37.3 ND 101 70-130 Chromium 38.1 0.427 " 37.3 ND 84.9 70-130 Selenium 31.9 0.427 " 37.3 ND 89.5 40-130 Thallium 36.4 0.427 " 37.3 ND	Arsenic		37.9	0.500	Ħ	37.0		102	70-130	1.33	20	
Admium 38.6 0.500 " 37.0 104 70-130 0.259 20 Chromium 41.0 0.500 " 37.0 111 80-120 3.47 20 Copper 40.7 0.500 " 37.0 110 80-120 1.99 20 Lead 37.5 0.500 " 37.0 101 80-120 1.99 20 Chromium 36.3 0.500 " 37.0 101 80-120 1.88 20 Nickel 39.0 0.500 " 37.0 105 80-120 0.256 20 Selenium 36.3 0.500 " 37.0 98.1 70-130 2.79 20 Silver 39.5 0.500 " 37.0 107 40-130 1.53 20 Thallium 37.4 0.500 " 37.0 107 40-130 1.53 20 Thallium 37.4 0.500 " 37.0 101 80-120 1.35 20 Thallium 37.4 0.500 " 37.0 101 80-120 1.35 20 Thallium 37.4 0.500 " 37.0 106 70-130 2.06 20 Thallium 37.4 0.500 " 37.0 101 80-120 1.35 20 Thallium 37.4 0.500 " 37.0 101 80-120 1.35 20 Thallium 37.4 0.500 " 37.0 101 80-120 1.35 20 Thallium 37.4 0.500 " 37.0 101 80-120 1.35 20 Thallium 37.4 0.500 " 37.0 101 80-120 1.35 20 Thallium 38.1 0.427 " 37.3 ND 4.05 70-130 2.06 20 Thallium 38.1 0.427 " 37.3 ND 4.05 70-130 Chromium 38.9 4.27 " 37.3 ND 4.05 70-130 Chromium 36.2 0.427 " 37.3 ND 101 70-130 Chromium 36.2 0.427 " 37.3 ND 101 70-130 Chromium 36.2 0.427 " 37.3 ND 101 70-130 Chromium 36.2 0.427 " 37.3 16.8 83.9 70-130 Chromium 38.1 0.427 " 37.3 16.8 83.9 70-130 Chromium 38.5 0.427 " 37.3 16.8 83.9 70-130 Chromium 38.5 0.427 " 37.3 16.8 83.9 70-130 Chromium 38.9 0.427 " 37.3 ND 84.9 70-130 Selenium 31.9 0.427 " 37.3 ND 84.9 70-130 S	Barium		40.5	5.00	*	37.0		109	80-120	1.74	20	
Chromium 41.0 0.500 " 37.0 111 80-120 3.47 20 Copper 40.7 0.500 " 37.0 110 80-120 1.99 20 Lead 37.5 0.500 " 37.0 101 80-120 1.88 20 Nickel 39.0 0.500 " 37.0 105 80-120 0.256 20 Selenium 36.3 0.500 " 37.0 105 80-120 0.256 20 Selenium 37.4 0.500 " 37.0 105 80-120 1.53 20 Thallium 37.4 0.500 " 37.0 107 40-130 1.53 20 Thallium 37.4 0.500 " 37.0 106 70-130 2.06 20 Silver 39.3 5.00 " 37.0 106 70-130 2.06 20 Selenium 37.4 0.500 " 37.0 106 70-130 2.06 20 Selenium 37.0 106 70-130 2.06 20 Selenium 38.1 0.427 mg/kg dry 37.3 ND 4.05 70-130 2.06 20 Selenium 38.1 0.427 " 37.3 2.59 88.2 70-130 Selenium 38.1 0.427 " 37.3 10.3 94.3 70-130 Selenium 36.2 0.427 " 37.3 10.3 94.3 70-130 Chromium 66.6 0.427 " 37.3 16.8 83.9 70-130 Chromium 66.6 0.427 " 37.3 16.8 83.9 70-130 Selenium 38.5 0.427 " 37.3 16.8 83.9 70-130 Selenium 38.9 0.427 " 37.3 16.8 83.9 70-130 Selenium 31.9 0.427 " 37.3 ND 84.9 70-130 Selenium 31.9 0.427 " 37.3 ND 89.5 40-130 Selenium 31.9 0.427	Beryllium		40.3	0.500	"	37.0		109	80-120	3.54	20	
Copper 40.7 0.500 " 37.0 110 80-120 1.99 20 Lead 37.5 0.500 " 37.0 101 80-120 1.88 20 Nickel 39.0 0.500 " 37.0 105 80-120 0.256 20 Selenium 36.3 0.500 " 37.0 105 80-120 0.256 20 Selenium 37.0 107 40-130 2.79 20 Silver 39.5 0.500 " 37.0 107 40-130 1.53 20 Thallium 37.4 0.500 " 37.0 106 70-130 2.06 20 Thallium 37.4 0.500 " 37.0 106 70-130 2.06 20 Thallium 37.4 0.500 " 37.0 106 70-130 2.06 20 Thallium 38.1 0.427 " 37.3 ND 4.05 70-130 2.06 20 Thallium 38.1 0.427 " 37.3 1.03 9.8 8.2 70-130 Selenium 38.1 0.427 " 37.3 1.03 94.3 70-130 Chromium 66.6 0.427 " 37.3 1.03 94.9 70-130 Chromium 67.0 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.	Cadmium		38.6	0.500	•	37.0		104	70-130	0.259		
Lead	Chromium		41.0	0.500	н	37.0		111	80-120	3.47	20	
Lead 37.5 0.500 " 37.0 101 80-120 1.88 20	Copper		40.7	0.500	19	37.0		110	80-120	1.99	20	
Selenium 36.3 0.500 " 37.0 98.1 70-130 2.79 20 Silver 39.5 0.500 " 37.0 107 40-130 1.53 20 Thallium 37.4 0.500 " 37.0 101 80-120 1.35 20 Zinc 39.3 5.00 " 37.0 106 70-130 2.06 20 Matrix Spike (1J08034-MS1) Source: B1J0187-01 Antimony 1.51 0.427 mg/kg dry 37.3 ND 4.05 70-130 2.06 20 Matrim Spike (1J08034-MS1) Source: B1J0187-01 Antimony 35.5 0.427 " 37.3 2.59 88.2 70-130 Barium 88.9 4.27 " 37.3 60.6 75.9 70-130 Beryllium 38.1 0.427 " 37.3 ND 101 70-130 Cadmium 36.2 0.427 " 37.3 1.03 94.3 70-130 Chromium 66.6 0.427 " 37.3 25.0 112 70-130 Chromium 66.6 0.427 " 37.3 16.8 83.9 70-130 Copper 48.1 0.427 " 37.3 16.8 83.9 70-130 Lead 38.5 0.427 " 37.3 3.11 94.9 70-130 Nickel 65.6 0.427 " 37.3 29.1 97.9 70-130 Selenium 31.9 0.427 " 37.3 ND 84.9 70-130 Selenium 31.9 0.427 " 37.3 ND 84.9 70-130 Silver 33.4 0.427 " 37.3 ND 89.5 40-130 Thallium 36.4 0.427 " 37.3 ND 97.5 70-130	Lead		37.5	0.500	"	37.0		101	80-120	1.88	20	
Silver 39.5 0.500 " 37.0 107 40-130 1.53 20 Thallium 37.4 0.500 " 37.0 101 80-120 1.35 20 Zinc 39.3 5.00 " 37.0 106 70-130 2.06 20 Matrix Spike (1J08034-MS1) **Source: B1J0187-01** Antimony 1.51 0.427 mg/kg dry 37.3 ND 4.05 70-130	Nickel		39.0	0.500	*	37.0		105	80-120	0.256	20	
Thallium 37.4 0.500 " 37.0 101 80-120 1.35 20 Zinc 39.3 5.00 " 37.0 106 70-130 2.06 20 Matrix Spike (1J08034-MS1)	Selenium		36.3	0.500	•	37.0		98.1	70-130	2.79	20	
Matrix Spike (1J08034-MS1) Source: B1J0187-01 Source: B1J0187-01	Silver		39.5	0.500	н	37.0		107	40-130	1.53	20	
Matrix Spike (1J08034-MS1) Source: B1J0187-01 Antimony 1.51 0.427 mg/kg dry 37.3 ND 4.05 70-130 Q-13 Arsenic 35.5 0.427 " 37.3 2.59 88.2 70-130 Barium 88.9 4.27 " 37.3 60.6 75.9 70-130 Beryllium 38.1 0.427 " 37.3 ND 101 70-130 Cadmium 36.2 0.427 " 37.3 1.03 94.3 70-130 Chromium 66.6 0.427 " 37.3 16.8 83.9 70-130 Copper 48.1 0.427 " 37.3 16.8 83.9 70-130 Lead 38.5 0.427 " 37.3 29.1 97.9 70-130 Selenium 31.9 0.427 " 37.3 ND 84.9 70-130 Silver 33.4 0.427 " 37.3 <td>Thallium</td> <td></td> <td>37.4</td> <td>0.500</td> <td>n</td> <td>37.0</td> <td></td> <td>101</td> <td>80-120</td> <td>1.35</td> <td>20</td> <td></td>	Thallium		37.4	0.500	n	37.0		101	80-120	1.35	20	
Antimony 1.51 0.427 mg/kg dry 37.3 ND 4.05 70-130 Q-13 Arsenic 35.5 0.427 " 37.3 Arsenic 35.5 0.427 " 37.3 Arsenic 37.3 Arsenic 35.5 0.427 " 37.3 Arsenic 37.3 Arsenic 37.3 Arsenic 38.9 4.27 " 37.3 Arsenic 38.9 4.27 " 37.3 Arsenic 38.1 0.427 " 37.3 Arsenic 37.3 Arsenic 38.1 38.1 38.1 38.2 38.3 38	Zinc		39.3	5.00	"	37.0		106	70-130	2.06	20	
Antimony Antimony Arsenic 35.5 0.427 37.3 Arsenic 35.5 0.427 37.3 Arsenic 37.3 Arsenic 37.3 Arsenic 37.3 Arsenic 38.9 4.27 37.3 Arsenic 37.3 Arsenic 37.3 Arsenic 38.9 4.27 37.3 Arsenic 37.3 Arsenic 37.3 Arsenic 38.9 4.27 37.3 Arsenic 37.3 Arsenic 38.9 4.27 37.3 Arsenic 37.3 Arsenic 38.1 38.1 38.1 38.1 38.1 38.2 38.1 38.2 38.3 38.3 Arsenic 38.1 38.1 38.2 38.3 Arsenic 37.3 Arsen	Matrix Spike (1J0)8034-MS1)					Source:	B1J0187-	01			
Arsenic 35.5 0.427 " 37.3 2.59 88.2 70-130 Barium 88.9 4.27 " 37.3 60.6 75.9 70-130 Beryllium 38.1 0.427 " 37.3 ND 101 70-130 Cadmium 36.2 0.427 " 37.3 1.03 94.3 70-130 Chromium 66.6 0.427 " 37.3 25.0 112 70-130 Copper 48.1 0.427 " 37.3 16.8 83.9 70-130 Lead 38.5 0.427 " 37.3 3.11 94.9 70-130 Nickel 65.6 0.427 " 37.3 ND 84.9 70-130 Selenium 31.9 0.427 " 37.3 ND 89.5 40-130 Thallium 36.4 0.427 " 37.3 ND 97.5 70-130	Antimony		1.51	0.427	mg/kg dry	37.3	ND	4.05	70-130			Q-13
Beryllium 38.1 0.427 " 37.3 ND 101 70-130 Cadmium 36.2 0.427 " 37.3 1.03 94.3 70-130 Chromium 66.6 0.427 " 37.3 25.0 112 70-130 Copper 48.1 0.427 " 37.3 16.8 83.9 70-130 Lead 38.5 0.427 " 37.3 3.11 94.9 70-130 Nickel 65.6 0.427 " 37.3 29.1 97.9 70-130 Selenium 31.9 0.427 " 37.3 ND 84.9 70-130 Silver 33.4 0.427 " 37.3 ND 89.5 40-130 Thallium 36.4 0.427 " 37.3 ND 97.5 70-130	Arsenic		35.5	0.427	"	37.3	2.59	88.2	70-130			
Beryllium 38.1 0.427 " 37.3 ND 101 70-130 Cadmium 36.2 0.427 " 37.3 1.03 94.3 70-130 Chromium 66.6 0.427 " 37.3 25.0 112 70-130 Copper 48.1 0.427 " 37.3 16.8 83.9 70-130 Lead 38.5 0.427 " 37.3 3.11 94.9 70-130 Nickel 65.6 0.427 " 37.3 ND 84.9 70-130 Selenium 31.9 0.427 " 37.3 ND 84.9 70-130 Silver 33.4 0.427 " 37.3 ND 89.5 40-130 Thallium 36.4 0.427 " 37.3 ND 97.5 70-130	Barium		88.9	4.27	#	37.3	60.6	75.9	70-130			
Chromium 66.6 0.427 " 37.3 25.0 112 70-130 Copper 48.1 0.427 " 37.3 16.8 83.9 70-130 Lead 38.5 0.427 " 37.3 3.11 94.9 70-130 Nickel 65.6 0.427 " 37.3 29.1 97.9 70-130 Selenium 31.9 0.427 " 37.3 ND 84.9 70-130 Silver 33.4 0.427 " 37.3 ND 89.5 40-130 Thallium 36.4 0.427 " 37.3 ND 97.5 70-130	Beryllium		38.1	0.427	н	37.3	ND	101	70-130			
Copper 48.1 0.427 " 37.3 16.8 83.9 70-130 Lead 38.5 0.427 " 37.3 3.11 94.9 70-130 Nickel 65.6 0.427 " 37.3 29.1 97.9 70-130 Selenium 31.9 0.427 " 37.3 ND 84.9 70-130 Silver 33.4 0.427 " 37.3 ND 89.5 40-130 Thallium 36.4 0.427 " 37.3 ND 97.5 70-130	Cadmium		36.2	0.427	Ħ	37.3	1.03	94.3	70-130			
Lead 38.5 0.427 " 37.3 3.11 94.9 70-130 Nickel 65.6 0.427 " 37.3 29.1 97.9 70-130 Selenium 31.9 0.427 " 37.3 ND 84.9 70-130 Silver 33.4 0.427 " 37.3 ND 89.5 40-130 Thallium 36.4 0.427 " 37.3 ND 97.5 70-130	Chromium		66.6	0.427	n	37.3	25.0	112	70-130			
Lead 38.5 0.427 " 37.3 3.11 94.9 70-130 Nickel 65.6 0.427 " 37.3 29.1 97.9 70-130 Selenium 31.9 0.427 " 37.3 ND 84.9 70-130 Silver 33.4 0.427 " 37.3 ND 89.5 40-130 Thallium 36.4 0.427 " 37.3 ND 97.5 70-130	Соррег		48.1	0.427	"	37.3	16.8	83.9	70-130			
Nickel 65.6 0.427 " 37.3 29.1 97.9 70-130 Selenium 31.9 0.427 " 37.3 ND 84.9 70-130 Silver 33.4 0.427 " 37.3 ND 89.5 40-130 Thallium 36.4 0.427 " 37.3 ND 97.5 70-130	Lead		38.5	0.427	**	37.3	3.11	94.9	70-130			
Selenium 31.9 0.427 " 37.3 ND 84.9 70-130 Silver 33.4 0.427 " 37.3 ND 89.5 40-130 Thallium 36.4 0.427 " 37.3 ND 97.5 70-130	Nickel		65.6	0.427	**	37.3	29.1	97.9	70-130			
Silver 33.4 0.427 " 37.3 ND 89.5 40-130 Thallium 36.4 0.427 " 37.3 ND 97.5 70-130	Selenium		31.9	0.427	**	37.3	ND	84.9	70-130			
Thallium 36.4 0.427 " 37.3 ND 97.5 70-130	Silver		33.4	0.427	•	37.3	ND	89.5	40-130			
	Thallium		36.4	0.427	n	37.3	ND	97.5	70-130			
	Zinc		70.3	4.27	н	37.3	39.0	83.9	70-130			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. Wa-

Scott A. Woerman, Project Manager

Page 12 of 19

1910 Fairview Ave. E. Seattle WA, 98102

Project: Third Runway/Pit Samples

Spike

Source

%REC

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report
Issued: 10/30/01 19:55

RPD

Total Metals by EPA 6000/7000 Series Methods - Quality Control

Reporting

North Creek Analytical - Bothell

Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch 1J08034:	Prepared 10/08/01	Using EPA	A 3050B									
Matrix Spike Dup	(1J08034-MSD1)		_			Source: I	31 J 0187-0)1				
Antimony		1.06	0.410	mg/kg dry	35.8	ND	2.96	70-130	35.0	20	Q-1	
Arsenic		34.3	0.410	n	35.8	2.59	88.6	70-130	3.44	20		
Barium		87.1	4.10	"	35.8	60.6	74.0	70-130	2.05	20		
Beryllium		36.7	0.410	"	35.8	ND	101	70-130	3.74	20		
Cadmium		34.8	0.410	n	35.8	1.03	94.3	70-130	3.94	20		
Chromium		64.1	0.410	**	35.8	25.0	109	70-130	3.83	20		
Соррег		49.4	0.410	н	35.8	16.8	91.1	70-130	2.67	20		
Lead		36.9	0.410	**	35.8	3.11	94.4	70-130	4.24	20		
Nickel		66.3	0.410	#	35.8	29.1	104	70-130	1.06	20		
Selenium		30.8	0.410	n	35.8	ND	85.4	70-130	3.51	20		
Silver		31.4	0.410	**	35.8	ND	87.7	40-130	6.17	50		
Thallium		34.7	0.410	•	35.8	ND	96.8	70-130	4.78	20		
Zinc		71.2	4.10	"	35.8	39.0	89.9	70-130	1.27	20		
Post Spike (1J080	34-PS1)			Source: B1J0187-01								
Antimony		212	1.92	mg/kg dry	210	ND	101	70-130				

Batch 1J09035: Prepared 10/09/01 Using EPA 3050B

Blank (1J09035-BLK1)			
Arsenic	ND	0.500	mg/kg
Barium	ND.	5.00	•
Beryllium	ND	0.500	"
Cadmium	ND	0.500	*
Chromium	ND	0.500	•
Copper	ND	0.500	**
Lead	ND	0.500	"
Nickel	ND	0.500	"
Selenium	ND	0.500	"
Silver	ND	0.500	*
Thallium	ND	0.500	11
Zinc	ND	5.00	19

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. Wa-

Scott A. Woerman, Project Manager

Page 13 of 19

Project: Third Runway/Pit Samples

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report Issued: 10/30/01 19:55

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

		1	Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1J09035:	Prepared 10/09/01	Using EPA	3050B								····
LCS (1J09035-BS	1)										
Arsenic		36.8	0.500	mg/kg	39.2		93.9	70-130			
Barium		40.8	5.00	n	39.2		104	80-120			
Beryllium		37.2	0.500	Ħ	39.2		94.9	80-120			
Cadmium		37.8	0.500	Ħ	39.2		96.4	70-130			
Chromium		39.8	0.500	n	39.2		102	80-120			
Copper		39.8	0.500	*	39.2		102	80-120			
Lead		38.5	0.500	**	39.2		98.2	80-120			
Nickel		38.6	0.500	*	39.2		98.5	80-120			
Selenium		34.8	0.500	**	39.2		88.8	70-130			
Silver		38.4	0.500	**	39.2		98.0	40-130			
Thallium		38.2	0.500	10	39.2		97.4	80-120			
Zinc		39.0	5.00	н	39.2		99.5	70-130			
LCS Dup (1J0903	5-BSD1)						·				
Arsenic		37.6	0.500	mg/kg	39.6		94.9	70-130	2.15	20	
Barium		41.7	5.00	"	39.6		105	80-120	2.18	20	
Beryllium		39.2	0.500		39.6		99.0	80-120	5.24	20	
Cadmium		38.4	0.500	*	39.6		97.0	70-130	1.57	20	
Chromium		39.8	0.500	"	39.6		101	80-120	0.00	20	
Copper		40.1	0.500	"	39.6		101	80-120	0.751	20	
Lead		37.4	0.500	11	39.6		94.4	80-120	2.90	20	
Nickel		38.6	0.500	H	39.6		97.5	80-120	0.00	20	
Selenium		36.1	0.500	"	39.6		91.2	70-130	3.67	20	
Silver		39.5	0.500	11	39.6		99.7	40-130	2.82	20	
Thallium		36.8	0.500	"	39.6		92.9	80-120	3.73	20	
Zinc		39.5	5.00	"	39.6		99.7	70-130	1.27	20	
Matrix Spike (1J0	99035-MS1)	Source: B1J0187-02									
Arsenic		39.7	0.500	mg/kg dry	41.4	2.94	88.8	70-130			
Barium		88.4	5.00	**	41.4	74.6	33.3	70-130			Q-
Beryllium	•	38.2	0.500	11	41.4	ND	91.7	70-130			
Cadmium		38.5	0.500	11	41.4	ND	92.6	70-130			
Chromium		55.2	0.500	Ħ	41.4	21.2	82.1	70-130			
Copper		54.2	0.500	"	41.4	16.0	92.3	70-130			
Lead		40.3	0.500	lt.	41.4	2.36	91.6	70-130			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. W-

Scott A. Woerman, Project Manager

Page 14 of 19

Project: Third Runway/Pit Samples

1910 Fairview Ave. E. Seattle WA, 98102

Project Number: 4978-19 Project Manager: Rick Moore Amended Report

Issued: 10/30/01 19:55

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1J09035:	Prepared 10/09/01	Using EPA	3050B								
Matrix Spike (1J0	9035-MS1)					Source: I	31 J 0187-0)2			
Nickel		55.1	0.500	mg/kg dry	41.4	24.6	73.7	70-130			
Selenium		33.0	0.500	n	41.4	ND	79.7	70-130			
Silver		37.8	0.500	*	41.4	ND	91.3	40-130			
Thallium		36.7	0.500	•	41.4	ND	88.4	70-130			
Zinc		69.5	5.00	n	41.4	31.8	91.1	70-130			
Matrix Spike Dup	(1J09035-MSD1)					Source: I	B1J0187-0	02			
Arsenic		38.9	0.500	mg/kg dry	41.0	2.94	87.7	70-130	2.04	20	
Barium		90.3	5.00	*	41.0	74.6	38.3	70-130	2.13	20	Q-15
Beryllium		36.5	0.500	•	41.0	ND	88.5	70-130	4.55	20	
Cadmium		37.7	0.500	#	41.0	ND	91.5	70-130	2.10	20	
Chromium		59.5	0.500	n	41.0	21.2	93.4	70-130	7.50	20	
Copper		55.9	0.500	Ħ	41.0	16.0	97.3	70-130	3.09	20	
Lead		39.4	0.500	n	41.0	2.36	90.3	70-130	2.26	20	
Nickel		59.8	0.500	•	41.0	24.6	85.9	70-130	8.18	20	
Selenium		31.8	0.500	n	41.0	ND	77.6	70-130	3.70	20	
Silver		35.7	0.500	"	41.0	ND	87.1	40-130	5.71	50	
Thallium		37.1	0.500		41.0	ND	90.3	70-130	1.08	20	
Zinc		70.8	5.00	*	41.0	31.8	95.1	70-130	1.85	20	
Batch 1J10040:	Prepared 10/10/01	Using EP	A 7471A								
Blank (1J10040-B	LK1)										
Mercury		ND	0.200	mg/kg							
LCS (1J10040-BS	(1)										
Mercury		0.518	0.200	mg/kg	0.489		106	80-120			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its

Scott A. Woerman, Project Manager

Page 15 of 19

Project: Third Runway/Pit Samples

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report

Issued: 10/50/01 19:55

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD		
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1J10040:	Prepared 10/10/01	Using EP.	A 7471A				····				
LCS Dup (1J10040	-BSD1)										
Mercury		0.554	0.200	mg/kg	0.495		112	80-120	6.72	20	
Matrix Spike (1J10	040-MS1)					Source: E	31J0187-0)1			
Mercury		0.633	0.200	mg/kg dry	0.541	ND	112	70-130			
Matrix Spike Dup ((1J10040-MSD1)					Source: E	31J0187-()1			
Mercury		0.622	0.200	mg/kg dry	0.538	ND	110	70-130	1.75	30	
Batch 1J11031:	Prepared 10/11/01	Using EP.	A 3050B		- · · · · ·						
Blank (1J11031-BL	K1)										
Antimony		ND	0.500	mg/kg							
LCS (1J11031-BS1))					<u> </u>					
Antimony		40.3	0.500	mg/kg	39.2		103	80-120			
LCS Dup (1J11031	-BSD1)										
Antimony		41.0	0.500	mg/kg	40.0		102	80-120	1.72	20	
Matrix Spike (1J11	031-MS1)				*	Source: H	31J0187-0	2RE1			
Antimony		2.04	0.500	mg/kg dry	42.2	ND	4.83	70-130			Q-13
Matrix Spike Dup ((1J11031-MSD1)					Source: F	31J0187-0	2RE1			
Antimony		1.54	0.500	mg/kg dry	41.4	ND	3.72	70-130	27.9	20	Q-13
Post Spike (1J1103	1-PS1)					Source: I	31 J018 7-0	2RE1			
Antimony		270	2.50	mg/kg dry	274	ND	98.5	70-130			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. Wa-

Scott A. Woerman, Project Manager

Page 16 of 19

Project: Third Runway/Pit Samples

1910 Fairview Ave. E. Seattle WA, 98102

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report issued: 10/30/01 19:55

SPLP Metals by EPA 1312/6000/7000 Series Methods - Quality Control

North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	nit Notes
Batch 1J22032: Prepared 10/22/01	Using EP	A 3020A		·						
Blank (1J22032-BLK1)		***							va	
Cadmium	ND	0.0500	mg/l							
LCS (1J22032-BS1)										
Cadmium	3.60	0.0500	mg/l	4.00		90.0	80-120			
LCS Dup (1J22032-BSD1)										
Cadmium	3.51	0.0500	mg/l	4.00		87.8	80-120	2.53	20	
Matrix Spike (1J22032-MS1)					Source: I	31J0132-0	01			
Cadmium	3.49	0.0500	mg/l	4.00	ND	87.1	75-125			
Matrix Spike Dup (1J22032-MSD1)					Source: 1	31J0132-	D1			
Cadmium	3.56	0.0500	mg/l	4.00	ND	88.8	75-125	1.99	20	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. W-

Scott A. Woerman, Project Manager

Page 17 of 19

Project: Third Runway/Pit Samples

Project Number: 4978-19
Project Manager: Rick Moore

Amended Report

Issued: 10/30/01 19:55

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1J10014: Prepared 10/10/01	Using Dry	Weight								
Blank (1J10014-BLK1)										
Dry Weight	100	1.00	%							

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. Wa-

Scott A. Woerman, Project Manager

Page 18 of 19

Hart Crowser, Inc. - WA
Project: Third Runway/Pit Samples

1910 Fairview Ave. E.
Project Number: 4978-19
Seattle WA, 98102
Project Manager: Rick Moore
Issued: 10/30/01 19:55

Notes and Definitions

Q-13	Multiple analyses indicate the percent recovery is outside the control limits due to a matrix effect.
Q-15	Analyses are not controlled on matrix spike RPD and/or percent recoveries when the sample concentration is significantly higher than the spike level.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported

Relative Percent Difference

Sample results reported on a dry weight basis

dry

RPD

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1. W-

Scott A. Woerman, Project Manager

Page 19 of 19

Seattle, Washington 98102-3699 Hart Crowser, Inc. 1910 Fairview Avenue East Phone: 206-324-9530 FAX: 206-328-5581 TOTAL NUMBER OF CONTAINERS BILLE **COMPOSITING INSTRUCTIONS** OBSERVATIONS/COMMENTS/ TURNARDUND TIME: HILLOURY NO. OF CONTAINERS **HARTCROWSER** STORAGE LOCATION: PLEASE BILL BETH CLARK (P.O.S) REQUESTED ANALYSIS 53 SPECIAL SHIPMENT HANDLING OR Per: Pers.# 100936 Accensor # STORAGE REQUIREMENTS: COOLER NO.: C CARAL 0401 1535 MATRIX DATE DATE TIME 7195 1003 1405 1445 1425 0435 8425 04 50 1410 1435 1415 TIME 1015 PROJECT NAME 3 2 RANDING / PLT SAMPLESSON COMPANY Jamos 15/1/01 HART CROWSER CONTACT NAM MARKETON RECEIVED BY RECEIVED BY DATE SIGNATURE PRINT NAME Sample Custody Record LAB NUMBER DESCRIPTION 8 oz. C. Lazs 1535 10/4/6/ TIME DATE DATE Willem 1W-28-6mp - MOD-57-00/ 100-15- CON 1 Ma-15. com 144-18-and 10B 4978-19 140.44 Com! 144-116-com 144-14 Cards 308-15-Comp3 SAMPLE ID 14-96-car 820-15-tong 180-15-0M Dymon COMPANY RELINQUISHED BY RELINQUISHED BY

Samples Shipped to:

SAMPLED BY:

مرز.

LAB NO.

PRINT NAME SIGNATURE

COMPANY

NATURE

STANDARD O 1 WEEK

X24 FOURS ☐ 48 HOURS ☐ 72 HOURS

OTHER.

for Other Contract Requirements

See Lab Work Order No.

IME

PRINT NAME SIGNATURE

TIME

COMPANY

Pink to Project Manager

White and Yellow Copies to Lab

Gold to Sample Custodian

Lab to Return White Copy to Hart Crowser

Seattle 11720 North Creek Plovy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210 Spokane East 11115 Montgomery, Sulte B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
541.383.9310 fax 541.382.7588

12 November 2001

Rick Moore Hart Crowser, Inc. - WA 1910 Fairview Ave. E. Seattle, WA 98102

RE: Third Runway/Pit Samples

Enclosed are amended results of analyses for samples received by the laboratory on 10/04/01 07:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Scott A. Woerman

Project Manager

11720 North Creek Plwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

509.924.3200 Tax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA

Project: Third Runway/Pit Samples

1910 Fairview Ave. E. Seattle WA, 98102

Project Number: 4978-19 Project Manager: Rick Moore Amended Report

Issued: 11/12/01 21:16

ANALYTICAL REPORT FOR SAMPLES - Amended

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BRQ-SP-COMP1	B1J0132-01	Soil	10/03/01 12:35	10/04/01 07:30
BRQ-SP-COMP2	B1J0132-02	Soil	10/03/01 12:40	10/04/01 07:30
BRQ-SP-COMP3	B1J0132-03	Soil	10/03/01 12:50	10/04/01 07:30
BRQ-SP-COMP4	B1J0132-04	Soil	10/03/01 13:00	10/04/01 07:30
BRQ-SP-COMP5	B1J0132-05	Soil	10/03/01 13:05	10/04/01 07:30
BRQ-SP-COMP6	B1J0132-06	Soil	10/03/01 13:15	10/04/01 07:30
MVP-COMP1	B1J0132-07	Soil	10/03/01 15:10	10/04/01 07:30
MVP-COMP2	B1J0132-08	Soil	10/03/01 15:25	10/04/01 07:30
MVP-COMP3	B1J0132-09	Soil	10/03/01 15:35	10/04/01 07:30
MVP-COMP4	B1J0132-10	Soil	10/03/01 16:05	10/04/01 07:30
MVP-COMP5	B1J0132-11	Soil	10/03/01 16:15	10/04/01 07:30
MVP-COMP6	B1J0132-12	Soil	10/03/01 16:25	10/04/01 07:30

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. Environmental Laboratory Network

Page 1 of 18

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA Project: Third Runway/Pit Samples

1910 Fairview Ave. E. Project Number: 4978-19 Seattle WA, 98102 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BRQ-SP-COMP1 (B1J0132-01) Soil	Sampled: 10/03	01 12:35	Received: 1	0/04/01 07	:30				
Silver	ND	0.431	mg/kg dry	1	1J04056	10/08/01	10/10/01	EPA 6020	
Arsenic	1.47	0.431	*	n	"	*		•	
Barium	28.2	4.31				#	*	•	
Beryllium	ND	0.431	H	*	"		"	•	
Cadmium	ND	0.431	**	t)		*	n		
Chromium	36.7	0.431	•	"	*		n		
Copper	97.5	0.431	n	**	*	"	n	**	
Mercury	ND	0.200	n	*	1J08024	10/08/01	10/09/01	EPA 7471A	
Nickel	41.8	0.431	n	**	1J04056	10/08/01	10/10/01	EPA 6020	
Lead	2.35	0.431	H	*	**		"		
Antimony	ND \mathcal{J}	0.431	H	"	11	n	n	•	
Selenium	0.580	0.431	H	"	**	**	Ħ	Ħ	
Thallium	ND	0.431		*	*		**	r	
Zinc	58.8	4.31		*		•	*	•	
BRQ-SP-COMP2 (B1J0132-02) Soil	Sampled: 10/03	/01 12:40	Received: 1	0/04/01 07	7:30				
Silver	ND	0.420	mg/kg dry	i	1J04056	10/08/01	10/10/01	EPA 6020	-
Arsenic	1.17	0.420	•	•	*	*	H	н	
Barium	41.3	4.20	,,	**	*	**	,	*	
Beryllium	ND	0.420	•	,		11	"	**	
Cadmium	ND	0.420	"			#	*	"	
Chromium	44.7	0.420	**		**	*	,	**	
Copper	115	0.420	H		H	,,	,,	t v	
Mercury	ND	0.200		*	1J08024	10/08/01	10/09/01	EPA 7471A	
Nickel	49.3	0.420		**	1J04056	10/08/01	10/10/01	EPA 6020	
Lead	2.21	0.420		,	**	"	. "	**	
Antimony	ND	0.420	•	"	н	. "		•	
Selenium	0.479	0.420	H	*			*	n	
Thallium	ND	0.420	n.			**	n'	U	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 2 of 18

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210
East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
509.924.9200 fax 509.924.9290
9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA 1910 Fairview Ave. E. Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

	F	eporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BRQ-SP-COMP3 (B1J0132-03) Soil	Sampled: 10/03/	01 12:50	Received:	10/04/01 07	7:30				
Silver	ND	0.382	mg/kg dry	1	1J04056	10/08/01	10/10/01	EPA 6020	
Arsenic	5.20	0.382	Ħ		*	n	"	r	
Barium	25.2	3.82	**	*	P	•	и	**	
Beryllium	ND	0.382	#		•	**	,,	n	
Cadmium	ND	0.382		n	77	"	"	11	
Chromium	32.7	0.382	n		Ħ	**	"	*	
Copper	107	0.382	11	**		*	"	*	
Mercury	ND	0.200	n	11	1J08024	10/08/01	10/09/01	EPA 7471A	
Nickel	70.5	0.382	n	**	1J04056	10/08/01	10/10/01	EPA 6020	
Lead	2.82	0.382	n	•	•	"	*	•	
Antimony	ND J	0.382	n	**	n	"	"	н	
Selenium	0.487	0.382	*	*	**	"	11	n	
Thallium	0.610	0.382	11		*	"	"	**	
Zinc	66.9	3.82	*	**	н	"	*	**	
BRQ-SP-COMP4 (B1J0132-04) Soil	Sampled: 10/03/	01 13:00	Received:	10/04/01 0	7:30				
Silver	ND	0.500	mg/kg dry	l	1J04056	10/08/01	10/10/01	EPA 6020	
Arsenic	0.866	0.500	"	P	•	19	n	r	
Barium	27.8	5.00	*		*	**	n	"	
Beryllium	ND	0.500		,,	•	**	11	Ħ	
Cadmium	ND	0.500	11	11	n	*	**		
Chromium	42.0	0.500	**	"			"	11	
Copper	131	0.500	"	"	*	**	*	*	
Mercury	ND	0.200	**	"	1J08024	10/08/01	10/09/01	EPA 7471A	
Nickel	42.5	0.500	**	**	1J04056	10/08/01	10/10/01	EPA 6020	
Lead	1.84	0.500	**	Ħ			. "	**	
Antimony	\mathcal{T} dn	0.500	n	,,		•	"	н	
Selenium	0.555	0.500	n	**			**	•	
Thallium	ND	0.500	11	"	•	11	*	n	
Zinc	67.3	5.00	n	"	n		**	•	
									

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 3 of 18

Seattle 11720 North Creek Plwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA

1910 Fairview Ave. E. Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19 Project Manager: Rick Moore Amended Report

Issued: 11/12/01 21:16

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

	1	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
BRQ-SP-COMP5 (B1J0132-05) Soil	Sampled: 10/03/	01 13:05	Received: 1	10/04/01 07	:30				
Silver	ND	0.500	mg/kg dry	1	1J04056	10/08/01	10/10/01	EPA 6020	
Arsenic	0.839	0.500	n	*		•	"	**	
Barium	29.1	5.00	n	**		*	*	*	
Beryllium	ND	0.500	**	n	"	"	•	*	
Cadmium	ND	0.500	"	Ħ	7	"	n	•	
Chromium	48.8	0.500	•	**	•	**	n	"	
Copper	131	0.500	**	**	*	n	,	**	
Mercury	ND	0.200	"	,	1J08024	10/08/01	10/09/01	EPA 7471A	
Nickel	45.5	0.500	"		1J04056	10/08/01	10/10/01	EPA 6020	
Lead	2.60	0.500	11	**		"	P	•	
Antimony	NDT	0.500	*	**	**				
Selenium	0.554	0.500	*	**	**	**	•		
Thallium	ND	0.500	11	. "		*	,	v	
Zinc	58.1	5.00	H	•	**	**	•	**	
BRQ-SP-COMP6 (B1J0132-06) Soil	Sampled: 10/03/	01 13:15	Received:	10/04/01 07	7:30				
Silver	ND	0.500	mg/kg dry	1	1J04056	10/08/01	10/10/01	EPA 6020	
Arsenic	0.927	0.500	**	**	19		*	,,	
Barium	27.2	5.00	**		**		Ħ	n	
Beryllium	ND	0.500	*	#		10	*	Ħ	
Cadmium	ND	0.500	n	11	"		•	n	
Chromium	46.3	0.500		н	n		#		
Copper	111	0.500	n		**	•		*	
Mercury	ND	0.200	,,	"	1J08024	10/08/01	10/09/01	EPA 7471A	
Nickel	44.4	0.500	n	"	1J04056	10/08/01	10/10/01	EPA 6020	
Lead	1.85	0.500	**	n	• #	H	. "	*	
Antimony	NDZ	0.500	77	"	*	**	*	"	
Selenium	0.639	0.500	•	*				п	
Thallium	ND	0.500	n	**	**	н	۳.	n	
Zinc	57.6	5.00		n	*	*	11	77	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 4 of 18

11720 North Creek Plwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Sulte B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA 1910 Fairview Ave. E. Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

Analyte	F Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Zimiyio						.			
MVP-COMP1 (B1J0132-07) Soil	Sampled: 10/03/01 1	5:10 Re	ceived: 10/0	4/01 07:30					
Silver	ND	0.500	mg/kg dry	1	1J04056	10/08/01	10/10/01	EPA 6020	
Arsenic	1.83	0.500	n	*	H	•	m	**	
Barium	92.7	5.00	*		"	"		"	
Beryllium	ND	0.500	,,	"	**	"	•	"	
Cadmium	ND	0.500	"	*		**	"	**	
Chromium	20.9	0.500		"	**	**	*	"	
Copper	24.5	0.500		"	**	31	"	n	
Mercury	ND	0.200	19	•	1J08024	10/08/01	10/09/01	EPA 7471A	
Nickel	12.0	0.500	*	n	1J04056	10/08/01	10/10/01	EPA 6020	
Lead	4.36	0.500	**	**	**	"	n	**	
Antimony	NDI	0.500	**	*	*	"	n	"	
Selenium	ND	0.500	**	**	**	•	*	**	
Thallium	ND	0.500	**	*	"	п	**	**	
Zinc	36.8	5.00	**	*	H	"	Ħ	н	
MVP-COMP2 (B1J0132-08) Soil	Sampled: 10/03/01	15:25 Re	eceived: 10/0	4/01 07:30)				
Silver	ND	0.400	mg/kg dry	1	1J04056	10/08/01	10/10/01	EPA 6020	
Arsenic	1.73	0.400	**	**	"	*	"	**	
Barium	128	4.00	**	n	Ħ	"	*	**	
Beryllium	0.583	0.400	**			n .	"	**	
Cadmium	ND	0.400		•	•	11	"	**	
Chromium	21.7	0.400	"	**	**	n	11	*	
Copper	25.2	0.400	"	"	*	**	*	**	
Mercury	ND	0.200			1J08024	10/08/01	10/09/01	EPA 7471A	
Nickel	12.8	0.400	"	"	1J04056	10/08/01	10/10/01	EPA 6020	
Lead	5.52	0.400	**	"		**	• •	**	
Antimony	NDZ	0.400	**	"	**	•	*	n	
Selenium	ND	0.400	n	**	11	*	**	"	
Thallium	ND	0.400	11	11	*	,,	п.	и	
Zinc	38.8	4.00	II.	**	**	**	14	"	

NFM 12/11/01

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 5 of 18

Seattle 11720 North Creek Plovy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA

Project: Third Runway/Pit Samples

1910 Fairview Ave. E. Seattle WA, 98102

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

Total Metals by EPA 6000/7000 Series Methods

North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MVP-COMP3 (B1J0132-09) Soil	Sampled: 10/03/01 1	15:35 R	eceived: 10/0	4/01 07:30)	-			
Silver	ND	0.455	mg/kg dry	1	1J04056	10/08/01	10/10/01	EPA 6020	
Arsenic	1.40	0.455	Ħ	**	*	n		**	
Barium	163	4.55	*		*	H		Ħ	
Beryllium	1.01	0.455	r	*	**		•	11	
Cadmium	ND	0.455	#	,	*	*	n	n	
Chromium	30.0	0.455	*	"	*	**	"	н	
Copper	20.1	0.455	и		**	,	**		
Mercury	ND	0.200	н	*	1J08024	10/08/01	10/09/01	EPA 7471A	
Nickel	17.7	0.455	н	*	1J04056	10/08/01	10/10/01	EPA 6020	
Lead	6.58	0.455	**	**	*	**	n	n	
Antimony	T DN	0.455		n	*		11	"	
Selenium	ND	0.455	P	*	**	17	H		
Thallium	ND	0.455	•	*	•	"		n	
Zinc	27.6	4.55	*		"	77	"	**	
MVP-COMP4 (B1J0132-10) Soil	Sampled: 10/03/01 1	16:05 R	eceived: 10/0	4/01 07:30					
Silver	ND	0.500	mg/kg dry	1	1J04056	10/08/01	10/10/01	EPA 6020	
Arsenic	1.82	0.500	"	*	**	"	,,	n	
Barium	89.5	5.00	**	"	"		*	10	
Beryllium	ND	0.500	#	**			**	n	
Cadmium	ND	0.500	*	*			Ħ	,	
Chromium	21.5	0.500						•	
Copper	25.8	0.500	H	*	*	н	n	n	
Mercury	ND	0.200	17	"	1J08024	10/08/01	10/09/01	EPA 7471A	
Nickel	13.0	0.500			1J04056	10/08/01	10/10/01	EPA 6020	
Lead	4.46	0.500		**	H	11	. "	#	
Antimony	Zdn	0.500	*		,,			**	
Selenium	ND S	0.500	,		*1	"		**	
Thallium	ND	0.500	,,		n	**	-11	,,	
Zinc	36.2	5.00	n	н	**		**	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 6 of 18

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA 1910 Fairview Ave. E. Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

	R	eporting				_			
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MVP-COMP5 (B1J0132-11) Soil	Sampled: 10/03/01 1	6:15 Re		4/01 07:30)				
Silver	ND	0.431	mg/kg dry	1	1J04056	10/08/01	10/10/01	EPA 6020	
Arsenic	1.80	0.431	,,	,,	н	n	•	**	
Barium	92.4	4.31	•	**		n	Ħ		
Beryllium	0.602	0.431	*	н	н	**	,	19	
Cadmium	ND	0.431	,,	н	**	"	"	Ħ	
Chromium	19.3	0.431	**	*	**	n	**	11	
Copper	27.3	0.431	n	*	"		n	n	
Mercury	ND	0.200	**	11	1J08024	10/08/01	10/09/01	EPA 7471A	
Nickel	11.6	0.431	**	**	1J04056	10/08/01	10/10/01	EPA 6020	
Lead	5.10	0.431	"		H		**	1*	
Antimony	NDJ	0.431		"	n	**	**	n	
Selenium	ND	0.431		*	*	"	"	**	
Thallium	ND	0.431	n	"	"	**	11	"	
Zinc	38.3	4.31	**	"	"	**	" .	"	
MVP-COMP6 (B1J0132-12) Soil	Sampled: 10/03/01 1	6:25 R	eceived: 10/0	04/01 07:30	0				
Silver	ND	0.340	mg/kg dry	i	1J04056	10/08/01	10/10/01	EPA 6020	
Arsenic	1.87	0.340	•	*	**	"	11	*	
Barium	96.8	3.40	11	*	*	,	11	"	
Beryllium	0.572	0.340	*		"	•	*	*	
Cadmium	ND	0.340	Ħ	**	•	*	**	**	
Chromium	22.7	0.340	,	"	n	*	r	H	
Copper	24.7	0.340		**	**	"	Ħ	**	
Mercury	ND	0.200	11	*	1J08024	10/08/01	10/09/01	EPA 7471A	
Nickel	12.2	0.340	"	n	1J04056	10/08/01	10/10/01	EPA 6020	
Lead	4.98	0.340	•	"	*	n	"	**	
Antimony	ZDM	0.340	n	"	*	n	*	n	
Selenium	ND	0.340		*	**	"	**	**	
Thallium	ND	0.340	"	"	*	*		"	
Zinc	35.9	3.40	"	"	n	н	"	**	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. Environmental Laboratory Network

Page 7 of 18

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA

1910 Fairview Ave. E. Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19 Project Manager: Rick Moore Amended Report

Issued: 11/12/01 21:16

SPLP Metals by EPA 1312/6000/7000 Series Methods

North Creek Analytical - Bothell

		Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
BRQ-SP-COMP1 (B1J0132-01) Soil	Q-SP-COMP1 (B1J0132-01) Soil Sampled: 10/03/01 12:35			Received: 10/04/01 07:30						
Copper	ND	0.0500	mg/l	50	1J22032	10/22/01	10/23/01	EPA 6020		
BRQ-SP-COMP2 (B1J0132-02) Soil	Sampled: 10/03	3/01 12:40	Received:	10/04/01 07	7:30			·		
Chromium	ND	0.0500	mg/l	50	1J22032	10/22/01	10/23/01	EPA 6020		
Copper	ND	0.0500	**		**	**	**			
Nickel	ND	0.0500	#	**	"	**	n	"		
BRQ-SP-COMP3 (B1J0132-03) Soil	Sampled: 10/03	3/01 12:50	Received:	10/04/01 07	7:30					
Copper	ND	0.0500	mg/l	50	1J22032	10/22/01	10/23/01	EPA 6020		
Nickel	ND	0.0500	н	n	**	Ħ		11		
BRQ-SP-COMP4 (B1J0132-04) Soil	Sampled: 10/03	3/01 13:00	Received:	10/04/01 0	7:30					
Copper	ND	0.0500	mg/l	50	1J22032	10/22/01	10/23/01	EPA 6020		
BRQ-SP-COMP5 (B1J0132-05) Soil	Sampled: 10/03	3/01 13:05	Received:	10/04/01 0	7:30					
Copper	ND	0.0500	mg/l	50	1J22032	10/22/01	10/23/01	EPA 6020		
BRQ-SP-COMP6 (B1J0132-06) Soil	Sampled: 10/03	3/01 13:15	Received:	10/04/01 0	7:30					
Chromium	ND	0.0500	mg/l	50	1J22032	10/22/01	10/23/01	EPA 6020		
Copper	ND	0.0500	,,	Ħ	**	n	**	#		
MVP-COMP3 (B1J0132-09) Soil Sa	ampled: 10/03/01	1 15:35 R	eceived: 10/	04/01 07:30	0					
Beryllium	ND	0.0500	mg/l	50	1J22032	10/22/01	10/23/01	EPA 6010B		
MVP-COMP5 (B1J0132-11) Soil S	ampled: 10/03/01	16:15 R	eceived: 10/	04/01 07:30	0					
Beryllium	ND	0.0500	mg/l	50	1J30011	10/30/01	11/01/01	EPA 6010B		

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 8 of 18

Seattle 11720 North Creek Plwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA 1910 Fairview Ave. E. Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

	Re	porting							1
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BRQ-SP-COMP1 (B1J0132-01) Soil	Sampled: 10/03/01	12:35	Received:	10/04/01 07	:30	·			
Dry Weight	91.0	1.00	%	1	1J09004	10/09/01	10/10/01	BSOPSPL003R07	
BRQ-SP-COMP2 (B1J0132-02) Soil	Sampled: 10/03/01	12:40	Received:	10/04/01 07	':30				
Dry Weight	89.4	1.00	%	1	1J09004	10/09/01	10/10/01	BSOPSPL003R07	
BRQ-SP-COMP3 (B1J0132-03) Soil	Sampled: 10/03/01	12:50	Received:	10/04/01 07	7:30				
Dry Weight	91.1	1.00	%	1	1J09004	10/09/01	10/10/01	BSOPSPL003R07	
BRQ-SP-COMP4 (B1J0132-04) Soil	Sampled: 10/03/01	13:00	Received:	10/04/01 07	7:30				
Dry Weight	90.1	1.00	%	1	1J09004	10/09/01	10/10/01	BSOPSPL003R07	
BRQ-SP-COMP5 (B1J0132-05) Soil	Sampled: 10/03/01	13:05	Received:	10/04/01 07	7:30				
Dry Weight	92.3	1.00	%	1	1J09004	10/09/01	10/10/01	BSOPSPL003R07	
BRQ-SP-COMP6 (B1J0132-06) Soil	Sampled: 10/03/01	13:15	Received:	10/04/01 07	7:30	·			
Dry Weight	90.5	1.00	%	1	1J09004	10/09/01	10/10/01	BSOPSPL003R07	
MVP-COMP1 (B1J0132-07) Soil Sa	ampled: 10/03/01 15	:10 R	eceived: 10/	/04/01 07:30)				
Dry Weight	85.6	1.00	%	1	1J09004	10/09/01	10/10/01	BSOPSPL003R07	
MVP-COMP2 (B1J0132-08) Soil S	ampled: 10/03/01 15	:25 R	eceived: 10/	/04/01 07:30)				
Dry Weight	81.4	1.00	%	1	1J09004	10/09/01	10/10/01	BSOPSPL003R07	
MVP-COMP3 (B1J0132-09) Soil S	ampled: 10/03/01 15	:35 R	eceived: 10	/04/01 07:30)				
Dry Weight	76.3	1.00	%	1	1J09004	10/09/01	10/10/01	BSOPSPL003R07	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 9 of 18

11720 North Creek Plovy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA

Project: Third Runway/Pit Samples

1910 Fairview Ave. E. Seattle WA, 98102

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report

Issued: 11/12/01 21:16

Physical Parameters by APHA/ASTM/EPA Methods

North Creek Analytical - Bothell

		Reporting		• •		-					
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
MVP-COMP4 (B1J0132-10) Soil	Sampled: 10/03/01	16:05 Rec	ceived: 10/	04/01 07:30)						
Dry Weight	85.5	1.00	%	I	1J09004	10/09/01	10/10/01	BSOPSPL003R07			
MVP-COMP5 (B1J0132-11) Soil	Sampled: 10/03/01	16:15 Rec	ceived: 10/	04/01 07:30)			_			
Dry Weight	82.2	1.00	%	1	~ 1J09004	10/09/01	10/10/01	BSOPSPL003R07			
MVP-COMP6 (B1J0132-12) Soil Sampled: 10/03/01 16:25 Received: 10/04/01 07:30											
Dry Weight	79.2	1.00	%	1	1309004	10/09/01	10/10/01	BSOPSPL003R07			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 10 of 18

11720 North Creek Plwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA 1910 Fairview Ave. E. Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19 Project Manager: Rick Moore Amended Report

Issued: 11/12/01 21:16

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

Bark 1J04056: Prepared 10/04/01 Using EPA 3050B				Reporting		Spike	Source		%REC		RPD	
Martimory ND 0.500 mg/kg	Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Antimony Arsenic ND 0.500 0.50	Batch 1J04056:	Prepared 10/04/01	Using EP	A 3050B								
Arsenic ND 0.500 " Barrium ND 5.00 " Beryllium ND 0.500 " Cadmium ND 0.500 " Corporr ND 0.500 " Copper ND 0.500 " Lead ND 0.500 " Selenium ND 0.500 " Selenium ND 0.500 " Thallium ND 0.50	Blank (1J04056-Bl	LK1)										
Barium ND 5.00 " Cadmium ND 0.500 " Chromium ND 0.500 " Copper ND 0.500 " Lead ND 0.500 " Lead ND 0.500 " Silver ND 0.500 " Thallium ND 0.500 " Lex ND 0.500 " Silver ND 0.500 " Lex ND 0.500 " Silver ND 0.500 " Lex ND 0.500 " Silver ND 0.500 " Lex ND 0.500 " Chromium ND 0.500 " Lex ND 0.500 "	Antimony		ND	0.500	mg/kg							
Barium ND 0.500 " Cadmium ND 0.500 " Chromium ND 0.500 " Copper ND 0.500 " Copper ND 0.500 " Clead Clead ND 0.500 " Clead Clead ND 0.500 " Clead C	Arsenic		ND	0.500	**							
Beryllium ND 0.500 Cadmium ND 0.500 ND	Barium		ND	5.00	"							
Cadmium ND 0.500 " Copper ND 0.500 " Lead ND 0.500 " Nickel ND 0.500 " Selenium ND 0.500 " Silver ND 0.500 " ND 0.500 " Thallium ND 0.500 " LCS (1J04056-BS1) Arsenic 41.8 0.500 " 40.0 104 80-120 Barium 41.8 5.00 " 40.0 104 80-120 Cadmium 41.9 0.500 " 40.0 105 Rollium 41.9 0.500 " 40.0 106 80-120 Cadmium 41.9 0.500 " 40.0 107 108 80-120 Cadmium 41.9 0.500 " 40.0 108 80-120 Copper 41.7 0.500 " 40.0 108 80-120 Copper 41.7 0.500 " 40.0 109 80-120 Copper 41.7 0.500 " 40.0 104 80-120 Copper 41.7 0.500 R 40.0 104 80-120 Copper 41.7 0.500 R 40.0 104 80-120 Copper 40.0 Copper 40.0	Beryllium		ND	0.500	H							
ND	Cadmium		ND	0.500	*							
Lead ND	Chromium		ND	0.500	*							
No	Copper		ND	0.500	11*							
No.	Lead		ND	0.500								
Selenium ND 0.500 " Silver ND 0.500 " Thallium ND 0.500 " Zinc ND 5.00 " LCS (1J04056-BS1) LCS (1J04056-BS1) Antimony 44.4 0.500 mg/kg 40.0 111 80-120 Arsenic 41.8 0.500 " 40.0 104 80-120 Berjulium 41.8 5.00 " 40.0 108 80-120 Cadmium 41.9 0.500 " 40.0 105 70-130 Chromium 44.0 0.500 " 40.0 110 80-120 Copper 41.7 0.500 " 40.0 104 80-120 Lead 41.7 0.500 " 40.0 104 80-120 Selenium 40.1 0.500 " 40.0 104 80-120 Selenium 40.1 0.500	Nickel		ND	0.500								
Thallium ND 0.500 " Zinc ND 5.00 " LCS (1J04056-BS1) Antimony 44.4 0.500 mg/kg 40.0 111 80-120 Arsenic 41.8 0.500 " 40.0 104 70-130 Barium 41.8 5.00 " 40.0 104 80-120 Beryllium 43.4 0.500 " 40.0 108 80-120 Cadmium 41.9 0.500 " 40.0 105 70-130 Chromium 44.0 0.500 " 40.0 110 80-120 Copper 41.7 0.500 " 40.0 110 80-120 Lead 41.7 0.500 " 40.0 104 80-120 Nickel 41.0 0.500 " 40.0 104 80-120 Selenium 40.1 0.500 " 40.0 104 80-120 Selenium 40.1 0.500 " 40.0 104 80-120 Silver 41.7 0.500 " 40.0 100 70-130 Silver 41.7 0.500 " 40.0 104 80-120 Thallium 41.7 0.500 " 40.0 104 80-120	Selenium		NĐ	0.500	n							
Tailium	Silver		ND	0.500	"							
LCS (1J04056-BS1) Antimony 44.4 0.500 mg/kg 40.0 111 80-120 Arsenic 41.8 0.500 " 40.0 104 70-130 Barium 41.8 5.00 " 40.0 104 80-120 Beryllium 43.4 0.500 " 40.0 108 80-120 Cadmium 41.9 0.500 " 40.0 105 70-130 Chromium 44.0 0.500 " 40.0 110 80-120 Copper 41.7 0.500 " 40.0 104 80-120 Lead 41.7 0.500 " 40.0 104 80-120 Nickel 41.0 0.500 " 40.0 102 80-120 Selenium 40.1 0.500 " 40.0 100 70-130 Silver 41.7 0.500 " 40.0 104 40-130 Thallium 41.7 0.500 " 40.0 104 80-120			ND	0.500	11							
Antimony 44.4 0.500 mg/kg 40.0 111 80-120 Arsenic 41.8 0.500 " 40.0 104 70-130 Barium 41.8 5.00 " 40.0 104 80-120 Beryllium 43.4 0.500 " 40.0 108 80-120 Cadmium 41.9 0.500 " 40.0 105 70-130 Chromium 44.0 0.500 " 40.0 110 80-120 Copper 41.7 0.500 " 40.0 104 80-120 Lead 41.7 0.500 " 40.0 104 80-120 Nickel 41.0 0.500 " 40.0 104 80-120 Selenium 40.1 0.500 " 40.0 102 80-120 Selenium 41.7 0.500 " 40.0 100 70-130 Silver 41.7 0.500 " 40.0 104 40-130 Thallium 41.7 0.500 " 40.0 104 80-120			ND	5.00	Ħ							
Antimony 44.4 0.500 mg/kg 40.0 111 80-120 Arsenic 41.8 0.500 " 40.0 104 70-130 Barium 41.8 5.00 " 40.0 104 80-120 Beryllium 43.4 0.500 " 40.0 108 80-120 Cadmium 41.9 0.500 " 40.0 105 70-130 Chromium 44.0 0.500 " 40.0 110 80-120 Copper 41.7 0.500 " 40.0 104 80-120 Lead 41.7 0.500 " 40.0 104 80-120 Nickel 41.0 0.500 " 40.0 102 80-120 Selenium 40.1 0.500 " 40.0 100 70-130 Silver 41.7 0.500 " 40.0 104 80-120 Thallium 41.7 0.500 " 40.0 104 80-120	LCS (1J04056-BS	1)										
Barium 41.8 5.00 " 40.0 104 80-120 Beryllium 43.4 0.500 " 40.0 105 70-130 Cadmium 41.9 0.500 " 40.0 110 80-120 Chromium 44.0 0.500 " 40.0 110 80-120 Copper 41.7 0.500 " 40.0 104 80-120 Lead 41.7 0.500 " 40.0 104 80-120 Nickel 41.0 0.500 " 40.0 102 80-120 Selenium 40.1 0.500 " 40.0 100 70-130 Silver 41.7 0.500 " 40.0 100 70-130 Silver 41.7 0.500 " 40.0 104 80-120 Thallium			44.4	0.500	mg/kg	40.0		111	80-120			
Beryllium 43.4 0.500 " 40.0 108 80-120 Cadmium 41.9 0.500 " 40.0 105 70-130 Chromium 44.0 0.500 " 40.0 110 80-120 Copper 41.7 0.500 " 40.0 104 80-120 Lead 41.7 0.500 " 40.0 104 80-120 Nickel 41.0 0.500 " 40.0 102 80-120 Selenium 40.1 0.500 " 40.0 100 70-130 Silver 41.7 0.500 " 40.0 104 40-130 Thallium 41.7 0.500 " 40.0 104 80-120	Arsenic		41.8	0.500		40.0		104	70-130			
Cadmium 41.9 0.500 " 40.0 105 70-130 Chromium 44.0 0.500 " 40.0 110 80-120 Copper 41.7 0.500 " 40.0 104 80-120 Lead 41.7 0.500 " 40.0 102 80-120 Nickel 41.0 0.500 " 40.0 100 70-130 Selenium 40.1 0.500 " 40.0 104 40-130 Thallium 41.7 0.500 " 40.0 104 80-120	Barium		41.8	5.00	•	40.0		104	80-120			
Cadmium 41.9 0.500 " 40.0 105 70-130 Chromium 44.0 0.500 " 40.0 110 80-120 Copper 41.7 0.500 " 40.0 104 80-120 Lead 41.7 0.500 " 40.0 104 80-120 Nickel 41.0 0.500 " 40.0 102 80-120 Selenium 40.0 100 70-130 Silver 41.7 0.500 " 40.0 104 40-130 Thallium 41.7 0.500 " 40.0 104 80-120	Beryllium		43.4	0.500	11	40.0		108	80-120			
Copper 41.7 0.500 " 40.0 104 80-120 Lead 41.7 0.500 " 40.0 104 80-120 Nickel 41.0 0.500 " 40.0 102 80-120 Selenium 40.1 0.500 " 40.0 100 70-130 Silver 41.7 0.500 " 40.0 104 40-130 Thallium 41.7 0.500 " 40.0 104 80-120	•	•	41.9	0.500	**	40.0		105	70-130			
Lead 41.7 0.500 " 40.0 104 80-120 Nickel 41.0 0.500 " 40.0 102 80-120 Selenium 40.1 0.500 " 40.0 100 70-130 Silver 41.7 0.500 " 40.0 104 40-130 Thallium 41.7 0.500 " 40.0 104 80-120	Chromium		44.0	0.500	**	40.0		110	80-120			
Lead 41.7 0.500 " 40.0 104 80-120 Nickel 41.0 0.500 " 40.0 102 80-120 Selenium 40.1 0.500 " 40.0 100 70-130 Silver 41.7 0.500 " 40.0 104 40-130 Thallium 41.7 0.500 " 40.0 104 80-120			41.7	0.500	•	40.0		104	80-120			
Nickel 41.0 0.500 " 40.0 102 80-120 Selenium 40.1 0.500 " 40.0 100 70-130 Silver 41.7 0.500 " 40.0 104 40-130 Thallium 41.7 0.500 " 40.0 104 80-120	* *		41.7	0.500	*	40.0		104	80-120			
Selenium 40.1 0.500 " 40.0 100 70-130 Silver 41.7 0.500 " 40.0 104 40-130 Thallium 41.7 0.500 " 40.0 104 80-120			41.0	0.500		40.0		102	80-120			
Silver 41.7 0.500 " 40.0 104 40-130 Thallium 41.7 0.500 " 40.0 104 80-120			40.1	0.500	**	40.0		100	70-130			
Thallium 41.7 0.500 " 40.0 104 80-120			41.7	0.500	и	40.0		104	40-130			
104 70 120			41.7	0.500	**	40.0		104	80-120			
	Zinc		41.5	5.00	**	40.0		104	70-130			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 11 of 18

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA

Project: Third Runway/Pit Samples

1910 Fairview Ave. E. Seattle WA, 98102

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1J04056:	Prepared 10/04/01	Using EP	A 3050B								
LCS Dup (1J0405	6-BSD1)										
Antimony		43.1	0.500	mg/kg	38.5		112	80-120	2.97	20	
Arsenic		40.4	0.500	,	38.5		105	70-130	3.41	20	
Barium		41.1	5.00		38.5		107	80-120	1.69	20	
Beryllium		43.3	0.500	**	38.5		112	80-120	0.231	20	
Cadmium		40.5	0.500	*	38.5		105	70-130	3.40	20	
Chromium		42.7	0.500		38.5		111	80-120	3.00	20	
Copper		40.3	0.500	*	38.5		105	80-120	3.41	20	
Lead		40.2	0.500	,,	38.5		104	80-120	3.66	20	
Nickel		39.7	0.500	"	38.5		103	80-120	3.22	20	
Selenium		39.4	0.500	"	38.5		102	70-130	1.76	20	
Silver		40.9	0.500		38.5		106	40-130	1.94	20	
Thallium		40.3	0.500	"	38.5		105	80-120	3.41	20	
Zinc		40.3	5.00	Ħ	38.5		105	70-130	2.93	20	
Matrix Spike (1J0	4056-MS1)					Source:	B1J0132-	01			
Antimony	· · · · · · · · · · · · · · · · · · ·	1.65	0.500	mg/kg dry	41.5	ND	3.98	70-130			Q-1
Arsenic		40.7	0.500		41.5	1.47	94.5	70-130			
Barium		72.0	5.00	*	41.5	28.2	106	70-130			
Beryllium		42.4	0.500	n	41.5	ND	101	70-130			
Cadmium		41.0	0.500		41.5	ND	98.4	70-130			
Chromium		81.2	0.500	n	41.5	36.7	107	70-130			
Соррег		140	0.500		41.5	97.5	102	70-130			
Lead		43.4	0.500	#	41.5	2.35	98.9	70-130			
Nickel		80.5	0.500		41.5	41.8	93.3	70-130			
Selenium		37.8	0.500		41.5	0.580	89.7	70-130			
Silver		37.7	0.500	**	41.5	ND	90.5	40-130			
Thallium		41.4	0.500	**	41.5	ND	99.5	70-130			
Zinc		98.6	5.00	*	41.5	58.8	95.9	70-130			
21110		. ••									

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc.
Environmental Laboratory Network Page 12 of 18

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

Portland

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA

Project: Third Runway/Pit Samples

1910 Fairview Ave. E. Seattle WA, 98102

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1J04056:	Prepared 10/04/01	Using EP	A 3050B								
Matrix Spike Dup	(1J04056-MSD1)					Source: E	31 J 0132-0	1			
Antimony		0.876	0.500	mg/kg dry	40.3	ND	2.17	70-130	61.3	20	Q-1
Arsenic		39.5	0.500	H	40.3	1.47	94.4	70-130	2.99	20	
Barium		75.3	5.00		40.3	28.2	117	70-130	4.48	20	
Beryllium		41.6	0.500	"	40.3	ND	102	70-130	1.90	20	
Cadmium		39.9	0.500		40.3	ND	98.6	70-130	2.72	20	
Chromium		82.9	0.500		40.3	36.7	115	70-130	2.07	20	
Copper		141	0.500	"	40.3	97.5	108	70-130	0.712	20	
Lead		42.1	0.500	•	40.3	2.35	98.6	70-130	3.04	20	
Nickel		81.6	0.500	н	40.3	41.8	98.8	70-130	1.36	20	
Selenium		36.5	0.500	n	40.3	0.580	89.1	70-130	3.50	20	
Silver		37.1	0.500	*	40.3	ND	91.7	40-130	1.60	50	
Thallium		40.0	0.500	**	40.3	ND	99.0	70-130	3.44	20	
Zinc		97 .9	5.00	•	40.3	58.8	97.0	70-130	0.712	20	
Post Spike (1J0405	66-PS1)					Source: I	31 J 0132-0	1			
Antimony		241	2.16	mg/kg dry	237	ND	102	70-130			
Batch 1J08024:	Prepared 10/08/01	Using EP.	A 7471A								
Blank (1J08024-Bl	LK1)										
Mercury		ND	0.200	mg/kg							
LCS (1J08024-BS1											
Mercury		0.548	0.200	mg/kg	0.497		110	80-120			
LCS Dup (1J08024	I-BSD1)										
Mercury		0.518	0.200	mg/kg	0.500		104	80-120	5.63	20	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. Environmental Laboratory Network Page 13 of 18

Seattle 11720 North Creek Plwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA

1910 Fairview Ave. E. Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19 Project Manager: Rick Moore Amended Report

Issued: 11/12/01 21:16

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	
	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Prepared 10/08/01	Using EP	A 7471A		···				•		
8024-MS1)					Source: I	31J0082-0	1			
	0.652	0.200	mg/kg dry	0.525	ND	115	70-130			
(1J08024-MSD1)					Source: I	31J0082-0)1			
	0.655	0.200	mg/kg dry	0.527	ND	115	70-130	0.459	30	
	8024-MS1)	Result Prepared 10/08/01 Using EP 3024-MS1) 0.652 (1J08024-MSD1)	Prepared 10/08/01 Using EPA 7471A 3024-MS1) 0.652 0.200 (1J08024-MSD1)	Result Limit Units Prepared 10/08/01 Using EPA 7471A 3024-MS1) 0.652 0.200 mg/kg dry (1J08024-MSD1)	Result Limit Units Level Prepared 10/08/01 Using EPA 7471A 3024-MS1) 0.652 0.200 mg/kg dry 0.525 (1J08024-MSD1)	Result Limit Units Level Result	Result Limit Units Level Result %REC Prepared 10/08/01 Using EPA 7471A 3024-MS1) Source: B1J0082-0 0.652 0.200 mg/kg dry 0.525 ND 115 (1J08024-MSD1) Source: B1J0082-0	Result Limit Units Level Result %REC Limits	Result Limit Units Level Result %REC Limits RPD	Result Limit Units Level Result %REC Limits RPD Limit

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

Environmental Laboratory Network Page 14 of 18 North Creek Analytical, Inc.

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA 1910 Fairview Ave. E.

Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19 Project Manager: Rick Moore Amended Report

Issued: 11/12/01 21:16

SPLP Metals by EPA 1312/6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

nits RPD	Limit	Notes
		•
120		
120		
120		
120 0.00	20	
120 2.78	20	
120 2.14	20	
120 1.66	20	
125		
128		
125		
125		
125 1.06	20	
1.99	20	
-125 1.58	20	
	20	
	1.99 2-125 1.58	-128 -125 -125 -125 1.06 20 -128 1.99 20 -125 1.58 20

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. Environmental Laboratory Network Page 15 of 18

Seattle 11720 North Creek Plwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383,9310 fax 541.382.7588

Hart Crowser, Inc. - WA 1910 Fairview Ave. E.

Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

SPLP Metals by EPA 1312/6000/7000 Series Methods - Quality Control

North Creek Analytical - Bothell

"	Reporting		Spike	Source		%REC		RPD	
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
10/30/01 Using E	PA 3020A								
ND	0.0500	mg/l							
3.89	0.0500	mg/l	4.00		97.2	80-120			
3.78	0.0500	mg/l	4.00		94.5	80-120	2.87	20	
				Source: 1	B1J0132-1	11			
3.95	0.0500	mg/l	4.00	ND	98.6	75-125			
D1)				Source: 1	B1J0132-	11			
3.99	0.0500	mg/l	4.00	ND	99.6	75-125	1.01	20	
	ND 3.89 3.78 3.95	Result Limit 10/30/01 Using EPA 3020A ND 0.0500 3.89 0.0500 3.78 0.0500 3.95 0.0500 D1)	Result Limit Units	Result Limit Units Level	Result Limit Units Level Result	Result Limit Units Level Result %REC 10/30/01 Using EPA 3020A	Result Limit Units Level Result %REC Limits	Result Limit Units Level Result %REC Limits RPD	Result Limit Units Level Result %REC Limits RPD Limit

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 16 of 18

11720 North Creek Plovy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924,9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA 1910 Fairview Ave. E.

Seattle WA, 98102

Project: Third Runway/Pit Samples

Project Number: 4978-19 Project Manager: Rick Moore

Amended Report Issued: 11/12/01 21:16

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1J09004:	Prepared 10/09/01	Using Dr	y Weight								
Blank (1J09004-Bl	LK1)										
Dry Weight		100	1.00	%							

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Environmental Laboratory Network Page 17 of 18 North Creek Analytical, Inc.

Seattle 11720 North Creek Plovy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 **Portland** 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Hart Crowser, Inc. - WA

Project: Third Runway/Pit Samples

1910 Fairview Ave. E. Seattle WA, 98102

Project Number: 4978-19 Project Manager: Rick Moore Amended Report

Issued: 11/12/01 21:16

Notes and Definitions

SPLP Extraction Blank A-01

Multiple analyses indicate the percent recovery is outside the control limits due to a matrix effect. Q-13

Analyte DETECTED DET

Analyte NOT DETECTED at or above the reporting limit ND

NR

Sample results reported on a dry weight basis dry

Relative Percent Difference RPD

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 18 of 18

Seattle, Washington 98102-3699 1910 Fairview Avenue East Z Phone: 206-324-9530 FAX: 206-328-5581 2 63 S 20 Hart Crowser, Inc. 6 <u>ر</u> 20 9 Я = <u>ā</u> ١ ١ TOTAL NUMBER OF CONTAINERS COMPOSITING INSTRUCTIONS **OBSERVATIONS/COMMENTS/** □ STANDARD □ 1 WEEK OTHER TURNAROUND TIME: ☐ 24 HOURS ☐ 48 HOURS ☐ 72 HOURS NO. OF CONTAINERS DI 30134 Rust Tott, At Stone barde wat HARTCROWSER 5.80 STORAGE LOCATION: Pour of Scorter 7 · Bert CAREK MILLER REQUESTED ANALYSIS SPECIAL SHIPMENT HANDLING OR STORAGE REQUIREMENTS: for Other Contract Requirements Gold to Sample Custodian See Lab Work Order No. ¥ COOLER NO .: りまと Ber Lab to Return White Copy to Hart Crowser 3000 H BEERS + 19/1/01 MATRIX DATE ろいに DATE 7:30 TIME 1235 1525 TIME 240 1250 1300 <u>и</u> 8 1603 162.5 315. 150 1535 579 PROJECT NAME 3 2 RUDWAYT / PLT SAMPLEDE RECEIVED BY RECEIVED BY DATE 143141 PRINT NAME SIGNATURE HART CROWSER CONTACT NELL MONTON PRINT NAM COMPANY COMPANY Dopusa Sample Custody Record Pink to Project Manager LAB NUMBER 862. CLESS DESCRIPTION 6730 10/**5**(6/ DATE DATE TIME SAMPLED BY: KILLLOPLY BRQ -57-1000 MW- comp3 MLP. COPUS 4 164-54-100mp-5 MW-Com 2 \$ 5. Com 124-59-com of HUB- COMB 5 MVV - COMUP 6 128-54-60W2 7000-15-02 White and Yellow Copies to Lab SAMPLE ID HW-Cont PI-8754 BOL James . COMPANY RELINQUISHED BY Samples Shipped to: RELANQUISHED BY PRINT NAME PRINT NAME SIGNATURE COMPANY

LAB NO.

December 20, 2001

DEC 21 2001 DEC 21 2001

Mr. Ed Abbasi, P.E. Washington Department of Ecology Northwest Regional Office 3190 160th Ave SE Bellevue, Washington 98008

RE:

Application for Renewal of NPDES Permit Seattle-Tacoma International Airport (NPDES Permit WA-002465-1)

Dear Mr. Abbasi:

Enclosed you will find EPA Forms 1, 2C, 2F and Ecology Form 177 for the renewal of the NPDES permit for the Port of Seattle, Seattle-Tacoma International Airport as required by General Condition G7 of NPDES Permit WA-002465-1. The updated Stormwater Pollution Prevention Plan (SWPPP) for Airport Operations required by Special Condition S12.B.1 will be sent under separate cover.

Form 2C for the Industrial Waste Treatment Plant and Form 177 for discharges to the Midway Sewer District are very similar to the forms submitted in 1998. The flows for Midway discharges reflect full build-out of the Central Terminal Expansion, the South Terminal Expansion, and the North End Development. The first two projects are under construction; the third is still being studied.

There are three substantial changes to Form 2F. First, the Port is proposing consolidation of monitoring locations at both the north and south ends of the airport. The current monitoring locations were selected so that the Port's data would not be "tainted" with non-Port runoff from the City of SeaTac and Highway SR 518 that co-mingles with Port runoff before it reaches the stormwater treatment facilities at Lake Reba or the Northwest Ponds. However, we have come to realize that this approach does not allow the Port to monitor its runoff downstream of all of the existing and proposed best management practices and treatment facilities designed to treat the

Port's stormwater. With this change, the Port's monitoring data will better reflect what is actually discharged to the receiving environment where it might impact aquatic resources. This will allow both the Port and Ecology to get a better handle on whether our BMPs and treatment facilities are working or not. Second, Form 2F also includes the proposed new outfalls for projects that will be constructed in the next 5 years including the proposed Third Runway. Third, due to land use changes and re-routing of drainage at Sea-Tac, several outfalls listed in the current permit do not have industrial activities and therefore, the application lists only those outfalls that receive runoff from industrial activities.

If you have questions regarding the application for renewal, please call Tom Hubbard of my staff at 206/248-7135.

Sincerely,

Michael Feldman

Director, Aviation Facilities

Enclosure

xc: Tom Hubbard, POS/AV/ENV

Julie Oiye, Burien Public Library

APPLICATION FOR A WASTEWATER DISCHARGE PERMIT FOR DISCHARGE OF INDUSTRIAL WASTEWATER TO A POTW

FOR OFFICE USE ONLY	Check One	New/Renewal	Modification	
Date Application Received	Date Fee Paid	Application Permit No		Date Application Accepted

This application is for a wastewater discharge permit for a discharge of industrial wastewater to a publicly owned treatment works (POTW) as required in accordance with provisions of Chapter 90.48 RCW and Chapter 173-216 WAC. Permit applications provide the Department with information on pollutants in the waste stream, materials which may enter the waste stream, and the flow characteristics of the discharge.

The Department may request additional information at a later date to clarify the conditions of this discharge. Information previously submitted to the Department and which is applicable to this application should be referenced in the appropriate section.

 <u> </u>	ON A. GENERAL INFORMATION	
Applicant Name	Port of Seattle	
Facility Name: (if different from Applicant)	Seattle-Tacoma International Airport	
Applicant Address:	P.O. Box 68727	
Facility Address:	Street Seattle, WA 98168 City/State 17891 Pacific Highway S. Street Seattle, WA 98158 City/State	Zip
Latitude/longitude of th	26 . 37 . 122 . 18 . 04	
	familiar with the information contained in this application:	
Thomas P. Hubbard	Surface Water Manager	
Name	Title	
206-248-7135	206-431-4980	
Telephone Number	Fax Number	

7. Cneck	One:		
V	Permit Renewal (inclu	ding renewal of temporary p	ermits authorized by RCW 90.48.200)
	Does this application amount of pollutant	on request a greater amou	nt of wastewater discharge, a greater of different pollutants than specified in
	For permit renewals, the application.	e current permit is an atta	chment, by reference, to this
	Permit Modification		
	Existing Unpermitted	Discharge	
~	Proposed Discharge		
	Anticipated date of	discharge: Rental Car W	ash (early 2002)
	-	Proposed Equip	oment: Wash Rack
Based on my inqui information, the in	system designed to assure that iry of the person or persons w formation submitted is, to the t ant pena <u>lti</u> es for, submitting fo	ent and all attachments were it qualified personnel properly ho manage the system, or thos best of my knowledge and belie	prepared under my direction or supervision in gather and evaluate the information submitted see persons directly responsible for gathering the f, true, accurate, and complete. I am aware that e possibility of a fine and/or imprisonment for
Muha	Heldman	12/19/01	Director, Aviation Facilities
(Signature*	Date	Title
Michael D. Fe	eldman		
	rinted Name		

*Applications must be signed as follows: Corporations, by a principal executive officer of at least the level of vice-president; partnership, by a general partner; sole proprietorship, by the proprietor. If these titles do not apply to your organization, the application is to be signed by the person who makes budget decisions for this facility.

The Department of Ecology is an equal opportunity agency and does not discriminate on the basis of race, creed, color, disability, age, religion, national origin, sex, marital status, disabled veteran's status, Vietnam Era veteran's status or sexual orientation

If you have special accommodation needs or require this document in alternative format please contact Ecology at (360) 407-6401 (voice). Ecology's telecommunications devise for the deaf (TDD) is (360) 407-6006.

SECTION B. PRODUCT INFORMATION

1. Briefly describe all manufacturing processes and products, and/or commercial activities at this facility. Provide the applicable Standard Industrial Classification (SIC) Code(s) for each activity (see Standard Industrial Classification Manual, 1987 ed.).

Boiler Blow Down SIC Code 4851 (Airport Terminal Services)

Average flow is 500 gallons per day based on full build out of South and Central Terminal Expansions.

Blow down includes surface blow down discharged via need valve at surface of boiler and bottom blow down via manual valve. Duration of blow down is based on field analyses.

Boiler additives are injected to control corrosion and scale and to disperse precipitates.

Boiler drainage for maintenance: annual 1800 gal./ $8\ hr$. and emergency drainage 1800 gal. $/\ 8\ hr$.

2. List raw materials and products:

Туре	RAW MA	TERIALS	Quantity
Fresh Make Up Water		400 - 800 gal./day	
Iron Passivator/ Silica Solubilizer 115	56	150 gal./mo.	
Oxygen Scavenger 1152		150 gal./ mo.	
Corrosion Control Agent 485		50 gal./ mo.	
Туре	PROD	UCTS	Quantity

SECTION C. PLANT OPERATIONAL CHARACTERISTICS

1. For each process listed in B.1, that generates wastewater, list the process, assign the waste stream a name and an ID # and describe whether it is a batch or continuous flow.

Process	Waste Stream Name	Waste Stream ID#	Batch or Continuous Process
Boiler	Surface Blow Down	STIA - B1	continuous
Boiler	Bottom Blow Down	STIA-B2	batch
			batch

2. On a separate sheet, produce a schematic drawing showing production processes, water flow through the facility, wastewater treatment devices and waste streams as named above. The drawing should indicate the source of intake water and show the operations contributing wastewater to the effluent. The treatment units should be labeled. Construct a water balance by showing average flows between intakes, operations, treatment units, and points of discharge to the POTW. (See the example on the last page of this application form.)

3.	What is the maximum daily discharge flow:	2,000	gallons/day
	What is the maximum average monthly discharge flow (daily flows averaged over a month	a): 500	gallons/day

- 4. Describe any planned wastewater treatment improvements or changes in wastewater disposal methods and the schedule for the improvements. (Use additional sheets, if necessary and label as attachment C4.)
 - Existing facilities may expand in the future. Flows may increase, but processes will not change.

SECTION B. PRODUCT INFORMATION

1. Briefly describe all manufacturing processes and products, and/or commercial activities at this facility. Provide the applicable Standard Industrial Classification (SIC) Code(s) for each activity (see Standard Industrial Classification Manual, 1987 ed.).

Cooling Tower Blow Down SIC Code 4851 (Airport Terminal Services)

Waste stream is batch blow down from cooling tower which provides air conditioning to the Terminal.

2. List raw materials and products:

Туре	RAW MATERIAI	.S Quantity
Fresh Make Up Water	16,800	- 25,000 gal./day
Microbiocide Formula 3338	70 gal.	/mo. (9 mo.) 140 gal./mo. (3 mo.)
Microbiocide Formual 315		mo. (9 mo.) 140 gal./mo. (3 mo.)
Scale/ Corrosion Control Formula 293	30L 70 gal.	mo. (9 mo.) 140 gal./mo. (3 mo.)
Туре	PRODUCTS	Quantity

SECTION C. PLANT OPERATIONAL CHARACTERISTICS

1. For each process listed in B.1. that generates wastewater, list the process, assign the waste stream a name and an ID # and describe whether it is a batch or continuous flow.

Process	Waste Stream Name	Waste Stream ID#	Batch or Continuous Process
Cooling Tower	Blow Down	STIA-CT1	batch
			batch

2. On a separate sheet, produce a schematic drawing showing production processes, water flow through the facility, wastewater treatment devices and waste streams as named above. The drawing should indicate the source of intake water and show the operations contributing wastewater to the effluent. The treatment units should be labeled. Construct a water balance by showing average flows between intakes, operations, treatment units, and points of discharge to the POTW. (See the example on the last page of this application form.)

3.	What is the maximum daily discharge flow:25,	000 g	gallons/day
	What is the maximum average monthly discharge flow (daily flows averaged over a month):	16,000	gallons/day

4. Describe any planned wastewater treatment improvements or changes in wastewater disposal methods and the schedule for the improvements. (Use additional sheets, if necessary and label as attachment C4.)

Existing facilities may be expanded in the future. Flows may increase, but processes will not change.

SECTION B. PRODUCT INFORMATION

1. Briefly describe all manufacturing processes and products, and/or commercial activities at this facility. Provide the applicable Standard Industrial Classification (SIC) Code(s) for each activity (see Standard Industrial Classification Manual, 1987 ed.).

Rental Cart Wash Facility Blow Down 7542 (Automotive Service- Car Wash) SIC Codes 7514 (Passenger Car Rental) and

System is recycling ~10% of volume is replaced each cycle. Car wash flow is scheduled to be routed to the Midway Sewer District sewers in early 2002.

2. List raw materials and products:

Туре	RAW MATERIAL	LS Quantity
Fresh Make Up Water	2,000 -	20,000 gal./ day
Various Soaps	7,000 g	gal./ yr.
Туре	PRODUCTS	Quantity

SECTION C. PLANT OPERATIONAL CHARACTERISTICS

1. For each process listed in B.1, that generates wastewater, list the process, assign the waste stream a name and an ID # and describe whether it is a batch or continuous flow.

Process	Waste Stream Name	Waste Stream ID#	Batch or Continuous Process
Rental Car Wash	Blow Down	STIA-RC1	continuous
			batch

2. On a separate sheet, produce a schematic drawing showing production processes, water flow through the facility, wastewater treatment devices and waste streams as named above. The drawing should indicate the source of intake water and show the operations contributing wastewater to the effluent. The treatment units should be labeled. Construct a water balance by showing average flows between intakes, operations, treatment units, and points of discharge to the POTW. (See the example on the last page of this application form.)

3.	What is the maximum daily discharge flow:	20,000	gallons/day
	What is the maximum average monthly discharge flow (daily flows averaged over a mon	nth): 20,000	gallons/day

- 4. Describe any planned wastewater treatment improvements or changes in wastewater disposal methods and the schedule for the improvements. (Use additional sheets, if necessary and label as attachment C4.)
 - Existing facilities may be expanded in the future. Flows may increase, but processes will not change.

SECTION B. PRODUCT INFORMATION

1. Briefly describe all manufacturing processes and products, and/or commercial activities at this facility. Provide the applicable Standard Industrial Classification (SIC) Code(s) for each activity (see Standard Industrial Classification Manual, 1987 ed.).

Future Equipment Wash Rack SIC Code 7542 (Automotive Services - Car Wash) and 4582 (Airport Terminal Services)

Waste stream will be batch blow down from automatic and batch equipment wash facility.

2. List raw materials and products:

Туре	RAW MATERIALS	Quantity
Fresh Make Up Water	1,000 - 2,000 gal./	
Various Soaps	1,000 gal./yr.	
Туре	PRODUCTS	Quantity

SECTION C. PLANT OPERATIONAL CHARACTERISTICS

1. For each process listed in B.1. that generates wastewater, list the process, assign the waste stream a name and an ID # and describe whether it is a batch or continuous flow.

Process	Waste Stream Name	Waste Stream ID#	Batch or Continuous Process
Equipment Wash Rack	Blow Down	STIA - WR1	continuous
			batch

2. On a separate sheet, produce a schematic drawing showing production processes, water flow through the facility, wastewater treatment devices and waste streams as named above. The drawing should indicate the source of intake water and show the operations contributing wastewater to the effluent. The treatment units should be labeled. Construct a water balance by showing average flows between intakes, operations, treatment units, and points of discharge to the POTW. (See the example on the last page of this application form.)

3.	What is the maximum daily discharge flow:1	,000	gallons/day
	What is the maximum average monthly discharge flow (daily flows averaged over a month):	1.000	11 /2
	discharge now (daily nows averaged over a month):	2,000	gallons/day

4. Describe any planned wastewater treatment improvements or changes in wastewater disposal methods and the schedule for the improvements. (Use additional sheets, if necessary and label as attachment C4.)

System will include oil water separation and vaults/ chambers to settle solids. System will be recycling.

5. If production processes are subject to seasonal variations, provide the following information. List discharge for each waste stream in gallons per day (GPD). The combined value for each month should equal the estimated total monthly flow.

Waste Stream ID#		MONTHS ,										
	J	F	M	A	М	J	J	A	S	0	N	D
STIA BI	800	800	800	600	400	400	400	400	600	800	800	800
STIA B2	2000	2000	2000	1500	1000	1000	1000	1000	1500	2000	2000	2000
STIA CTI	16000	16000	16000	20000	20000	25000	25000	25000	25000	20000	16000	16000
STIA RC1	4800	6400	5600	6000	6000	8400	9600	10200	9800	15000	14200	12040
STIA WR1 (proposed)	2400	3200	2800	3000	3000	4200	4900	4900	6600	7500	7100	6000
Estimated Total Monthly Flow (GPD)	26000	28400	27200	31100	30400	39000	40800	41100	46900	45300	40100	36840

6.	How many hours a day does this facility typically operate?	24
	How many days a week does this facility typically operate?	7
	How many weeks per year does this facility typically operate?	52

7. List all incidental materials like oil, paint, grease, solvents, and cleaners that are used or stored on site (List only those with quantities greater than 10 gallons for liquids and 50 pound quantities for solids). For solvents and solvent-based cleaners include a copy of the material safety data sheet for each material and estimate the quantity used. (Use additional sheets, if necessary and label as attachment C.7.) Materials/Quantity Stored:

The Port of Seattle's Stormwater Pollution Prevention Plan, a condition of NPDES permit WA 002465-1 requires secondary containment of liquids. Oil, paint, grease solvents and cleaners are stored in areas isolated from the boilers, cooling tower, rental car wash facility and the proposed equipment wash rack. All solids are stored under cover. The boiler and cooling towers are closed systems.

8.	Some types of facilities are required to have spill or waste control	plans.	Does this facility	have:
----	--	--------	--------------------	-------

a.	A Spill Prevention, Control, and Countermeasure Plan (40 CFR 112)?	Yes
	An Emergency Response Plan (per WAC 173-303-350)?	No
	A Runoff, spillage, or leak control plan (per WAC 173-216-110(f))?	No
	Any spill or pollution prevention plan required by local, State or Federal authorities?	Yes
	If yes specify: SPCC and SWPPP required by NPDES permi WA .002465-1	
e.	A Solid Waste Management Plan?	No
f.	Slug Discharge Control Plan (40 CFR 403.8(f)(2)(v))?	No

SECTION D. WATER CONSUMPTION AND WATER LOSS 1. Water source(s): Public System (Specify) City of Seattle (Seattle Public Utilities) Private Well ___ Surface Water a. Water Right Permit Number: b. Legal Description of Water Source: ______14S, ______ Section, _____ TWN, _____ R 2. Water use a. Indicate total water use: Gallons per day (average) 360,000* Gallons per day (maximum) 645,000* b. Is water metered? Yes

^{*} This includes water used in toilets, sinks, fire protection, food preparation, and routine maintenance.

SECTION E. WASTEWATER INFORMATION

How are the water intake and effluent flows measured?

Intake: metered

Effluent: metered

7

Provide measurements or range of measurements for treated wastewater prior to discharge to the POTW for the parameters with a check except pH, must be conducted by a laboratory registered or accredited by the Department of Ecology (WAC 173-216-125). If this is an application for permit renewal provide data for the last year for those parameters that are routinely measured. For parameters measured (X) in the left column. Use the analytical methods given in the table unless an alternate method is approved by Ecology. All analyses, only for this application place the values under maximum.

Detection 20 µg/l 0.1 units 4 Limit 2 mg/l 5 mg/l 1 mg/t l/gm l 0.5 mg/l 20 µg/l 1 µg/1 Std. Methods 19th edition 4500-O C or 4500-O G Analytical Method 4500-P E or 4500-P F 5220 B, C, or D 9221 B or 9222 B 4500-NII, C 4500-NO, E 4500-Norg 4500-C1 E 2510 B 2540D 4500-H 2540 C 5210 9222 D Average Concentrations Measured Maximum Minimum Parameter Total Suspended Solids Total Residual Chlorine Total Dissolved Solids Ortho-phosphate-P Nitrate + Nitrite-N Dissolved Oxygen Total Kjeldahl N Fecal Coliform Total Coliform BOD (5 day) Conductivity Ammonia-N COD μd ×

Existing NPDES Permit WA 002465-1 requires monitoring of flow only.

×			Amelication Market	
		Minimum Maximum Average	Std. Methods 19th edition	Defection
	Total-phosphate-P		4500-P B.4.	1,001
	Total Oil & Grease		\$520 C	0.2 mo//
	Total Petroleum Hydrocarbon		5520 D, F	. 8
	Calcium		3500-Ca B	3 µg/1
1	Chloride		4500-CI C	0.15 µg/i
	Fluoride		4500-F D	0.1 mg/l
	Magnesium		3500-Mg B	0.5 µg/l
+	Potassium		3500-K B	1/an S
	Sodium		3500-Na B	2 µg/l
	Sulfate	W .	4500-SO ₄ E	l mg/l
1	Arsenic (total)		3114B	2 µg/1
	Barium (total)		3500-Ba B	30 µg/l
	Cadmium (total)		3500-Cd B	5 με/Ι
	Chromium (total)		3500-Cr B	S0 µg/l
-+	Copper (total)		3500-Cu B	20 µg/l
-	Lead (total)		3500-Pb B	1/gn 001
+	Mercury		3500-Hg B	0.2 μg/1
$\frac{1}{1}$	Molybdenum (total)		3500-Mo	1/8/1
+				
	Nickel (total)		3500-Ni	20 µg/l
	Selenium (total)		3500-Se C	2 µg/l
	Silver (total)		3500-Ag B	1/gri 01
	Zinc (total)		3500-Zn B	1/84 5

3. Describe the collection method for the samples which were analyzed above (i.e., grab, 24 hour composite).

NA

4. Has the effluent been analyzed for any other parameters than those identified in question E.1.? If yes, attach results and label as attachment E.4. This data must clearly show the date, method and location of sampling. (Note: Ecology may require additional effluent testing based on information submitted in this application.)

No

Does this facility use any of the following chemicals as raw materials in production, produce them as part of the manufacturing process, or are they present in the wastewater? (The number following the chemical name is the Chemical Abstract Service (CAS) reference number to aid in identifying the compound.)

If yes, specify how the chemical is used and the quantity used or produced:

The selection and application of chemicals is dictated by the Port's SWPPP. The boiler and cooling towers are isolated from areas where these chemicals might be stored or used. All chemicals at the rental car facility and the proposed equipment wash rack will be stored in secondary containment.

VOLATILE COMPOUNDS

Acrolein (107-02-8) Acrylonitrile (107-13-1) Benzene (71-43-2) Bis (chloromethyl) Ether (542-88-1) Bromoform (75-25-2) Carbon Tetrachloride (108-90-7) Chlorobenzene (108-90-7) Chlorodibromomethane (124-48-1) Chloroethane (75-00-3) 2-Chloroethylvinyl Ether (110-75-8) Chloroform (67-66-3) Dichlorobromomethane (75-27-4) Dichlorodifluromethane (75-71-8) 1,1-Dichloroethane (75-34-3) 1,2-Dichloroethane (107-06-2) Vinyl Chloride (75-01-4)

1,1-Dichloroethylene (75-35-4)
1,2-Dichloropropane (78-87-5)
1,3-Dichloropropene (542-75-6)
Ethylbenzene (100-41-4)
Methyl Bromide (74-83-9)
Methyl Chloride (74-87-3)
Methylene Chloride (75-09-2)
1,1,2,2-Tetrachloroethane (79-34-5)
Tetrachloroethylene (127-18-4)
Toulene (108-88-3)
1,2-Trans-Dichloroethylene (156-60-5)
2. 1,1,1-Trichloroethane (79-00-5)
2. Trichloroethylene (79-01-6)

ACID COMPOUNDS

2-Chlorophenol 95-57-8 2,4-Dichlorophenol 120-83-2 2,4-Dimethylphenol 105-67-9 4,6-Dinitro-o-cresol 534-52-1 2,4-Dinitrophenol 51-28-5 2-Nitrophenol 88-75-5 4-Nitrophenol 100-02-7 p-Chloro-m-cresol 59-50-7 Pentachlorophenol 87-86-5 Phenol 108-95-2 2,4,6-Trichlorophenol 88-06-2

Trichlorofluromethane (75-69-4)

METALS

Antimony 7440-36-0 Arsenic 7440-38-2 Beryllium 7440-41-7 Cadmium 7440-43-9 Chromium 7440-47-3 Copper 7440-50-8

Lead 7439-92-1

Mercury 7439-97-6 Nickel 7440-02-0 Selenium 7782-49-2 Silver 7440-22-4 Thallium 7440-28-0 Zinc 7440-66-6 Cyanide 57-12-5

PESTICIDES

Aldrin 309-00-2 alpha-BHC 319-84-6 beta-BHC 319-85-7 gamma-BHC 58-89-9 delta-BHC 319-86-8 Chlordane 57-74-9 4,4'-DDD 72-54-8 4,4'-DDE 72-55-9 4,4'-DDT 50-29-3 Dieldrin 60-57-1 Endosulfan I 115-29-7 Endosulfan II 115-29-7 Endosulfan Sulfate 1031-07-8 Endrin 72-20-8 Endrin Aldehyde 7421-93-4 Heptachlor 76-44-8 Heptachlor Epoxide 1024-57-3 PCB (7 Aroclors) Toxaphene 8001-35-2

BASE/NEUTRAL COMPOUNDS

Acenaphthene 83-32-9 Acenapthylene 208-96-8 Anthracene 120-12-7 Benzidine 92-87-5 Benzo(a)anthracene 56-55-3 Benzo(a)pyrene 50-32-8 3,4 Benzofluoranthene 205-99-2 Benzo(ghi)Perylene 191-24-2 Benzo(k)fluoranthene 207-08-9 Bis(2-chloroethoxy) Methane 111-91-1 Bis(2-chloroethyl) Ether 111-44-4 Bis(2-chloroisopropyl) Ether 102-60-1 Bis(2-ethylhexyl) Phthalate 117-81-7 4-Bromophenyl Phenyl Ether 101-55-3 Butyl Benzyl Phthalate 85-68-7 2-Chloronaphthalene 91-58-7

4-Chlorophenyl Phenyl Ether 7005-72-3

Chrysene 218-01-9

Dibenzo(a,h)anthracene 53-70-3 1,2-Dichlorobenzene 95-50-1 1,3-Dichlorobenzene 541-73-1 1,4-Dichlorobenzene 106-46-7 3,3' Dichlorobenzidine 91-94-1 Diethyl Phthalate 84-66-2 Dimethyl Phthalate 131-11-3 Di-n-butyl Phthalate 84-74-2 2,4-Dinitrotoluene 121-14-2 2,6-Dinitrotoluene 606-20-2 Di-n-octyl Phthalate 117-84-0 1,2-Diphenylhydrazine 122-66-7 Fluoranthene 206-44-0 Fluorene 86-73-7

Hexachlorobenzene 118-74-1 Hexachlorobutadiene 87-68-3 Hexachlorocyclopentadiene 77-47-4

Hexachloroethane 67-72-1 Indeno(1,2,3-cd)pyrene 193-39-5

Isophorone 78-59-1 Naphthalene 91-20-3 Nitrobenzene 98-95-3

N-nitrosodimethylamine 62-75-9 N-nitrosodi-n-propylamine 621-64-7 N-nitrosodiphenylamine 86-30-6

Phenanthrene 85-01-8 Pyrene 129-00-0

1,2,4-Trichlorobenzene 120-82-1

GO TO NEXT PAGE

6.	Are any other pesticides, herbicides or fungional lf yes, specify the material and quantity used.	cides used at this facility?	Yes
_	Landscaping chemicals are rarely used at of chemicals is dictated by the Port's SW car facility and the proposed equipment we chemicals might be stored or used. They or aircraft/ vehicle maintenance occurs.	PPP. The boiler and cooling tower wash rack are isolated from areas are isolated from areas where fue	ers, the rental
7.	Are there other pollutants that you know of or If yes, specify the pollutants and their condavailable).	r believe to be present? centration if known (attach laborator	Yes y analyses if
	Glycols and runway de-icing chemicals. the boiler, cooling towers, rental car facilities.	Both are stored and used in areas lity and the proposed equipment v	s isolated from wash rack.
8.	Does the wastewater being discharged, or pro dangerous waste according to the procedures	posed for discharge to the POTW de in Chapter 173-303 WAC?	esignate as a
9.	If the answer to question 8 above is yes, how a Listed and TCLP Characteristic Wastes only,	did the waste designate as a dangero also provide the Dangerous Waste N	us waste? For Vumber(s).
	Listed Waste Dangerou	us Waste Number(s)	
	Characteristic Wastes Ignitable Reactive Corrosive TCLP Dangerous State Only Dangerous Wastes Toxicity Persistent	us Waste Number(s)	
For	Questions about waste designation under the	angerous Waste Regulations Chapte	or 172 202 WAC
cont	act Ecology's Hazardous Waste and Toxics Pro	ogram at:	a 173-303 WAC,
	Northwest Regional Office - Bellevue Southwest Regional Office - Lacey Central Regional Office - Yakima Eastern Regional Office - Spokane	(425) 649-7000 (360) 407-6300 (509) 575-2490 (509) 456-2926	
	SECTION F. SEW	ER INFORMATION	
	Is an inspection and sampling manhole or simil If yes, attach a map or hand drawing of the faci may be combined with map in H8, if H8 is app	lar structure available on-site?	Yes structures (this

S	F	C	ΓI	O	N	G	\mathbf{O}	THE	RI	PERN	PTI
v	_	\sim		v	T 4	U .	\cdot			LESIVIV	111.7

1. List all environmental control permits or approvals needed for this facility; for example, air emission permits.

Synthetic Minor Air Emissions Cap, Order of Approval # 7777 (Puget Sound Clean Air Agency)

EPA Dangerous Waste ID # WAD 980 980 106

	SECTION H. STORMWATER
1.	Do you have a Washington State Stormwater Baseline General Permit? No If yes, please list the permit number here.
2.	Have you applied for a Washington State Stormwater Baseline General Permit?
3.	Do you have any stormwater quality or quantity data?
Note:	: If you answered "no" to questions 1 or 2 above, complete questions 4 through 8.
4. I	Describe the size of the stormwater collection area.
t	a. Unpaved Area sq.ft. b. Paved Area sq.ft. c. Other Collection Areas (Roofs) sq.ft.
5. I	Does your facility's stormwater discharge to: (Check all that apply)
[Storm sewer system; name of storm sewer system (operator): City of SeaTac Directly to surface waters of Washington State (e.g., river, lake, creek, estuary, ocean). Specify waterbody name Miller, Walker, and Des Moines Creeks
	Indirectly to surface waters of Washington State (i.e., flows over adjacent properties first). Directly to ground waters of Washington State: Dry Well Sanitary Sewer
	All areas where aircraft/vehicle maintenance, aircraft/vehicle fueling and aircraft de-icing occur, dra the Port of Seattle's Industrial Waste System. Industrial Waste Water is treated and discharged to Posound per the requirements of NPDES permit WA 002465-1.
	NPDES Permit covers storm water discharges.
	All Discharges to the POTW are closed systems. Stormwater will not be discharged to the POTW.

•	Areas with industrial activities at facility: (check all that apply) Manufacturing Building Material Handling Material Storage Hazardous Waste Treatment, Storage, or Disposal (Refers to RCRA, Subtitle C Facilities Only) Waste Treatment, Storage, or Disposal Application or Disposal of Wastewaters Storage and Maintenance of Material Handling Equipment Vehicle Maintenance Areas Where Significant Materials Remain Access Roads and Rail Lines for Shipping and Receiving Other Airport	
7.	Material handling/management practices	
	a. Types of materials handled and/or stored outdoors: (check all that apply)	
	Solvents Scrap Metal Petroleum or Petrochemical Products Plating Products Pesticides POTW water streams are closed systems. Stormwater will not be discharged to the POTW. Hazardous Wastes Acids or Alkalies Paints/Coatings Woodtreating Products Vother (please list): glycols, runway/ roadway anti- and de-icing chemicals	-
	b. Identify existing management practices employed to reduce pollutants in industrial storm water discharges: (check all that apply) Oil Water Separator Containment Spill Prevention Surface Leachate Collection Overhead Coverage Detention Facilities Infiltration Basins Operational BMPs Vegetation Management Other (please list): The boiler, cooling tower, rental car facility and the proposed equipment wash rack are regulated by SWPPP.	
8.	Attach a facility site map showing stormwater drainage/collection areas, disposal areas and discharge points. This may be a hand drawn map if no other site map is available (See example on the last page of this application). Label this as attachment H.8.	
	See note on page 12 for a description of the Port of Seattle's Industrial Waste System.	

SECTION I. OTHER INFORMATION

Describe liquid wastes or sludges being generated that are not disposed of in the waste stream(s) and how they are being disposed. For each type of waste, provide type of waste, name, address, and phone number of hauler.

Aircraft sanitary waste discharged to King County STP by Emerald Services, 7343 E. Marginal Way S., Seattle, WA 98108 206-832-3000 Industrial waste sludge from Baker Tanks is hauled to TPS, 2800 104th St. S., Tacoma, WA 94444 (253-584-8430) by Emerald Services, 7343 E. Marginal Way S., Seattle, WA 98108 206-832-3000. Industrial waste sludge is also discharged to Philip Services: 1100 Oakesdale SW,

Describe storage areas for raw materials, products, and wastes. Renton, WA 98055, (425)-204-7181.

Raw material, product, and waste storage is regulated by SWPPP.

3. Have you designated the wastes described above according to the applicable procedures of Dangerous Waste Regulations, Chapter 173-303 WAC?

Yes

Rental car wash sludge is hauled & treated by: Aqua Clean Jet 'n' Vac, 18912 SE 133rd Pl., Renton WA, 98059, (425)-271-5459.

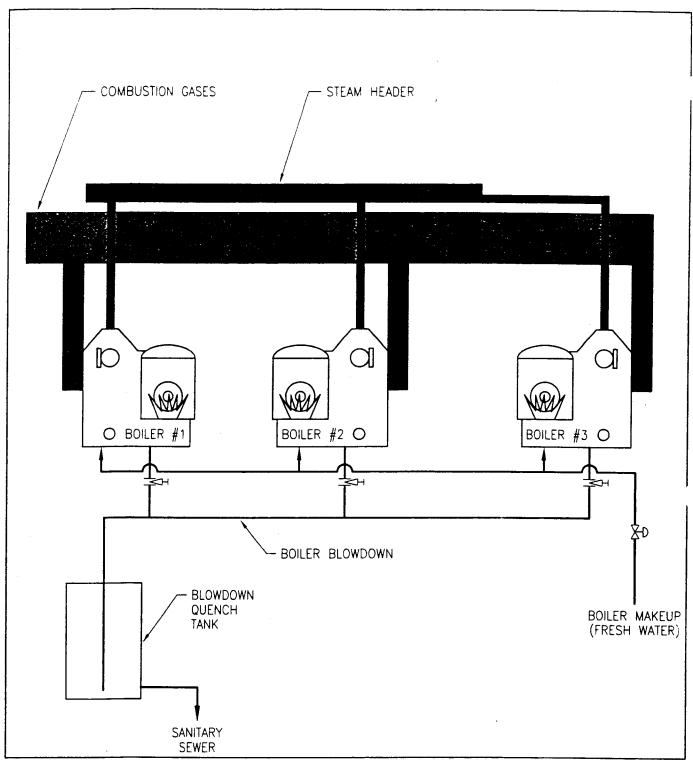
SECTION J. CERTIFICATIONS

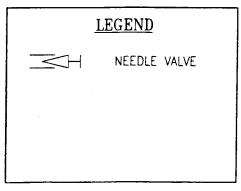
Approval by POTW [required by WA	AC 173-216-070(4)	(b)]	
I approve of the discharge as describ	bed in this applicati	on. The applicant is:	
(Please select the one that applies:)	A Significant Industrial User		
Name and location of sewer system t	o which this project	t will be tributary:	
Midway Sewer District			
Treatment Works Owner			
3030 S. 240 St.			
Street			
Kent, WA		98032	
City/State		Zip	
$-2/2$ Λ $-2/2$	12/16/-	Manager	
Signature	Date	Title	
Printed Name			
Timed Italie			
Application review by Intermediate S	ewer Owner at poir	nt of discharge (if applicable)	
I hereby acknowledge that I have revi	iewed the application	on for discharge to this sewer system	
	iewed the application	on for discharge to this sewer system	
I hereby acknowledge that I have revi	iewed the application	on for discharge to this sewer system	
I hereby acknowledge that I have revi	iewed the application	on for discharge to this sewer system	
I hereby acknowledge that I have revi Name and location of sewer system to NA	iewed the application	on for discharge to this sewer system	
I hereby acknowledge that I have revi	iewed the application	on for discharge to this sewer system	
I hereby acknowledge that I have revi	iewed the application	on for discharge to this sewer system	
I hereby acknowledge that I have revi Name and location of sewer system to NA	iewed the application	on for discharge to this sewer system	
I hereby acknowledge that I have revi	iewed the application	on for discharge to this sewer system will be tributary:	
I hereby acknowledge that I have revi	iewed the application	on for discharge to this sewer system	

Trease Ci	ry of Attachments That May be Required for This Application: check those attachments which are included)	
℃ C.1.	Production schematic flow diagram and water balance	
	Wastewater treatment improvements	
C.7.	Additional incidental materials	
E.5.	Additional results of effluent testing	
F .1.		
₩ H.8.	Stormwater drainage map	

DEFINITIONS

Significant Industrial User (SIU)--


- 1) All industrial users subject to Categorical Pretreatment Standards under 40 CFR 403.6 and 40 CFR Chapter I, Subchapter N and;
- 2) Any other industrial user that: discharges an average of 25,000 gallons per day or more of process wastewater to the POTW (excluding sanitary, noncontact cooling, and boiler blow-down wastewater); contributes a process wastestream that makes up 5 percent or more of the average dry weather hydraulic or organic capacity of the POTW treatment plant; or is designated as such by the Control Authority* on the basis that the industrial user has a reasonable potential for adversely affecting the POTW's operation or for violating any pretreatment standard or requirement (in accordance with 40 CFR 403.8(f)(6)).

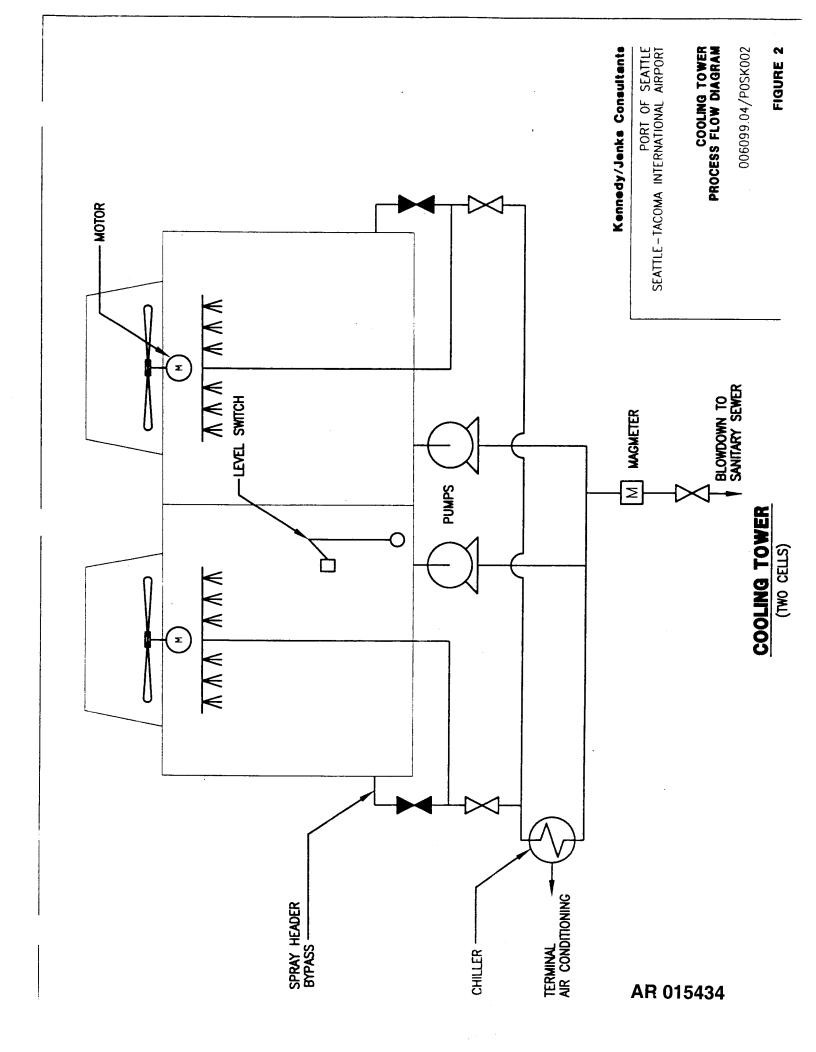

Upon finding that the industrial user meeting the criteria in paragraph 2, above, has no reasonable potential for adversely affecting the POTW's operation or for violating any pretreatment standard or requirement, the Control Authority* may at any time, on its own initiative or in response to a petition received from an industrial user or POTW, and in accordance with 40 CFR 403.8(f)(6), determine that such industrial user is not a significant industrial user.

Control Authority - means the Washington State Department of Ecology in the case of non-delegated POTWs or means the POTW in the case of delegated POTWs.

Categoric Industrial User (CIU): An industrial user subject to National categorical pretreatment standards promolgated by EPA (40 CFR 403.6 and 40 CFR parts 405-471).

Last Page

Kennedy/Jenks Consultants


PORT OF SEATTLE SEATTLE-TACOMA INTERNATIONAL AIRPORT

BOILER BLOWDOWN PROCESS FLOW DIAGRAM

006099.04.00/P0SK001

FIGURE 1

AR 015433

006099.04/P0SK003

RENTAL CAR WASH

Kennedy/Jenks Consultants

PORT OF SEATTLE SEATTLE - TACOMA INTERNATIONAL AIRPORT

EXISTING RENTAL CAR WASH HAS 10 WASH BAYS. WASH WATER IS RECYCLED FROM SUMP. FRESH WATER USED FOR RINSE RENTAL CAR WASH DRAIN IS CURRENTLY CONNECTED TO INDUSTRIAL WASTE SYSTEM. CONNECTION TO SANITARY SEWER IS SCHEDULED FOR 2002. METHOD OF CONNECTION (GRAVITY FLOW OR FORCE MAIN) TO BE DETERMINED.

OVERFLOW TO SANITARY SEWER SUMP FRESH WATER RINSE WASH WATER REUSE -----SUMP PUMP

AR 015435

D 15

Please print or type		shaded areas only ite type, i.e., 12 chai	racters/	inch)				o. 20 40-008 6. Ap	proval e	expire	s 5-31-92
FORM	aced for el	ite type, i.e., 12 chai	U.S.	ENVIR	ONMENTAL P	ROTECTION AG	ENCY	I. EPA I.D. NU	MBER	2	
						ORMAT		S	·····		T/A C
1		PA						F WAD9809	980 16		D
						rmits Progr		1 2		13	14 15
GENERAL		(Re	ad the	"Gen	eral Instru	ctions" befor	re starting.)		INICED		
LABEL ITEN	MS							GENERAL			
I. EPA I.D. NUM	MBER						,	If a preprinted la affix it in the design information care incorrect, cross	gnated s fully; if through	pace. any it and	Review the of it is enter the
III. FACILITY N	IAME							correct data in the pelow. Also, if an absent (the area	ne appro y of the i to the	priate preprir left o	fill-in area nted data is of the label
V. FACILITY MAILING LI	ST	PLEASE	PLA	CE	LABEL	IN THIS	SPACE	space lists the appear), please p in area(s) below and correct, you l, III, V, and VI(e)	rovide it If the ineed no xcept VI	in the abel in t come B whi	e proper fill- s complete plete Items ich must be
VI. FACILITY LOCATION	N							if no label has be instructions for dand for the legal	een prov letailed authoriza	ed F item c	Refer to the descriptions
	- 01:45	4 OTED/07:00						this data is collec	ted.		
II. POLLUTAN											-42
questions, you mus	st submit th	nis form and the sup ched. If you answer	plemen	tal from	n listed in the	e parenthesis fo i need not subr	ollowing the que: mit any of these	forms to the EPA. stion, Mark "X" in the forms. You may an as for definitions of b	e box in ' swer "no	the thi " if yo	ird column if ur activity is
excluded from perm	int requirer	Hents, see Section (J OI THE	MARI	C "X"					MARI	ζ"X"
SPECIF	FIC QUES	TIONS	YES	NO	FORM ATTACHED		PECIFIC QUES		YES	NO	FORM ATTACHED
A. Is this facility a pu which results in U.S.? (FORM 2A)	a discharg	ed treatment works be to waters of the		\boxtimes		proposed) feeding production	include a co operation or a facility which re	sults in a discharge		\boxtimes	
			16	17	18		of the U.S.? (FOR		19	20	21
C. Is this facility discharges to very those described in	waters of 1	the U.S. other than	22	23	24	in A or B a		than those described result in a discharge M 2D)	25	26	27
E. Does or will this						F. Do you or	will you inject at th	is facility industrial or			
hazardous waste	es? (FORM	3)		\boxtimes		containing, bore, und	within one quar	e lowermost stratum ter mile of the well of drinking water?	31	32	33
G. Do you or will	wou inject	at this facility any	28	29	30	(FORM 4)	will you inject at th	is facility fluids for	31	32	33
produced water of the surface in co- natural gas pro- enhanced recove	other fluids in ennection will eduction, inj ery of oil or	which are brought to th conventional oil or ect fluids used for natural gas, or inject		\boxtimes		special pro Frasch pro situ combu	cesses such as m	ining of sulfer by the ing of minerals, in or recovery of		\boxtimes	
(FORM 4)	age of 10	quid hydrocarbons?	34	35	36	1			37	38	39
l. Is this facility a which is one of the in the instructions 100 tons per year	s and which ar of any a	stationary source trial categories listed will potentially emit in pollutant regulated		\boxtimes		which is N listed in the emit 250	OT one of the 28 e instructions and tons per year	stationary source industrial categories which will potentially of any air pollutant		\boxtimes	
under the Clean located in an atta		nd may affect or be	40	41	42			ir Act and may affect nt are? (FORM 5)	43	44	45
III. NAME OF F			· · ·	1		4,		A Party Co.		£ , }	
		oma Internatio	nal A	irpor							
15 16-29 30										9	
IV. FACILITY C		NAME & TITLE (las						NE (area code & no			
C Michael D		ian, Director Av			ilities		206		706		
2 16						45	46 48	49 51 52	- 55	1	
V. FACILITY M	AILING	ADDRESS =				12 1 1 1 1 2 x	1	But the state of the			
		A. STREET OR F	P.O. BC	X				ntrkeo "No" by			
C P.O. Box	68727						PERMIT P	ENEWAL OF AN	EXIST	NGT	AULIN.

WA 98168 STORMWATER DISCHARGES -SEE FORM 2F ATTACHED Seattle, 4 41 VI. FACILITY LOCATION A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER 17801 Pacific Highway S., 5 AR 015436 45 B. COUNTY NAME King 46 E ZIP CODE F COUNTY CODE C CITY OR TOWN D. STATE WA 98158 Seattle 40

C. STATE

DURING THE SYEARS OF THIS

PERMIT, THERE MAY BE NEW

D. ZIP CODE

B. CITY OR TOWN

UNTINUED FROM THE FROM							
√IL SIC CODES (4-digit, in order of priority) A. FIRST			77.2			B. SECC	ONO
C 4851 (specify)			7	5171	(spe		
7 Airifield			7			roleum Bulk S	torage
15 16 17 C. THIRD			15	16 19	_L	D. FOUR	-
C 4852 (specify)			7	7514	(spe		
7 Transportation by Air, schedu	ıled		7			Rental	
VIII. OPERATOR INFORMATION			15	16 19	2	\$	
l	AME		_ : -	9.0		je	B. Is the name listed in Item
C Port of Seattle	J-1141L						VIII-A also the owner?
8							YES NO
18 19 C. STATUS OF OPERATOR (Enter the appropriate letter int	to the	aneu	ver ho	v: if "Other " se	necify)	D PH	IONE (area code & no.)
F = FEDERAL M = PUBLIC (other than federal or state)	N		speci		ocony.,	c 206	433 5388
S = STATE O = OTHER (specify)	"			Authority		A	
P = PRIVATE	56	<u> </u>			ī	15 16 18	19 21 22 25
E. STREET OR PO BOX P.O. Box 68727					-		
26				55	-		
F. CITY OR TOWN		G. ST	ATE	H. ZIP C	ODE	IX. INDIAN LA	AND
Seattle		WA		98168			ted on Indian lands?
В	1 1					YES	⊠ NO
X. EXISTING ENVIRONMENTAL PERMITS		42	42	47	51	4.5	Carlos Ca
A. NPDES (Discharges to Surface Water)		n po	:D (A)	ir Emissions fro	200	* 248.0 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 *	
C T WA-002465-1	c	D. F.C	8	I LIIISSIOIIS IIC	in Flop	osed Sources,	
9 N	9	Р					
15 16 17 18 30 30 30 30 30 30 30 3	15	16	17	E. OTHER	(specify)	30	(Specify)
C T	c	T *	8	L. OTTIEN	specify)	<u></u>	(Specify)
9 U	9						
15 16 17 18 30 C. RCRA (Hazardous Wastes)	15	16	17	E. OTHER	(specify)	30	(Specify)
C T	c	ŢŦ	8	E. OTHER ((Specify)	· · · · · · · · · · · · · · · · · · ·	(Specify)
9 R	9						
15 16 17 18 30 XI. MAP	15	16	17	18		30	
Attach to this application a topographic map of the a show the outline of the facility, the location of ea hazardous waste treatment, storage, or disposal farivers and other surface water bodies in the map are XII. NATURE OF BUSINESS (provide a brief des	ach d aciliti ea. S	of its es, a See ii	exist nd ea nstru	ting and prop ach well whe	oosed in re it inje cise rec	intake and disch ects fluids under	arge structures, each of its
Operate airfield for private business tenants v							ices to the nublic
Operate annelu for private business tenants v	who	pro	vide	s passeriye	er anu	an cargo serv	ices to the public.
XIII. CERTIFICATION (see instructions)	· .	·		_ = _ = _ = _ = _ = _ = _ = _ = _ = _ =	1000		
I certify under penalty of law that I have personally all attachments and that, based on my inquiry of the the application, I believe that the information is tru submitting false information, including the possibility	ose ie, a ⁄ of f	perso ccura ine aj	ons ir ite ar iid im	mmediately re nd complete. nprisonment.	esponsi	ble for obtaining	the information contained in
A. NAME & OFFICIAL TITLE (type or print)	B_	SIGNA/	4 I UR				C. DATE SIGNED
Michael D. Feldman, Director, Aviaition Facilities		luti	al	Is thea	ma	ч	12/19/01
COMMENTS FOR OFFICIAL USE ONLY	//		- (<u> </u>	
COMMENTS FOR OFFICIAL USE ONLY			17		- 1000 (1)		

EPA 1D Number (Copy from Item 1 of Form 1) 4 4-1 Please type or print in the unshaded areas only WAD980980106 Approval expires 7-37-88

Approval expires 7-37-88

APPLICATION FOR PERMIT TO DISCHARGE WASTEWATER OPERATIONS

EXISTING MANUFACTURING COMMERCIAL MINING AND SILVICUTE RATE OPERATIONS Form NPDES" I. Outfail Location For this outfall, list the latitude and longitude, and name of the receiving water Outfall Latitude -Longitude : *** Receiving Water (name): Number (list) Deg Deg Min Sec Sec. 001 47 **Puget Sound** II. Flows, Sources of Pollution, and Treatment Technologies For each outfall, provide a description of (1) all operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling water, and stormwater runoff, (2) the average flow contributed by each operation; and (3) the treatment received by the wastewater. Continue on additional sheets if necessary. For each outfall, provide a description of (1) all operations contributing wastewater to the effluent including process wastewater, sanitary wastewater, cooling water, and stormwater runoif; (2) the everage flow contributed by each operation and (3) the treatment received by the wastewater. Continue on additional sheets if necessary. 1. Outfall 2. Operations Contributing Flow 3. Treatment Number b. AVERAGE FLOW a. OPERATION (list) a. DESCRIPTION b. LIST CODES FROM TABLE 2C-1 001 Industrial waste water Not applicable. Coagulation 2-D from airfield operations Data are not Flocculation 1-G and maintenance. available for pressure testing water average flow from Air Flotation 1-H lines, well and pipe each specific Ocean 4-B flushing, construction airfield or Discharge dewatering, aircraft and maintenance through Outfall airfield deicing and antioperation. The icing, and chemicals average annual flow Gravity used in fighting fires that from the Industrial Thickening 5-L may occur at the airport. Waste Treatment Plant for the past 3 years was 321 MG with an average daily flow of 1.8 MG. Outfall 001 has a capacity of 7.1 MGD.

	TROM THE TRO								
C. Except for s	torm runoff, leaks YES (complete the	following t	able)	THE RELLEVIOR	Q foo to Section	m 36 4 2 2		117	
-	(A) (1) (A)	Special Control	JUNEAL FREC	WENCY POR	6240 214 1S	Section 4	4. FLOW to		The second
1. OUTFALL	2. OPERATIO	NATURE T	A DAYS	LEB MONTHS	reast a FIO	W RATE	b TOTALN	Children of	A SECTION AND A SECTION AND ASSESSMENT
NUMBER	CONTRIBUTING			PERYEAR	14 E 1 /n	my n	specify w	OLUME **	e C. DUF
(list)	(list)		(specify):	geofy,	Mary Mary Mary Mary Mary		Committee and resident at the second at	Ul Units Steel	ATION
	7		everage)	average) -	LONG TERM AVERAGE	2 MAXMAM DALY	LONG TERM	ANXMEN S	(in days)
001	All airport	•	Seasonal	12	1.32	4.32	1.32	4.32	184
	operations th	at							.04
	drain to the				1	:	1		
	industrial wa	ste			l i				
	system								
	- Cystom		Flow data a	re for the na	st vear (Oct	toher 2000 th	rough Septer	mh == 2004)	
III. PRODUCT	TION			TO TOT LITE DE	at year loca	IODel 2000 (l	irougii septei	nber 2001)	
	ffluent guideline lim	itation no	mulasted by Ef	DA under Cartle	1304 of the Ol-	on Moles A -4			
***	YES (complete	Item III-B		A SECTION OF THE	Voo to Section	707 55 77			
B. Are the lin	YES (complete	cable efflu	ent guideline e	ynnegend in terry	a of production	for other many	re of operation)?	(3 33 0) /	
C. If you are	wered "ves" to Hem	III_R liet H	he quantity whi	Service N. M.	ι (ου το Section	IVENT FOR SI	And the second second	AND IN	V.
and units u	wered "yes" to Item used in the applicab	ie efficient	mideline and	indicate the affe	acquai measur	ement of your lev	vel of production;	expressed in the	e terms
	Like		AVERAGE D	AILY PRODUC	TIONS				
And a program	A 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	V. 44. 18.		NE PER NO DO					ECTED
. QUANTITY PER	DAY! 6 UNITS OF	MEASURE		Section 1	no same es	Westers		SUB COMO	numba a
****			Not Appl	icable	- CONTRACTOR - CON				
IV. IMPROVE	MENTS:	9 K* 3	2 4 7 4 A	it.		and the state of t	, see		
A. Are you	now required by a	y Federal	State Torino	al authorite team	eet anvilmoled	nentation:eched	declar the transfer		
operation	of wastewater trea	tment equi	pment of practi	ces or any other	environmental	programs which			
this appli	of wastewater treatcation? This included	of the bline	and smiled in	permit condit	one, administra	tive or enforce	nen-orden - inio	reamenes in	
		TACHTA CITY	NATION PLANE A		Morrow remains and a thing of a		Approved to the same of the sa		
, तरीर से कूई	**************************************	A N	YES (complete	the following tal	16)	NO OX	to item IV-B)		
1. IDENTIFICATIO	ON OF CONDITION		AFFECTED OU	TFALLS		EF DESCRIPTION			FINAL
AGREEN	ENT, ETC.	* a No	b SOURCE	OF DISCHARGE:	1998 183			REQ-	ANCE DATE
NPDES Po	rmit Special	**************************************						OIRED	JECTE
		001		rial Waste	Implementa	ation of AKAR	T alternative fo	r June	T
Conai	ition S4	j	Treatn	nent Plan		nt of glycol-co	ontaining	30,	
CI4/A 404/404			ļ		wastestrea			2004	İ
CWA 401/404		001		wastewater	Implementa	ation of the Co	omprehensive	See	
Conditions (V				airport	Stormwater	r Management	t Plan (Sections	Table	
Certification 1			ope	rations	4.2, 5.2.2 ar	nd 7.5) -	,	A-3 of	
Corps of Eng	ineers Public				1	•		CSMP	ĺ
Notice 1996-4	-02325				1				1 :
Condition J)					1		•		1
B. OPTIONA	L: You may attack	additiona	I sheets descri	bing any additio	nal water pollut	ion control proa	rams (or other en	vironmental n	niecis 🗇 🐃
· · · · · · · · · · · · · · · · · · ·	y anoci your discrib	<i>rues)</i> you i	now nave unde	IWAY OF Which V	ou plan." Indical	le whether each	program is now u	nderway or pla	nned.
and indica	te your actual or pl	anned sch	equies for cons	Truction.				THE PLANE	
		The same of the same	MA MA	RK "X" IF DES	CRIPTION OF	ADDITIONAL CO	NTROI PROGR	AN IS ATA	

Use the space below t list may be discharged from a	ns before proceeding. Complete one set of table VAV-B, and VC are included on separate a enty of the pollutarity and to table. To the ny outfall. For every pollutary of the briefly of the price of the	lightnotions, which you too	ACTIVE TRACE OF A SHEYER GRECHARDED OF
Acrolein	Unknown. Detected only	1. POLLUTANT	2-SOURCE
	once (2000) in 5 analyses performed since 1994.	Ethylbenzene	Fuel spills
Phenol	Fuel spills.	Toluene	Fuel spills
Benzene	Fuel Spills	Naphthalene	Moth balls/ insecticides?
Chlorobenzene	Unknown. Detected only once (2000) in 7 analyses performed since 1994. Detected at concentration below laboratory practical quantitation limit.	Endosulfan	Unknown. Detected only one (1999) in 8 analyses since 1994.
Chioroform	Unknown. Detected only twice in 7 analyses since 1994.		
POTENTIAL DISCHAR	GES NOT COVERED BY ANALYSIS IN V-C a substance of a component of of a		

VII. BIOLOGICAL TOXICITY	TESTING DATAS		•
Do you have any knowledge or i receiving water in relation to you	eason to believe that any biological test; if discharge within the last See any ? YES (identify the test(s) and describe the		
VIII. CONTRACT ANALYSIS	INFORMATION	all purpose below)	NO (posto section) III have the
Were any of the analyses report YES (III	ed in item V performed by a contract laboration in the name, address, and telephone numberlyzed by, each such laboratory or firm.	oratory of consulting firm?	
A. NAME	F B ADDRESS	C. TELEPHONE	D. POLLUTANTS ANALYZED
STL (Sound Analytical)	5755 – 8 th St. E. Tacoma, WA 98424	(253) 922-2310	Oil and grease, pH, ammonia, TSS, phenols, BOD, coliforms, BTEX, priority pollutants
Analytical Resources, Inc.	333 Ninth Ave. N. Seattle, WA 98109	(206) 621-6490	glycols
Aquatic Research, Inc.	3927 Aurora Ave. N. Seattle, WA 98103	(206) 632-2715	glycols
IX. CERTIFICATION	The state of the state of the		The state of the s
who manage the system or the knowledge and belief, true, accepossibility of fine and imprisonments.	at this document and all attachments we d personnel properly gather and evaluat nose persons directly responsible for g curate, and complete. I am aware that a ent for knowing violations.	ore prepared under my direction or super te the information submitted. Based on	ervision in accordance with a system my inquiry of the person or persons
A. NAME & OFFICIAL TITLE (typ	e or print)		B. PHONE NO. (area code & no.)
Michael D. Feldman			(206) 439-7706
Director/Aviation Faciliti	es		1===,
C-SIGNATURE	[druan	,	D. DATE SIGNED 12/19/01

EPA FORM 3510-2C (Rev. 2-85)

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or	all of this information on separate sheets (use the same format) instead of commeting	SEE INSTRUCTIONS.
PLEASE PRINT OR TYPE IN	all of this information on sepa	these pages. SEE INSTRUC

EPA I.D. NUMBER (copy from Item 1 of Form 1) WAD980980106

PART A - You must provide the results of at least one analysis for every pollutarit in this table	vide the rest	ults of at least	one analysis	for every po	S or rorm a	-C) 	Hat one	2 1 - 32				
				2. EFFLUENT	工 多			2. EFFLUENT CONTINUES AND CONTINUES OF STREET AND CONTINUES OF STREET AND CONTINUES.	nsu eec	VICTIONS for ad	ditional deta	ills.
1. POLLUTANT		B. MAXIMUM DAILY C. LONG TERN AVROL VALUE VALUE VALUE (A MAXIMUM	30 DAY VALUE:	C. LOWG TERM		d NO. OF			CALLONG TERM	ERM COUNTY	70.00
	CONCENTRATION		CONCENTRATION	A STATE OF THE STA	Coccondition		ANALYSIS			W EMAGE V	e	AMALYSES
a. Biochemical Oxygen Demand (BOD)	1100						32		+-			
b. Chemical Oxygen Demand (COD)	NA							5		NA = Not available	allable	
c. Total Organic Carbon (TOC)	AN									ND ≈ parameter not detected	eter not del	tected
d. Total Suspended Solids (TSS)	46				12		115	ma/l				
e. Ammonia (as //)	0.27				0.04		33	ma/L				
f. Flow	Value	4	Value		1		707			Value		
g. Temperature (<i>Winter)</i>	Value	0.0 Ambione	Value	2	1. Value	1.8	184	MG.		Vafue		
h. Temperature (summer)	Value	Ambient	Value		Value			ي د		Value		
》,	Minimum 6.09	Maximum 7.67	Minimum	Maximum			115	200	MTIS			
PART B. Mark "X" in column 2-a for each pollutant you know	lumn 2-a for	r each polluta	nt you know	or have reas	on to believe	ls present ?	Alika Karin	Shuffire 20 for less	th pollutar	2-b of sech polluted (Valibelevilla)	Afrika Shee	A SK Vort
**************************************	r that polluti nplete one te	indam which anti-Forlothe able for each	is immed em er pollutants outfall #See					Though a line and a second				
1. POLUTS F2 MARKX	A. Sept. Conflict and Conflict	CALL STATE	THE STREET STREET	2. EFFLUENT								
CAS NO. (2)	A MAXW	A MAXIMUM DAR V () TATITAX MUM SO								ANNIAN ENGODOST	NEJ (GOTGOT	
avallable) * Translate	Concessional							FINANCE F. I. MASS	+			Section 1
(24959-67-9)	MA								2	NA = No analysis	lysis.	
Total	۸								_	ND = Parameter not detected	ter not det	ected.
c. Color	NA											
d. Fecal	3300		3300		358		34	cfu/100				
e. Fluoride	ΑN							mL				
f. Nitrate	NA											
Nitrate (as N)	5											,

1 POLETITE	2. MARK X	г	· · · · · · · · · · · · · · · · · · ·				がいまれた。カーフ	NAST STATE OF THE	201	STINIT & STATE	JITO	4 1	A INTAKE fondone	Cano
ANT AND			A. MAXIN	AUM DAILY A	Z &		SODAY VALUE SELONG TERRITAV		S d. NO. OF E.	24	if blank)	AVERAG	AVERAGE VALUE	b. NO. OF
			CONCENTRATIO	-	Secondaries (Service Service			ANALYSIS	A CONCEN	b. MASS	Concessionation		ANALYSES
g. Nitrogen, Total Organic (as N)			NA									NA = No analysis	analysis.	
h. Oil and Grease	Ø		14		14		3.84		78	mg/L		ND = Par	NU = Parameter not detected	letected
i. Phosphorus (as P), Total (7723-14-0)			NA											
j. Radioactivity	V					是表示的			A DAMPA					The state of the s
(1) Alpha, Total			۸۸											
(2) Bets, Totai			۸×											
(3) Radium, Total			NA											
(4) Radium 226, Total			۸A											
k. Suffate (as SOJ) (14808-79-8)			NA											
I. Sulfide (as S)			NA											
m. Suiffie (es SO ₃)(14265-45-3)			NA											
n. Surfactants	\boxtimes		۸A											
o. Aluminum, Total (7429-90-5)			NA											
p. Barlum, Total (7440-39-3)			NA											
q. Boron, Total (7440-42-8)			۸A										,	
r. Cobalt, Total (7440-48-4)			WA	·										
s. Iron, Total (7439-89-4)			NA											
t. Magnesium, Total (7439-95-4)			NA											
u. Molybdenum, Total (7439-88-7)			NA											
v. Manganese, Total (7439-98-5)			MA											
w. Tin, Total (7440-31-5)			NA											
x. Titanium, Total (7440-32-6)			NA											
EPA FORM 3510-2C (Rev. 2-85)	A 3510	-2C (R	ev. 2-85)				Pa	Page V-2				CONT	CONTINUE ON PAGE V-3	AGE V-3

ITEM V-B CONTINUED FROM FRONT

1. POLLUT. ANT AND CAS NO. (#) ING RE- evallable) # QuineD.	provide the results of at least one as discharged in concentrations of 10 pollutants which you know or have brefly describe the reasons the pollutants describe the reasons the pollutants describe the reasons the pollutants.	nn 2-5 for each on an analysis of 10 ppb or r have reason the politicant streets.	*** Tractions and appriv to your industry and not ALL book metals, cyanides, and total phenoin, if you provide the results of at least one analysis for each pollutant you know or have reason to believe, is present to provide the results of at least one analysis for that pollutant; if you mark column 2b forgan, pollutant if you mark column 2b for accelerations of 10 ppb or greater. If you mark column 2b for accelerations of 10 ppb or greater. If you mark column 2b for accelerations of your pollutants which you know or have head on believe that you discharge in concentrations of 300, additional details and requirements.	and total phenology if you are seen to believe a present a political of the contract of the co		of figures of the control of the con	incordary industries, nonprocession to believe is absent. If yet one sinelysis for that politicant, botherio, you must provide the for which you mark column 2b. Iffully? Complete one table (set	total phenology if you are not required to mark column 2 = (secondary industries, norprocess washington contains, and non-required GCANS). The below is present, thank for solving 2 for each politicant you believe is absent. If you may column 2a for any politicant you must be below it is not any politicant you must be of the politicant of the politicant is not any politicant. If you must column 2a for any politicant you must be below it is not any politicant of the politicant is not any politicant. If you must column 2a for any politicant is not below it is not below it is not any politicant of the politicant is not politicant. If you must column 2a for any politicant of these not politicant is not politicant. If you must column 2a for any politicant of these is not politicant of the politicant in the politicant is not politicant. If you must column 2a for a for any politicant of the politicant is not politicant. If you must column 2a for a for any politicant of the politicant is not politicant. If you must column 2a for a for a for any politicant of the politicant is not politicant. If you must column 2a for a for a for a for any politicant of the politicant is not politicant. If you must column 2a for a for any politicant of a for any politicant of the politicant of t
ANT AND R. TEST-CAS NO. (II) ING RE-	2. MARK X							
available) Auren	b. BE-	c. BE.	DAILYV	Y & WAXIMUM 30 DAY VALUE	FINE CLEANS TERMANEOU		3.UNITS	jii.
	PRE	ABSEN						
METALS, CYANIDE, AND TOTAL PHENOLS	ND TOTAL PL	HENOLS	d E				National Assessment	
1m. Antimony, 1704si Totai (7440-36-0)					0.33	3	mg/L	See note.
2M. Arsenic. Total (7440-36-2)		⊠	ND			3		
3M. Beryllum, Total (7440-41-7)		⊠	QN			3		
4M. Cadmium, Total (7440-43-8)		Ø	ND			8		
5M Chromium, Total (7440-47-3)		Ø	QN			m		
6M Copper, Total. (7440-50-8)	Ø		0.022		0.014	8	mg/L	Note: One-half detection limit used for
7M lead, Total (7439-92-1)	Ø		0.027		0.035	67	l/om	calculation of average concentration for
8M Mercury. Total (7439-97-6)		Ø	ND			, m	1 %	riose parameters for which analyses revealed at least one nondetect during this
9M Nickel, r Total (7440-02-0)		Ø	ND			60		reporting period. Where long term average concentration is greater than
10M Selenium, ii Total 7782-49-2)	\boxtimes		0.049		0.150	3	mg/L	maximum, 1998 Priority Pollutant analyses were performed with detection
11M Silver, Total (7440-22-4)		Ø	ND			8		limits much higher than analyses for 1999 and 2000
12M Thallum, Total		Ø	QN			8		NA = No analysis.
13M Zinc, Total	Ø		0.1		0.091	8	mg/L	ivolucted to this parameter.
14M Cyanide, X Total (57-12-5)		×	QN			6	,	
15M Phenote, Total	Ø		0.14		0.04	38	ma/L	

	AND THE STATE OF T	C. BE-	A. A. Lastiners	4 27 12	N 2 2 2					U.S. S.U.	(specify if blank)	шЗ	(Jeuoppo
ANT AND	SENT.	C. BE. T. LIEVED II. LIBSENT		100			A TONO TENNA	1		* (specffy	₩	ER	ľ
Colored Colo	MPOUNDS (C			Ì	8		The second secon		, 6 is		におりはい では を関するはいない	ERAGE VALUE	IS NO OF
CC/MS - VOLATILE COI	APOUNDS (C		STATE OF THE STATE						2 sec.	CONCEN	b. WASS Community		S T
Chiefords Chie		(penupuo								To the same of the			1
City 11.22-Tent City 11.22-Tent City 24.6 24.4 Fermination City 24.6 24.4 Fermination City 24.6 25.7 Tolland City 24.6 25.7 City 24.6			0.19				1.80		C	nd/L	Note: One-half detection limit used for	detection limit	l used
24/ Transchotor- 22/ Transchotor- 127/18-4		\boxtimes	ND						62	>	 calculation of average concentration for those parameters for which analyses 	erage concentra for which analy	tion
(108-19.1) (10		Ø	ND						60		revealed at least one nondetect during this	one nondetect d	uri.
Colorest			37				13		14	na/L	concentration is greater than maximum,	w nere iong tel greater than may	m a cimu
2// 11-17-17-17-17-17-17-17-17-17-17-17-17-1		\boxtimes	ND						3		1998 Priority Pollutant analyses were	lutant analyses	were
287 11.2.716 calcocations (78-00-5) 289 Trackions (78-01-4) 310 Vinyl Chloride (78-01-4) 310 Vinyl Chloride (78-01-4) GCIMS FRACTION ACI (86-57-8) 23.2.4.040loos		\boxtimes	ND						8		higher than analyses for 1999 and 2000.	ses for 1999 an	1 20 1 20
239 Trichloro (176,01-8) 309 Trichloro (176,01-8) 309 Trichloro (176,01-8) 319 Vinit (176,01-		\boxtimes	ND						8		NA = No analysis.		
307 Inchloro- 105-69-4) 310 Viny Chloride (75-61-4) CGC/MS FRACTION ACI 11.2-01-4) (95-57-8) 23.2.2-10000000000000000000000000000000000	[\boxtimes	ND						6		IND - Mondelect for this parameter.	ior unis paramei	er.
31V/ny/ 31V/ny/ (75-01-4) GC/MS FRACTIÓN ACI (86-57-8) 2x 2.4-Dichlore		Ø	ND						8				
GC/MS FRACTION ACI		\boxtimes	ND			-			6				
ત્રું લ	D COMPOUN											ESTERN CAR	
		\boxtimes	ND ND	+		_			6	변 3.3. 	4		
(120-83-2)		Ø	ND										
34.2.4-Dimetryt- phenol (105-67-9)	\boxtimes		1.7				0.82		6	ng/L			
4A 4,8-Driftro- O-cresol (534-52-1)		Ø	ND						3			,	-
5A 2, 4-Dinitro- phenol (51-28-5)		⊠	ND			-			3				
SA 2-Nitro- phenol (88-75-5)		\boxtimes	ND						6				
7A 4-Niro- phenol (100-02-7)		· ⊠	ND						60				
M-Cresol (59-50-7)		\boxtimes	ND						60				
9A Penta- chlorophenol (87-86-5)		\boxtimes	ND						3				
104 Phena (104-95-2)	Ø		0.14			0	0.04		38	ma/L			
chlorophenol		\boxtimes	ND						•	h			

* /organia	NO REF. (LEVED	LIEVED					-	d, NO. OF	(specif	Scority If blank)	1.4	T. LONG TERM
	NE.							ANALYSI	A SO	CONCENT IN MASS		be compare
N. P.	ASENEUTRAI	Ľ COMPOÙ	NDS !!						<u> </u>			
Ø	Ø		0.5			0.20		3	ממ/ן			
\boxtimes		\boxtimes	ND					60	i h			
\boxtimes		\boxtimes	ND	-				, c				
\boxtimes			NA					•				
\boxtimes		\boxtimes	ΩN					2				
\boxtimes		\boxtimes	ND					3				
\boxtimes		\boxtimes	QN					6				
\boxtimes		\boxtimes	ND					8				
\boxtimes		\boxtimes	ND					8				
\boxtimes		\boxtimes	QN					6				
\boxtimes		\boxtimes	ND					m				
\boxtimes		\boxtimes	ND					8				
\boxtimes	×		4.9			2.54		8	ng/L			
Ø		\boxtimes	ND					8				
\boxtimes	\boxtimes		0.4			1.02		n	ng/L	Note: Whe	Note: Where long term average	erage
\boxtimes		\boxtimes	ND					<i>ب</i>		concentratio	concentration is greater than maximum, 1998 Priority Pollutant analyses were	n maximum, yses were
\boxtimes		\boxtimes	ND					60		performed w higher than	performed with detection limits much higher than analyses for 1999 and 2000	nits much 99 and 2000.
\boxtimes	\boxtimes		0.17			0.09		6	l/an	One-half det	One-half detection limit used for confaverage concentration for those	One-half detection limit used for calculation of average concentration for those
\boxtimes		\boxtimes	ND					6.5	i h	parameters f	parameters for which analyses revealed at	es revealed at
\boxtimes		\boxtimes	ND					60		reast one nondetect period. NA = No analysis. ND = Parameter n	teast one nondetect during this reporting period. NA = No analysis. ND = Parameter not detected	us reporting
\boxtimes		\boxtimes	QN					6		3		, con
510-20	EPA FORM 3510-2C (Rev. 2-85)				Page V-6	9	-			NOS	CONTINUE ON PAGE V-7	GE V-7

	NE (AVERAGE VALUE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE	100	Notes: NA = No analysis. ND = Parameter not detected.	Phthalates and dinitrotoluene were detected in sample blanks	or at concentrations below the practical quantitation limit.	Results are as reported without correction for sample blank	contamination.	average concentration is greater than maximum 1008 Defocies	Pollutant analyses were performed with detection limits	much higher than analyses for 1999 and 2000. One-half	detection limit used for	concentration for those	parameters for which analyses revealed at least one nondetect	during this reporting period.									CONTINUE ON DEVEDSE
. 001	3. UNITS	Specify if blank)				ng/L	na/L	na/L		ng/L		1/~	משלר							//2/1	20%L			
OUTFALL No.		d. NO. OF ANALYSI		י ני	י מ	7 6) m	n	6	e		•) m	6	m	8	3	6	~	5 -	- ~		8	
EPA I.D. NUMBER WAD980980106	A STATE OF THE STA				0.46	2.58	1.18	0.25		0.69		010	1.13							12				Page V.7
			ND ON	QN	0.76	7.1	0.66	0.24	ND	1.1	QN	0.21	1.9	ND	QN	ND	ND	QN	ND	12	ND	ND	ND	
	4 c. BE-#	ABSENT F]. [\boxtimes		\boxtimes			\boxtimes	\boxtimes	\boxtimes	\boxtimes	<u>·</u>	\boxtimes		\boxtimes	\boxtimes	\boxtimes	
GE V-6	2 MARK X					\boxtimes	\boxtimes	\boxtimes		\boxtimes		\boxtimes	⊠							\boxtimes				(Rev. 2-85
FROM PA	12.30			×		\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	×	\boxtimes	\boxtimes	☒	\boxtimes	\boxtimes	⊠	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	13510-2C
CONTINUED FROM PAGE V-6	1. POLLUT	CAS NO Services	ZZB 1,4-Dichlaro- benzene	226 1.7-Dichter Denzidine	(91-94-1) 74 248 Diedtryf 248 Prithusiate	258 Demetry	Pribulate	278 2,4 Online toluene (121-14-2)	288 2.6-Dinter- toluene 20-21 (606-20-2)	Phthalete :: (117-84-0)	Not 1.2-Determy hydracine (se Arc-bercone) (122-86-7) (c)	318 Fluoranthane (208-44-0)	328 Fluorens (86-73-7)	chibrobenzere (116-74-1)	348 Herrs 25 chterblanders (87-68-3)	Sydopertadens sydopertadens	368 Hexe-1- chloroethere 11 (87-72-1)				•	18 N-Mills 19 18 N-Mills 19 18 18 18 18 18 18 18 18 18 18 18 18 18		EPA FORM 3510-2C (Rev. 2-85)

OCINS FRACTION : BASENEUTRAL COMPOUNDS (KOM	138 H 480-		458 Pyrene 25	488 1.2.4-frf- chlorobergane	GCINS FRACTION - PESTICIDES	1P Addrin skip	22 p. Brockers (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	4P y-BHC(2014) (1949-9) (1949	Sp. 5-89-80 N N N N N N N N N N N N N N N N N N N	69 Chlordens (57-74-9) * 3.78		(17.00.00)		(God-57-1) First N	110 = Endo. 1	129 p-Endo		14P Endth 7 14 14 14 14 14 14 14		
Nos) Son	QΝ	0.5	0.21	QN	5	QN	ND	QN	ND	QN	QN	an	ON	ND	0.014	QN	QN	ND	QN	QN
					T															
								-												
		0.41	0.10												0.008					
	3	C	C	C.		3	8	3	C	<i>C</i>	6	3	3	3	8	C	3	3	es .	3
100 T		T/bn													ng/L					
ON D. MASS		7,	7,	-											7					
	NA = No	ND = Pa	מפופסופת																	
	NA = No analysis.	ND = Parameter not				10 Co. 10											,			
AWALYSE		*			**************************************															

mal)	b. NO. OF	8			•							
4. INTAKE (optic	AVERAGE VALUE	3		IA = No analysis.	ID = Parameter not	cicoted.						
ITS	ff blank)	b. MASS		2	2 0	3						
3, UN	(specify)	R. CONCEN- TRATION										
	d. NO. OF	Alexand .	1.57 m p. 2.	3	8	n	c	3	8	, w	m	8
•	TERM AVRG.	Section 1										
		NO. V			-							
2. EFFLUE										_		
		BANN SE										
		8 E										
	2	RATION		QV	QV	ND	QN	QN	QN	QN	ND	QN
	· M			☒	Ø	\boxtimes	\boxtimes	⊠	\boxtimes	\boxtimes	\boxtimes	\boxtimes
2. WARK X	LIEVED	SENT	confined)									
TEST.	WG RE-		STICIDES (X ••••••••••••••••••••••••••••••••••••	\boxtimes	\boxtimes	⊠		\boxtimes	\boxtimes	\boxtimes	\boxtimes
1. POLLUT	CAS NO.		179 Hotedior	(1024-57-5)	18P PCB-124. (53468-21-9)	(11097-68-1)	(11104-28-2)	21P PCB-12X (11141-16-6)	22P PCB-124 (12872-29-6)	23P PCB-128X (11096-62-5)	24P PCB-1016 (12674-11-2)	25P Tord- phene (9001-35-2)
	2. MARK X. BEST IN BEST BEST OF THE STATE OF	2. WARK X. b. BE- c. BE- a. MAXIMUM DARLY: 1-1 D. WAXWAN 30 DAY VALUE LIEVED LIEVED (Specify If blank) A. HOLOF PRE- C. BE- a. MAXIMUM DARLY: 1-1 D. WAXWAN 30 DAY VALUE LIEVED C. BE- a. MAXIMUM DARLY: 1-1 D. WAXWAN 30 DAY VALUE PRE- C. BE- a. MAXIMUM DARLY: 1-1 D. WAXWAN 30 DAY VALUE PRE- C. BE- a. MAXIMUM DARLY: 1-1 D. WAXWAN 30 DAY VALUE A. HOLOF A. HOLOF A. HOLOF A. HOLOF A. HOLOF ANALYSI C. BE- C. BE- C. BE- C. BE- C. DE- 2. WARK X. D. BE. C. BE. U. BE. C. BE. U. WAXIMUM DALYY C. BE. U. WAXIMUM DALYY C. BE. U. WAXIMUM DALYY C. BE. U. WALUE 2. WARK X. D. BE. C. BE. L. MAXIMUM DALY Y. L.	2. WARK X. D. BE. C. BE. LIVED LIV	a. TEST. b. BE. large lar	2 WARK XT. b. BE. c. BE. L. BE. L. BE. L. B. WAIMUUN DALY Y. L. B. WAIMUN DALY Y. L. B. WAIMU	A	A	2. MARK X a. T F ST LEVED UT				

EPA ID Number (copy from item I of Form 1)

WAD98098016

Form Approved. OMB No. 2040-0086 Approval expires 5-31-92

Miller Creek

Form
2F
NPDES

47

27

45

United States Environmental Protection Agency Washington, DC 20460

Application for Permit to Discharge Storm Water Discharges Associated with Industrial Activity

Paperwork Reduction Act Notice

Public reporting burden for this application is estimated to average 28.6 hours per application, including time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding the burden estimate, any other aspect of this collection of information or suggestions for improving this form, including suggestions which may increase or reduce this burden to: Chief, Information Policy Branch, PM-223, U.S. Environmental Protection Agency, 401 M St., SW, Washington, DC 20460, or Director, Office of Information and Regulatory Affairs, Office of Management and Budget, Washington, DC 20503.

I. Outfall Location

SDN3-A

For each outfall, list the latitude and longitude of its location to the nearest 15 seconds and the name of the receiving water A. Outfall Number D. Receiving Water B. Latitude C. Longitude (list) (name) 002 (SDE4) 47 26 30 122 17 45 Des Moines Creek(east branch) NW Pond outlet' 47 25 45 122 45 18 Des Moines Creek (west branch) Lake Reba outlet 47 28 00 122 19 00 Miller Creek 009 (SDS4) 47 30 122 Des Moines Creek (west branch) 25 18 30 SDW1-A3 47 27 30 122 19 15 Miller Creek SDW1-B3 47 27 15 122 19 15 Miller Creek SDW2 47 27 122 00 19 15 Walker Creek

19

15

Table notes

1. consolidates current outfalls 004 (SDS2), 005 (SDS3), 010 (SDS7), 014 (SDS6), 015 (SDS5), the future 019 (SDW3) and non-Port drainage at Northwest Ponds outlet

122

2. consolidates current outfalls 006 (SDN1), 007 (SDN2), 008 (SDN3), 011 (SDN4), other non-industrial Port drainage and non-Port drainage at Lake Reba outlet

3. future outfall

II. Improvements

A. Are you now required by any Federal, State, or local authority to meet any implementation schedule for the construction, upgrading or operation of wastewater treatment equipment or practices or any other environmental programs which may affect the discharges described in this application? This includes, but is not limited to, permit conditions, administrative or enforcement orders, enforcement compliance schedule letters, stipulations, court orders, and grant or loan conditions.

Identification of Conditions,	2	. Affected Outfalls		1	inal nce Date
Agreements, Etc.	number	source of discharge	Brief Description of Project	a req	b. proj.
401/404 permit conditions	all	Airport operations, roadways, pervious and impervious surfaces	Monitoring of construction and mitigation projects, Implementation of Comprehensive Stormwater Management Plan (CSMP)		See Table A-3 of CSMP

B. You may attach additional sheets describing any additional water pollution (or other environmental projects which may affect your discharges) you now have under way or which you plan. Indicate whether each program is now under way or planned, and indicate your actual or planned schedules for construction.

III. Site Drainage Map

Attach a site map showing topography (or indicating the outline of drainage areas served by the outfall(s) covered in the application if a topographic map is unavailable) depicting the facility including: each of its intake and discharge structures; the drainage area of each storm water outfall; paved areas and buildings within the drainage area of each storm water outfall, each known past or present areas used for outdoor storage or disposal of significant materials, each existing structure control measure to reduce pollutants in storm water runoff, materials loading and access areas, areas where pesticides, herbicides, soil conditioners and fertilizers are applied; each of its hazardous waste treatment, storage or disposal units (including each are not required to have a RCRA permit which is used for accumulating hazardous waste under 40 CFR 262.34); each well where fluids from the facility are injected underground; springs, and other surface water bodies which receive storm water discharges from the facility **See attached maps for** existing and future drainage

A. For e to the	outfall, and an estimate of the t	otal surface area draine	d by the outfall	surfaces (including paved areas a	inc building 100is/ Grain
Outfall Number	Area of Impervious Surface (acres)	Total Area Drained (acres)	Outfall Number	Area of Impervious Surface (acres)	Total Area Drained (acres)
002 (SDE4)	97(current) ² 126 (future)	149 (current) ² 166 (future)	SDW1-B	27 (future)	97 (future)
003 (SDS1)	14(current) ² 16 (future)	16 (current) ² 18 (future)	SDW1-A	15 (future)	53 (future)
NW Ponds	237¹ (current) ² 279¹ (future)	573¹ (current)² 563³ future)	SDW2	10 (future)	45 (future)
Lake Reba	50'(current) ² 62 ¹ (future)	119 ¹ (current) ² 181 ¹ (future)	SDN3-A	8 (future)	30 (future)
009 (SDS4)	21(current) ² 32 (future)	63 (current) ² 65 (future)			

Table notes

- 1. does not include Port non-industrial areas and non-Port drainage areas tributary to the outfall
- 2. acreage from 2001 Port of Seattle Annual Stormwater Monitoring Report
 - B. Provide a narrative description of significant materials that are currently or in the past three years have been treated, stored or disposed in a manner to allow exposure to storm water; method of treatment, storage, or disposal; past and present materials management practices employed to minimize contact by these materials with storm water runoff; materials loading and access areas; and the location, manner, and frequency in which pesticides, herbicides, soil conditioners, and fertilizers are applied.

Significant materials are not treated, stored or disposed at Sea-Tac Airport where they could contaminate stormwater runoff. All areas with industrial activities such as aircraft fueling, aircraft de-icing, and vehicle maintenance drain to the Industrial Waste System (see Form 2C). There is some stormwater exposed to construction activities. Construction projects have site-specific Stormwater Pollution Prevention Plans (SWPPPs), which include erosion/ sediment control, spill prevention, hazardous materials handling and monitoring plans (Special Condition S13 of NPDES permit WA002465-1).

Application of pesticides, herbicides, soil conditioners and fertilizers is addressed in the Port's Stormwater Pollution Prevention Plan (SWPPP) for Airport Operations (Special Condition S12).

Number //	Treatment	
•	i Treatment consists of the RMPs listed in the Port's Stormwater Pollution	Table 2F-1
	Treatment consists of the BMPs listed in the Port's Stormwater Pollution Prevention Plan (SWPPP) including detention of stormwater in stormwater detention facilities. Much of the stormwater generated by the airfield is treated by filter strips and bioswales, prior to discharge. The SWPPP addresses aircraft servicing, ground de-icing/ anti-icing, snow storage, spills, construction sites, erosion in non-construction areas, vehicle washing and maintenance, landscape, airfield maintenance, inappropriate connections and discharges, temporary storage of surplus materials, and tenant activities on Port property. As a BMP, stormwater runoff from drainage areas that could receive discharges of fresh and used engine fluids; aviation and ground service vehicle fuels; aircraft and vehicle wash water; aircraft lavatory wastwater, hangar floor wash water; aircraft, runway, and roadway de-icing and anti-icing chemicals; pipe testing and flushing water; groundwater de-watering; and some construction runoff is routed to the Industrial Waste Treatment Plant (IWTP) where it is treated by dissolved air flotation units prior to dischare to Puget Sound. Snow storage areas are designed to drain to the IWTP.	1-U 1-G, 1-H, 4-B
	Other BMPs include secondary containment, covering, sweeping, catch basin cleaning, proper labeling and disposal, and employee education. Port and all airport tenants with exterior operations develop Water Pollution Control Plans, which include BMPs, spill control plans, and hazardous waste management plans. Port and tenant construction sites which are part of the Port's Master Plan Update or disturb more than 5 acres develop construction Stormwater Pollution Prevention Plans, which include monitoring plans, erosion and sediment control, spill response, and hazardous material management. The stormwater generated by many Port construction sites is chemically treated with alum or polymers to reduce total suspended solids and turbidity prior to discharge.	1-G
	The Port has developed and is responsible for implementing a Spill Control, Containment and Countermeasure Plan (SPCCC). Several Port of Seattle storm drain outfalls receive runoff from non-Port property such as state highway 518 and local streets.	
Non S	tormwater	1
scharg		
A. I cert storm Form	ify under penalty of law that the outfall(s) covered by this application have been tested or evaluated for the water discharges, and that all non-stormwater discharges from these outfall(s) are identified in either an accommodate application for the outfall.	
	cial Title (type or print) Signature Date Sign	,
rector, A	Feldman, Aviaition Facilities / Luliu / Itauan /2/19	•
	le a description of the method used, the date of any testing, and the onsite drainage points that were directly obs	
	et weather inspections of SDS outfalls per the 8WPPP, routine NPDES monitoring, r	

SDS1 (003) in the past 5 years and has resulted in the elimination of all known inappropriate connections with the storm drainage system.

VI. Significant Leaks or Spills

Provide existing information regarding the history of significant leaks or spills of toxic or hazardous pollutants at the facility in the last three years, including the approximate date and location of the spill or leak, and the type and amount of material released

The Port's Industrial Waste System is designed to contain and treat industrial wastewater that could be contaminated by spills and leaks of fuel and other materials. (see Form 2C)

Over the past three years, there was one minor spill of jet fuel, which occurred on April 28, 1999 from a 747 aircraft fuel tank expansion relief valve on a wing tip emergency relief valve. Most of the spilled fuel was contained on the airfield and recovered before reaching the drainage system. It was estimated that less than 5 gallons of fuel reached Des Moines Creek.

WAD98098016

VII. Discharge Information			
Tables Vii-A, VII-B, and VII-C ar	ng Complete one set of tables for each e included on separate sheets numbere	d VII-1 and VII-2.	
 Potential discharges not covered by ana substance which you currently use or ma 	ilysis - is any toxic pollutant listed in ta nufacture as an intermediate or final pro	ble 2F-2, 2F-3, or 2F-4, a subst oduct or byproduct?	ance or a component of a
Yes (list all such pollutants below)		1 X	No (go to Section IX)
VIII. Biological Toxicity Testing			
Do you have any knowledge or reason to belie on a receiving water in relation to your dischar Yes (list all such pollutants below) Whole effluent toxicity (WET) characteristics and the such pollutants below)	ge within the last 3 years? acterization testing was perfo	rmed on stormwater disc	No (go to Section IX)
4 outfalls as required by the currer was collected from 2 to 5 storms for outfalls (SDE4, SDS3, and SDN4 part and P. promelas (fathead minnow), WET testing demonstrated that store of the toxicity. The Port has test results have been reported to July 1999) and a final WET testing.	or each outfall (SDE4 (002), Sassed Washington State acute). Acute toxicity to both organ ormwater associated with unco s been investigating manager the Washington Department of summary report (May 2000). The runoff from all four outfall	DS3 (005), SDN1 (006) and performance standards nisms found in outfall SE pated galvanized roofing ment alternatives for the of Ecology in individual re	d SDN4 (011)). Three (<u>D. pulex</u> (daphnia) N1. Subsequent material was the roof runoff. These eports (Nov 1998-
toxicity in November/ December 20	001.		
IX. Contact analysis Information			
Were any of the analysis reported in item VII p Yes (list the name, address, and tell analyzed by, each such labora.	ephone number of, and pollutants	sulting firm?	No (go to Section X)
A. Name	B. Address	C. Area Code & Phone No.	D. Poliutants Analyzed
Aquatic Research, Incorporated	3927 Aurora Avenue North, Seattle, WA 98103	206-632-2715	pH, fecal coliform, TPH, TSS, turbidity, BOD5, glycols, metals, fluoride, surfactants, phosphorus
X. Certification			
I certify under penalty of law the supervision in accordance with a street the information submitted. Based directly responsible for gathering belief, true, accurate, and complet including the possibility of fine and A. Name & Official Title (type or print)	system designed to assure that on my inquiry of the person or po the information, the information te. I am aware that there are sig	qualified personnel proper ersons who manage the sy submitted is, to the best nificant penalties for subm	ly gather and evaluate ystem or those persons of my knowledge and itting false information,
	tion Excilitios	•	Frione No.
C. Signature Michael D. Feldman, Director, Avia C. Signature Mullim Hallman		206-439-7706 D. Date Signed	,

ÉPA Form 3510-2F (Rev. 1-92)

VII. Discharge Information (Continued from page 3 of Form 2F)

Part A - You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details.

	The rest deditioners					
Pollutant	(includ	um Values de units)		e Values le units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 M inutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
Oil & Grease TPH¹ (mg/l, NWTPH-Dx)	8.7	N/A	2.1	No data'	28	passenger, service, construction and maintenance vehicle traffic, aircraft taxiing
Biological Oxygen Demand (BOD5, mg/l)	No data ²	335	No data ²	19	26	ground surface de-icing
Chemical Oxygen Demand (COD)	No data²	No data ²	No data ^z	No data ²	N/A	N/A
Total Suspended Solids (TSS, mg/l)	No data ²	250	No data'	57	26	Roadway aggregate wear, ground surface deicing abrasives (sand) atmospheric deposition and construction
Total Organic Nitrogen	No data ^z	No data ^z	No data ²	No data	N/A	N/A
Total Phosphorus	No data²	No data ^z	No data ^r	No data ²	N/A	N/A
PH (std units)	Minimum 6.3	Maximum 10.7	Minimum	Maximum	28	

Table notes: 1. total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998. 2. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1)

Pollutant		ım Values de <i>units)</i>		e Values le <i>units)</i>	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
All of the pollutants with effluent limitations for the Industrial Waste Treatment Plant's discharge (outfall 001) in the current NPDES permit for Sea-Tac International Airport are listed in Part VII A above. See Form 2C	See VII A (above)	See VII A (above)	See VII A (above)	See VII A (above)	See VII A	See VII A (above)

OUTFALL SDE4 (002) Maximu	m Values	Average	Values	Number	
Pollutant	(includ	de units)		e units)	Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted 'Composite	Storm Events Sampled	Sources of Pollutants
Fecal coliform ¹ (MPN/100ml)	>1600	No data*	158 ⁵	No data	28	small wild animals and birds
Fluoride* (mg/l)	0.62	No data	0.19	No data	15	domestic water
FOG ³ TPH (mg/l, NW TPH-Dx)	8.7	No data⁴	2.1	No data ⁴	28	passenger, service, construction and maintenance vehicle traffic, aircraft taxiing
Surfactants² (MBA mg/l)	S. 0.89	No data ⁴	0.26	No data	16	See footnote 2
Copper, total ecoverable ¹ (mg/l)	No data ⁴	0.032	No data	0.016	26	See TPH above
Lead, total recoverable ¹ (mg/l)	No data	0.031	No data	0.009	26	See TPH above
Zinc, total recoverable¹ (mg/l)	No data	0.197	No data ⁴	0.101	26	See TPH above
Table notes						
	ater monitoring paramet					
					S permit (WA	-002465-1). These parameters
	ed for special source-tra					
						ermit was renewed in 1998.
geometric mear	ple type not required fo	r stormwater monito	oring in current NPI	JES permit (VVA-00.	2465-1)	
		reviously submitted	to the Washington	Department Ecolor	y in Dischar	ge Monitoring Reports (DMRs) ar
•	r Monitoring Reports ac	•	•	'	• •	go monitoring (coports (DMNs) at
						riteria of the NPDES permit (WA
	Port of Seattle's Proce					
Part D - Pro	vide data for the storm	event(s) which resu	ilted in the maximu	m values for the flo	w weighted co	omposite sample.
1.	2.		3.	4.		5.
Date of Storm	Duration of Storm Event		rainfall	Number of hour beginning of sto	rm meas-	Total flow from
Event	(in minutes)	_	orm event ches)	ured and end of measurable ra	•	rain event (gallons or specify units)

Maximum data listed for each parameter occurred in samples from multiple storm events. The Port of Seattle's Annual Stormwater Reports (1999, 2000 and 2001) list rainfall and flow estimates for events sampled.

7. Provide a description of the method of flow measurement or estimate.

Flow measurements are by ISCO 4150 area-velocity Doppler flowmeter.

WAD98098016

1/11 D: 1	-		WADSOUSO			
VII. Discharge II	st provide the resu	(Continued front of at least one a	om page 3 of	Form 2F) ollutant in this table	Complete	one table for each outfall. See
instructi	ons for additional	details	, , , ,	energen in this table	Complete	one table for each outlan. See
Pollutant And	(includ	ım Values de units)	(includ	e Values le units)	Number Of	
CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
Oil & Grease TPH¹ (mg/l, NWTPH-Dx)	1.6	N/A	0.9	No data		passenger, service, construction and maintenance vehicle traffic, vehicles on non Port public roads
Biological Oxygen Demand (mg/l BOD5)	No data²	7.7	No data²	7.0	2	ground surface de-icing (source of aircraft glycols removed Sept 2000)
Chemical Oxygen Demand (COD)	No data²	No data ^z	No data ²	No data²	N/A	N/A
Total Suspended Solids (mg/l TSS)	No data ^z	93	No data ^r	47	4	Roadway aggregate wear, ground surface deicing abrasives (sand atmospheric deposition construction
Total Organic Nitrogen	No data²	No data'	No data	No data ^z	N/A	N/A
Total Phosphorus	No data ²	No data²	No data²	No data²	N/A	N/A
PH (std units)	Minimum 6.7	Maximum 7.8	Minimum	Maximum	5	

Table notes: 1. total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998. 2. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1)

Pollutant		m Values le units)		e Values e units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
All of the pollutants with effluent limitations for the Industrial Waste Treatment Plant's discharge (outfall 001) in the current NPDES permit for Sea-Tac International Airport are listed in Part VII. A above. See Form 2 C	See VII A (above)	See VII A (above)	See VII A (above)	See VII A (above)	See VII A	See VII A (above)

Continued from the Front

OUTFALL SDS1 (003) Pollutant	Maximum Values (include units)		Average Values (include units)		Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
Fecal coliform (MPN/100ml)	>1600	No data ⁴	35	No data	4	small wild animals and birds
Fluoride ² (mg/l)	0.09	No data	0.08	No data	4	domestic water
FOG ³ TPH (mg/l, NWTPH-Dx)	1.6	No data ⁴	0.9	No data	4	passenger, service, construction and maintenance vehicle traffic, vehicles on non- Port public roads
Surfactants ² (MBAS, mg/l)	3.9	No data [*]	0.9	No data⁴	6	(source of aircraft and service vehicle washwater removed Sept 2000)
Copper, total recoverable ¹ (mg/l)	No data	0.366	No data	0.110	4	See TPH above
Lead, total recoverable (mg/l)	No data [‡]	0.009	No data ⁴	0.005	4	See TPH above
Zinc, total recoverable ¹ (mg/l)	No data ⁴	0.206	No data⁴	0.138	4	See TPH above

1. routine stormwater monitoring parameter required for this outfall by NPDES permit (WA-002465-1).

- 3. the total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998.
- 4. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1)

5. geometric mean

- 6. data for other parameters have been previously submitted to the Washington Department Ecology in Discharge Monitoring Reports (DMRs) and Annual Stormwater Monitoring Reports according to the NPDES permit requirements (WA-002465-1)
- data listed are for storm runoff event samples in the period 10/15/98 through 10/15/01 that met the reporting criteria of the NPDES permit (WA-002465-1) and and the Port of Seattle's Procedure Manual for Stormwater Monitoring (NPDES permit Special Condition S2.B)
 Part D Provide data for the storm event(s) which resulted in the maximum values for the flow weighted composite sample.

Number of hours between Date of Duration Total rainfall Total flow from: beginning of storm measured of Storm Event during storm event Storm rain event and end of previous Event (in minutes) (in inches) (gallons or specify units) measurable rain event

Maximum data listed for each parameter occurred in samples from multiple storm events. The Port of Seattle's Annual Stormwater Reports (1999, 2000 and 2001) list rainfall and flow estimates for events sampled.

7.	Provide a	description	of the	method	of flow	measurement	or estimate.

Flow measurements are by ISCO 4150 area-velocity Doppler flowmeter.

^{2.} fluoride and surfactants are not required stormwater monitoring parameters in the current NPDES permit (WA-002465-1). These parameters have been analyzed for special source-tracing studies on an as-needed basis at certain outfalls.

No data

No data

Minimum 7.4

No data

No data

Maximum 7.9

Total Organic

Phosphorus PH (std units)

Nitrogen Total

construction

N/A

N/A

WAD98098016

Pollutant	(includ	m Values de units)		e Values le units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
Oil & Grease TPH' (mg/l, NWTPH-Dx)	0.31	N/A	0.17	No data	3	passenger, service, construction and maintenance vehicle traffic, vehicles on non Port public roads
Biological Oxygen Demand mg/l, (BOD5)	No data²	5.8	No data'	3.9	2	no known Port sources
Chemical Oxygen Demand (COD)	No data ²	No data ²	No data²	No data ²	N/A	N/A
Total Suspended Solids (mg/l, TSS)	No data'	65	No data ^z	35	3	Roadway aggregate wear, ground surface deicing abrasives (sand atmospheric deposition

N/A Table notes: 1. total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998. 2. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1). 3 This current NPDES outfall discharges to Northwest Ponds and will be represented at the Northwest Pond outlet, which consolidates multiple discharges

No data

No data

Minimum

No data

No data

Maximum

N/A

N/A

2

Pollutant	(includ	m Values de units)		e Values le units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
All of the pollutants with effluent limitations for the Industrial WasteTreatment Plant's discharge (outfall 001) in the current NPDES permit for Sea-Tac International Airport are listed in Part VII. A above. See Form 2C	See VII A (above)	See VII A (above)	See VII A (above)	See VII A (above)	See Vii A	See VII A (above)

OUTFALL SDS2 (004) ^E Pollutant		m Values le units)	Average (includ	e Values e units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
Fecal coliform (MPN/100ml)	900	No data	1195	No data	3	small wild animals and birds
Fluoride* (mg/l)	No data	No data	No data	No data	N/A	Domestic water
FOG ³ TPH (mg/l, NWTPH-Dx)	0.31	No data ⁴	0.17	No data [*]	3	passenger, service, construction and maintenance vehicle traffic, vehicles on non Port public roads
Surfactants² (MBAS, mg/l)	No data*	No data	No data	No data	N/A	N/A
Copper, total recoverable (mg/l)	No data*	0.010	No data	0.009	3	See TPH above
_ead, total recoverable mg/l)	No data	0.006	No data	0.003	3	See TPH above
linc, total recoverable mg/l)	No data*	0.213	No data	0.094	3	See TPH above
Table notes			17.00	-		

- been analyzed for special source-tracing studies on an as-needed basis at certain outfalls.
- 3. the total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998.
- 4. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1)

5. geometric mean

- 6. data for other parameters have been previously submitted to the Washington Department Ecology in Discharge Monitoring Reports (DMRs) and Annual Stormwater Monitoring Reports according to the NPDES permit requirements (WA-002465-1)
- 7. data listed are for storm runoff event samples in the period 10/15/98 through 10/15/01 that met the reporting criteria of the NPDES permit (WA-002465-1) and the Port of Seattle's Procedure Manual for Stormwater Monitoring (NPDES permit Special Condition S2.B).
- 8. This current NPDES outfall discharges to Northwest Ponds and will be represented at the Northwest Pond outlet which consolidates multiple discharges

Part D - Provide data for the storm event(s) which resulted in the maximum values for the flow weighted composite sample. Number of hours between Date of Duration Total rainfall Total flow from beginning of storm measured Storm of Storm Event during storm event rain event and end of previous Event (in minutes) (in inches) (gallons or specify units) measurable rain event

Maximum data listed for each parameter occurred in samples from multiple storm events. The Port of Seattle's Annual Stormwater Reports (1999, 2000 and 2001) list rainfall and flow estimates for events sampled.

7. Provide a description of the method of flow measurement or estimate.

Flow measurements are by Manning equation in round pipe with level measured by ISCO 4230 (bubbler) flowmeter.

No data

No data

Minimum 7.0

No data

No data²

Maximum 7.7

Total Organic

Phosphorus PH (std units)

Nitrogen

Total

construction

N/A

N/A

VII. Discharge Information (Continued from page 3 of Form 2F)

Pollutant		m Values de units)		e Values le units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
Oil & Grease TPH¹ (mg/l, NWTPH-Dx)	2.7	N/A	0.21	No data	30	service, construction and maintenance vehicle traffic, aircraft taxiing and landing
Biological Oxygen Demand (mg/l, BOD5)	No data²	646	No data²	68	29	ground surface deicing
Chemical Oxygen Demand (COD)	No data ²	No data ^z	No data²	No data ^z	N/A	N/A
Total Suspended Solids (mg/l, TSS)	No data²	310	No dataʻ	26	27	Runway/taxiway aggregate wear, ground surface deicing abrasives (sand), atmospheric deposition,

Table notes: 1. total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998. 2. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1). 3. This current NPDES outfall discharges to Northwest Ponds and will be represented at the Northwest Pond outlet which consolidates multiple discharges

No data

No data

Minimum

No data

No data

Maximum

N/A

N/A

30

- CCC the	11101111011011101110111101111101	altional actails and				
Pollutant	1	ım Values de units)	1	e Values le <i>units)</i>	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Poliutants
All of the pollutants with effluent limitations for the Industrial Waste Treatment Plant's discharge (outfall 001) in the current NPDES permit for Sea-Tac International Airport are listed in Part VII. A above. See Form	See VII A (above)	See VII A (above)	See VII A (above)	See VII A (above)	See VII A	See VII A (above)
2C						

OUTFALL SDS3 (005)* Pollutant	(includ	m Values le units)	•	e Values e units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
Fecal coliform (MPN/100ml)	>1600	No data ⁴	75	No data	29	small wild animals and birds
Fluoride ² (mg/l)	No data	0.15	No data	N/A	1	Domestic water
FOG ³ TPH (mg ! NWTPH-Dx)	2.75	No data [‡]	0.21	No data ⁴	30	service, construction and maintenance vehicle traffic, aircraft taxiing and landing
Surfactants ² (MBAS, mg/l)	0.08	0.08	0.08	0.08	2	No known Port sources
Copper, total recoverable ¹ (mg/l)	No data	0.111	No data ⁴	0.030	28	See TPH above
Lead, total recoverable (mg/l)	No data	0.043	No data	0.003	28	See TPH above
Zinc, total recoverable (mg/l)	No data	0.189	No data	0.045	28	See TPH above
Table notes						

^{2.} fluoride and surfactants are not required stormwater monitoring parameters in the current NPDES permit (WA-002465-1). These parameters have been analyzed for special source-tracing studies on an as-needed basis at certain outfalls.

- 3. the total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998.
- 4. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1)

5. geometric mean

- 6. data for other parameters have been previously submitted to the Washington Department Ecology in Discharge Monitoring Reports (DMRs) and Annual Stormwater Monitoring Reports according to the NPDES permit requirements (WA-002465-1)
- 7. data listed are for storm runoff event samples in the period 10/15/98 through 10/15/01 that met the reporting criteria of the NPDES permit (WA-002465-1) and the Port of Seattle's Procedure Manual for Stormwater Monitoring (NPDES permit Special Condition S2.B).
- 8. This current NPDES outfall discharges to Northwest Ponds and will be represented at the Northwest Pond outlet which consolidates multiple discharges

Part D - Provide data for the storm event(s) which resulted in the maximum values for the flow weighted composite sample. Number of hours between Total flow from Date of Duration Total rainfall beginning of storm measured of Storm Event rain event Storm during storm event and end of previous (gallons or specify units) Event (in minutes) (in inches)

measurable rain event

Maximum data listed for each parameter occurred in samples from multiple storm events. The Port of Seattle's Annual Stormwater Reports (1999, 2000, and 2001) list rainfall and flow estimates for events sampled.

7. Provide a description of the method of flow measurement or estimate

Flow measurements are by stage-discharge equation for primary structure with level measured by ISCO 4230 (bubbler) flowmeter.

WAD98098016

Part A - You mus instruction	st provide the resu ons for additional o	its of at least one a	nalysis for every po	ollutant in this table	Complete	one table for each outfall. See
Pollutant	Maximum Values (include units)		Average Values (include units)		Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
Oil & Grease TPH¹ (mg/l, NWTPH-Dx)	0.08	N/A	0.08	No data'	5	service, construction and maintenance vehicle traffic
Biological Oxygen Demand (mg/l. BOD5)	No data ²	<4	No data²	N/A	1	ground surface deicing
Chemical Oxygen Demand (COD)	No data²	No data ²	No data ²	No data²	N/A	N/A
Total Suspended Solids (mg/l, TSS)	No dataʻ	58	No data'	25	5	Roadway aggregate wear, ground surface deicing abrasives (sand atmospheric deposition construction
Total Organic Nitrogen	No data ²	No data²	No data ²	No data ²	N/A	N/A
Total Phosphorus	No data²	No data ^z	No data ²	No data'	N/A	N/A
PH (std units)	Minimum 6.3	Maximum 7.7	Minimum	Maximum	4	

Table notes: 1. total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998. 2. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1). 3. This current NPDES outfall discharges to Northwest Ponds and will be represented at the Northwest Pond outlet which consolidates multiple discharges

Pollutant	1	m Values de units)	_	e Values le units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
All of the pollutants with effluent limitations for the Industrial Waste Treatment Plant's discharge (outfall 001) in the current NPDES permit for Sea-Tac International Airport are listed in Part VII. A above. See Form 2C.	See VII A (above)	See VII A (above)	See VII A (above)	See VII A (above)	See VII A	See VII A (above)

Continued from the Front

OUTFALL SDS5 (015)	Maximum Values		Average Values		Number	
Pollutant		de units)		e units)	Of	
And	Grab Sample		Grab Sample		Storm	
CAS Number	Taken During	Flow-weighted	Taken During	Flow-weighted	Events	
(if available)	First 30	Composite	First 30	Composite	Sampled	
	Minutes		Minutes	Ì		Sources of Pollutants
Fecal coliform (MPN/100ml)	>1600	No data*	70°	No data⁴	4	small wild animals and birds
Fluoride* (mg/l)	No data	No data	No data	No data	N/A	N/A
FOG ³ TPH (mg/l _i NWTPH-Dx)	0.08	No data	0.08	No data	5	service, construction and maintenance vehicle traffic
Surfactants* (MBAS. mg/l)	No data	No data	No data ⁴	No data	N/A	N/A
Copper, total recoverable (mg/l)	No data	0.014	No data ⁴	0.010	5	See TPH above
Lead, total recoverable (mg/l)	No data	0.003	No data	<0.002	5	See TPH above
Zinc. total recoverable (mg/l)	No data	0.129	No data	0.037	5	See TPH above

2. fluoride and surfactants are not required stormwater monitoring parameters in the current NPDES permit (WA-002465-1). These parameters have been analyzed for special source-tracing studies on an as-needed basis at certain outfalls.

3. the total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998.

4. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1)

5. geometric mean

6. data for other parameters have been previously submitted to the Washington Department Ecology in Discharge Monitoring Reports (DMRs) and Annual Stormwater Monitoring Reports according to the NPDES permit requirements (WA-002465-1)

7. data listed are for storm runoff event samples in the period 10/15/98 through 10/15/01 that met the reporting criteria of the NPDES permit (WA-002465-1) and the Port of Seattle's Procedure Manual for Stormwater Monitoring (NPDES permit Special Condition S2.B).

8. This current NPDES outfall discharges to Northwest Ponds and will be represented at the Northwest Pond outlet which consolidates multiple

Part D - Provide data for the storm event(s) which resulted in the maximum values for the flow weighted composite sample.

Ī	1.	2.	3.	4.	5.
	Date of Storm Event	Duration of Storm Event (in minutes)	Total rainfall during storm event (in inches)	Number of hours between beginning of storm measured and end of previous measurable rain event	Total flow from rain event (gallons or specify units)

Maximum data listed for each parameter occurred in samples from multiple storm events. The Port of Seattle's Annual Stormwater Reports (1999, 2000 and 2001) list rainfall and flow estimates for events sampled.

7. Provide a description of the method of flow measurement or estimate.

Flow measurements are by ISCO 4150 area-velocity Doppler flowmeter.

VII. Discharge Information (Continued from page 3 of Form 2F)

Part A - You mus instruction	ons for additional	details	nalysis for every p	ollutant in this table	Complete	one table for each outfall. See
Pollutant	Maximum Values (include units)			e Values le units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30	Flow-weighted Composite	Grab Sample Taken During First 30	Flow-weighted	Storm Events	
(" available)	Minutes	,	Minutes	Composite	Sampled	Sources of Pollutants
Oil & Grease TPH¹ (mg/l, NWTPH-Dx)	0.19	N/A	0.14	No data [*]	4	service, construction and maintenance vehicle traffic
Biological Oxygen Demand (mg/l, BOD5)	No data ²	4	No data ^z	N/A	1	ground surface deicing
Chemical Oxygen Demand (COD)	No data	No data²	No data ^z	No data ²	N/A	N/A
Total Suspended Solids (mg/l, TSS)	No data²	29	No dataʻ	15	3	Roadway aggregate wear, ground surface deicing abrasives (sand), atmospheric deposition, construction
Total Organic Nitrogen	No data²	No data'	No data ²	No data ^z	N/A	N/A
Total Phosphorus	No data ²	No data ^z	No data ^z	No data ^z	N/A	N/A
PH (std units)	Minimum 6.6	Maximum 7.4	Minimum	Maximum	3	

Table notes: 1. total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998. 2. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1). 3. This current NPDES outfall discharges to Northwest Ponds and will be represented at the Northwest Pond outlet which consolidates multiple discharges

Pollutant	Maximum Values (include units)			e Values le units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
All of the pollutants with effluent limitations for the Industrial Waste Treatment Plant's discharge (outfall 001) in the current NPDES permit for Sea-Tac International Airport are listed in Part VII A above. See Form 2C.	See VII A (above)	See VII A (above)	See VII A (above)	See VII A (above)	See VII A	See VII A (above)

Continued from the Front

OUTFALL SDS6 (014) ⁸ Pollutant	Maximum Values (include units)			e Values e units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
Fecal coliform (MPN/100ml)	>1600	No data ⁴	361 ⁵	No data	4	small wild animals and birds
Fluoride² (mg/l)	No data*	No data	No data	No data	N/A	N/A
FOG- ³ TPH (mg/l, NWTPH-Dx)	0.19	No data	0.14	No data	4	service, construction and maintenance vehicle traffic
Surfactants² (MBAS, mg/l)	No data	No data⁴	No data	No data	N/A	N/A
Copper, total recoverable¹ (mg/t)	No data	0.013	No data ⁴	0.008	3	See TPH above
Lead, total recoverable (mg/l)	No data	0.007	No data	0.003	3	See TPH above
Zinc, total recoverable (mg/l)	No data	0.124	No data ⁴	0.053	3	See TPH above

- 3. the total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998.
- parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1)

5. geometric mean

- 6. data for other parameters have been previously submitted to the Washington Department Ecology in Discharge Monitoring Reports (DMRs) and Annual Stormwater Monitoring Reports according to the NPDES permit requirements (WA-002465-1)
- 7. data listed are for storm runoff event samples in the period 10/15/98 through 10/15/01 that met the reporting criteria of the NPDES permit (WA-002465-1) and the Port of Seattle's Procedure Manual for Stormwater Monitoring (NPDES permit Special Condition S2.B).
- 8. This current NPDES outfall discharges to Northwest Ponds and will be represented at the Northwest Pond outlet which consolidates multiple discharges

Part D - Provide data for the storm event(s) which resulted in the maximum values for the flow weighted composite sample.

	1.	2.	3.	4.	5.
	Date of Storm Event	Duration of Storm Event (in minutes)	Total rainfall during storm event (in inches)	Number of hours between beginning of storm measured and end of previous measurable rain event	Total flow from rain event (gallons or specify units)
- 1					

Maximum data listed for each parameter occurred in samples from multiple storm events. The Annual Stormwater Reports (1999, 2000 and 2001) list rainfall and flow estimates for events sampled.

7. Provide a description of the method of flow measurement or estimate.

Flow measurements are by Manning equation in round pipe with level measured by ISCO 4230 (bubbler) flowmeter.

^{2.} fluoride and surfactants are not required stormwater monitoring parameters in the current NPDES permit (WA-002465-1). These parameters have been analyzed for special source-tracing studies on an as-needed basis at certain outfalls.

VII. Discharge Information (Continued from page 3 of Form 2F)

Pollutant	Maximum Values (include units)			e Values e units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
Oil & Grease TPH' (mg/l, NWTPH-Dx)	3.8	N/A	0.64	No data'	7	service, construction and maintenance vehicle traffic
Biological Oxygen Demand (mg/l, BOD5)	No data ^z	No data²	No data²	No data²	N/A	ground surface deicing
Chemical Oxygen Demand (COD)	No data ²	No data²	No data ^z	No data ²	N/A	N/A
Total Suspended Solids (mg/l, TSS)	No data²	12	No data²	7	4	Roadway aggregate wear, ground surface deicing abrasives (sand) atmospheric deposition, construction
Total Organic Nitrogen	No data ^z	No data ^z	No data'	No data	N/A	N/A
Total Phosphorus	No data ^z	No data²	No data ^z	No data²	N/A	N//A
PH (std units)	Minimum 7.7	Maximum 7.9	Minimum	Maximum	3	7.00

Table notes: 1. total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998. 2. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1). 3. This current NPDES outfall discharges to Northwest Ponds and will be represented at the Northwest Pond outlet which consolidates multiple discharges

Pollutant	Maximum Values (include units)		, ,	e Values le units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
All of the pollutants with effluent limitations for the Industrial Waste Treatment Plant's discharge (outfall 001) in the current NPDES permit for Sea-Tac International Airport are listed in Part VII A above. See Form 2C	See VII A (above)	See VII A (above)	See VII A (above)	See VII A (above)	See VII A	See VII A (above)

Continued from the Front

OUTFALL SDS7 (010) ⁸ Pollutant		m Values le units)		Values units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
Fecal coliform (MPN/100ml)	500	No data ⁴	55	No data [*]	7	small wild animals and birds
Fluoride ² (mg/l)	No data	No data	No data	No data	N/A	N/A
FOG- ³ TPH (mg/l. NWTPH-Dx)	3.8	No data	0.64	No data	7	service, construction and maintenance vehicle traffic
Surfactants ² (MBAS, mg/l)	No data	No data	No data [#]	No data ⁴	N/A	N/A
Copper, total recoverable ¹ (mg/l)	No data	0.028	No data*	0.010	4	See TPH above
Lead, total recoverable (mg/l)	No data	<0.002	No data	<0.002	4	See TPH above
Zinc, total recoverable (mg/l)	No data ⁴	0.010	No data ⁴	0.007	4	See TPH above
Table notes			210			

2. fluoride and surfactants are not required stormwater monitoring parameters in the current NPDES permit (WA-002465-1) These parameters have been analyzed for special source-tracing studies on an as-needed basis at certain outfalls.

- 3. the total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998.
- 4. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1)

geometric mean

- 6. data for other parameters have been previously submitted to the Washington Department Ecology in Discharge Monitoring Reports (DMRs) and Annual Stormwater Monitoring Reports according to the NPDES permit requirements (WA-002465-1)
- 7. data listed are for storm runoff event samples in the period 10/15/98 through 10/15/01 that met the reporting criteria of the NPDES permit (WA-002465-1) and the Port of Seattle's Procedure Manual for Stormwater Monitoring (NPDES permit Special Condition S2.B).
- 8. This current NPDES outfall discharges to Northwest Ponds and will be represented at the Northwest Pond outlet which consolidates multiple discharges

Part D - Provide data for the storm event(s) which resulted in the maximum values for the flow weighted composite sample 5 Number of hours between Date of Duration Total rainfall Total flow from beginning of storm measured Storm of Storm Event during storm event rain event and end of previous Event (in minutes) (in inches) (gallons or specify units) measurable rain event

Maximum data listed for each parameter occurred in samples from multiple storm events. The Annual Stormwater Reports (1999, 2000 and 2001) list rainfall and flow estimates for events sampled.

7. Provide a description of the method of flow measurement or estimate.

Flow measurements are by Manning equation in round pipe with level measured by ISCO 4230 (bubbler) flowmeter.

WAD98098016

VII. Discharge Ir	·formation	(Continued &		F 051	L	
Part A - You mus		(Continued from the state of at least one a details	om page 3 of nalysis for every p	FORM 2F) ollutant in this table	Complete	one table for each outfall. See
Pollutant And CAS Number (If available)	Maximum Values (include units)		(includ	e Values le units)	Number Of	
	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
Oil & Grease TPH' (mg/l, NW TPH-Dx)	4.9	N/A	1.7	No data²	32	Passenger, service, construction and maintenance vehicle traffic, vehicles on non- Port public roads
Biological Oxygen Demand (mg/l. BOD5)	No data ²	116	No data²	9.8	25	Ground surface deicing
Chemical Oxygen Demand (COD)	No data ²	No data'	No data ²	No data²	N/A	N/A
Total Suspended Solids (mg/l, TSS)	No data ²	366	No data ^r	77	26	Public roadway aggregate wear, ground surface deicing abrasives (sand), atmospheric deposition construction
Total Organic Nitrogen	No data²	No data²	No data ²	No data²	N/A	N/A
Total Phosphorus	No data ^z	No data²	No data²	No data²	N/A	N/A
PH (std units)	Minimum 5.1	Maximum 8.4	Minimum	Maximum	32	

Table notes: 1. total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998. 2. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1). 3. This current NPDES outfall discharges to the Lake Reba detention facility and will be represented at the Lake Reba outlet (006) which consolidates multiple discharges

Pollutant	Maximum Values (include units)			e Values e units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During Flow-weighted First 30 Composite Minutes		Grab Sample Taken During First 30 Minutes Flow-weighted Composite		Storm Events Sampled	Sources of Pollutants
All of the pollutants with effluent limitations for the Industrial WasteTreatment Plant's discharge (outfall 001) in the current NPDES permit for Sea-Tac International Airport are listed in Part VII A above. See Form 2C	See VII A (above)	See VII A (above)	See VII A (above)	See VII A (above)	See VII A	See VII A (above)

Continued from the Front

OUTFALL SDN1 (006)® Pollutant	(includ	m Values de units)	(includ	e Values e units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
Fecal coliform [*] (MPN/100ml)	>1600	No data ⁴	38 ⁵	No data ⁴	31	small wild animals and birds
Fluoride² (mg/l)	No data	<0.05	No data	N/A	1	N/A
FOG- ³ TPH (mg/l. NWTPH-Dx)	4.9	No data ⁴	1.7	No data ⁴	32	Passenger, service, construction and maintenance vehicle traffic, vehicles on non- Port public roads
Surfactants ² (MBAS, mg/l)	No data	0.25	No data ⁴	0.16	3	See Footnote 2
Copper, total recoverable ¹ (mg/l)	No data ⁴	0.042	No data ⁴	0.021	26	See TPH above
Lead, total recoverable (mg/l)	No data	0.048	No data ⁴	0.010	26	See TPH above
Zinc, total recoverable (mg/l)	No data	0.613	No data ⁴	0.201	26	See TPH above, galvanized metal roofing material
Table notes						
1. routine stormwater mor	nitoring parameter i	required for this out	fall by NPDES peri	nit (WA-002465-1).	<u> </u>	

- 4. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1)

geometric mean

- 6. data for other parameters have been previously submitted to the Washington Department Ecology in Discharge Monitoring Reports (DMRs) and Annual Stormwater Monitoring Reports according to the NPDES permit requirements (WA-002465-1)
- 7 data listed are for storm runoff event samples in the period 10/15/98 through 10/15/01 that met the reporting criteria of the NPDES permit (WA-002465-1) and the Port of Seattle's Procedure Manual for Stormwater Monitoring (NPDES permit Special Condition S2.B).
- 8. This current NF JES outfall discharges to the Lake Reba detention facility and will be represented at the Lake Reba outlet (006) which consolidates multiple discharge:

Part D - Provide data for the storm event(s) which resulted in the maximum values for the flow weighted composite sample.

1.	2.	3.	4.	5.
Date of	Duration	Total rainfall	Number of hours between beginning of storm measured and end of previous measurable rain event	Total flow from
Storm	of Storm Event	during storm event		rain event
Event	(in minutes)	(in inches)		(gallons or specify units)

Maximum data listed for each parameter occurred in samples from multiple storm events. The Annual Stormwater Reports (1999, 2000, 2001) list rainfall and flow estimates for events sampled.

7.	Provide a	of the	method	of fl	low	measu	rement	or	estim	ate.

Flow measurements are by ISCO 4150 area-velocity Doppler flowmeter.

WAD98098016

VII. Discharge Information	(Continued from page 3 of Form 2F)	
Part A - You must provide the	esults of at least one analysis for every pollutant in this table	Complete and table for each a Mall C
:==k= -k=	the distriction of the court of	Complete one table for each officially See

Pollutant	Maximum Values (include units)		Average Values (include units)		Number	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
Oil & Grease TPH' (mg/l. NWTPH-Dx)	1.1	N/A	0.28	No data ^z	8	service, construction and maintenance vehicle traffic, aircraft taxiing and landing
Biological Oxygen Demand (mg/l, BOD5)	<4	No data ²	4	No data ²	2	ground surface deicing
Chemical Oxygen Demand (COD)	No data ^z	No data'	No data ^z	No data'	N/A	N/A
Total Suspended Solids (mg/i, TSS)	No data ^z	46	No data'	36	4	Runway/taxiway aggregate wear, ground surface deicing abrasives (sand), atmospheric deposition, construction
Total Organic Nitrogen	No data ²	No data ²	No data ^z	No data'	N/A	N/A
Total Phosphorus	No data ²	No data ²	No data ²	No data	N/A	N/A
PH (std units)	No data ²	No data'	No data ^z	No data ^z	N/A	

Table notes: 1. total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998. 2. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1). 3. The drainage to this outfall is pumped to the IWS via two pump stations. Discharges to this storm drain outfall only occur if rainfall rates cause peak flows to exceed the pump design capacities (6-month, 24-hr event). Data listed are for samples from these rare bypass events. 4. This current NPDES outfall discharges to the Lake Reba detention facility and will be represented at the Lake Reba outlet (006) which consolidates multiple discharges

Pollutant	Maximum Values (include units)		Average Values (include units)		Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
All of the pollutants with effluent limitations for the Industrial Waste Treatment Plant's discharge (outfall 001) in the current NPDES permit for Sea-Tac International Airport are listed in Part VII A above. See Form 2C	See VII A (above)	See VII A (above)	See VII A (above)	See VII A (above)	See VII A	See VII A (above)

OUTFALL SDN2 (007)		m Values de units)		e Values e units)	Number Of	
And CAS Number	Grab Sample Taken During	Flow-weighted	Grab Sample Taken During	Flow-weighted	Storm Events	
(if available)	First 30 Minutes	Composite	First 30 Minutes	Composite	Sampled	Sources of Pollutants
Fecal coliform' (MPN/100ml)	No data	No data	No data	No data	N/A	N/A
Fluoride ^z (mg/l)	No data	No data⁴	No data	No data	N/A	N/A
FOG ³ TPH (mg/l, NWTPH-Dx)	1.1	No data [®]	0.28	No data	8	service, construction and maintenance vehicle traffic, aircraft taxiing and landing
Surfactants ² (MBAS, mg/l)	No data	No data	No data ⁴	No data ⁴	N/A	N/A
Copper, total recoverable¹ (mg/l)	No data	No data	No data [€]	No data	N/A	See TPH above
Lead, total recoverable (mg/l)	No data	No data	No data [*]	No data	N/A	See TPH above
Zinc, total recoverable' (mg/l)	No data ⁴	No data ⁴	No data ⁴	No data⁴	N/A	See TPH above

1. routine stormwater monitoring parameter required for this outfall by NPDES permit (WA-002465-1).

- 3. the total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998.
- 4. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1)

5. geometric mean

- 6. data for other parameters have been previously submitted to the Washington Department Ecology in Discharge Monitoring Reports DMRs) and Annual Stormwater Monitoring Reports according to the NPDES permit requirements (WA-002465-1)
- 7. data listed are for storm runoff event samples in the period 10/15/98 through 10/15/01 that met the reporting criteria of the NPDES permit (WA-002465-1) and the Port of Seattle's Procedure Manual for Stormwater Monitoring (NPDES permit Special Condition S2.B).
- 8. The drainage to this outfall is pumped to the IWS via two pump stations. Discharges to this storm drain outfall only occur if rainfall rates cause peak flows to exceed the pump design capacities (6-month, 24-hr event). Data listed are for samples from these rare bypass events.
- 9. This current NPDES outfall discharges to the Lake Reba detention facility and will be represented at the Lake Reba outlet (006) which consolidates multiple discharges

Part D - Provide data for the storm event(s) which resulted in the maximum values for the flow weighted composite sample.

1.	2.	3.	4.	5.
Date of	Duration	Total rainfall	Number of hours between beginning of storm measured and end of previous measurable rain event	Total flow from
Storm	of Storm Event	during storm event		rain event
Event	(in minutes)	(in inches)		(gallons or specify units)

Maximum data listed for each parameter occurred in samples from multiple storm events. The Annual Stormwater Reports (1999, 2000 and 2001) list rainfall and flow estimates for events sampled.

7. Provide a description of the method of flow measurement or estimate.

Flow measurements are by ISCO 4150 area-velocity Doppler flowmeter.

^{2.} fluoride and surfactants are not required stormwater monitoring parameters in the current NPDES permit (WA-002465-1). These parameters have been analyzed for special source-tracing studies on an as-needed basis at certain outfalls.

VII. Discharge Information (Continued from page 3 of Form 2F)

Pollutant	Maximum Values (include units)		Average Values (include units)		Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
Oil & Grease TPH¹ (mg/l, NWTPH-Dx)	0.20	N/A	0.10	No data ²	7	construction and maintenance vehicle traffic, aircraft taxiing and landing
Biological Oxygen Demand (mg/l, BOD5)	222	No data²	81	No data²	3	ground surface deicing
Chemical Oxygen Demand (COD)	No data ²	No data²	No data ^z	No data²	N/A	N/A
Total Suspended Solids (mg/l, TSS)	No data ²	12	No data'	6.3	4	Runway/taxiway aggregate wear, ground surface deicing abrasives (sand), atmospheric deposition construction
Total Organic Nitrogen	No data ²	No data²	No data ²	No data'	N/A	N/A
Total Phosphorus	No data	No data ^z	No data'	No data'	N/A	N/A
PH (std units)	Minimum 6.5	Maximum 7.7	Minimum	Maximum	6	

Table notes: 1. total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998. 2. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1). 3. This current NPDES outfall discharges to the Lake Reba detention facility and will be represented at the Lake Reba outlet (006) which consolidates multiple discharges

Part B - List each pollutant that is limited in an effluent guideline which the facility is subject to or any pollutant listed in the facility's NPDES permit for its process wastewater (if the facility is operating under an existing NPDES permit). Complete one table for each outfall. See the instructions for additional details and requirements.

Pollutant	_	m Values de units)		e Values le units)	Number Of		
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants	
All of the pollutants with effluent limitations for the Industrial Waste Treatment Plant's discharge (outfall 001) in the current NPDES permit for Sea-Tac International Airport are listed in Part VII. A above. See Form 2C	See VII A (above)	See VII A (above)	See VII A (above)	See VII A (above)	See VII A	See VII A (above)	

OUTFALL SDN3 (008) ^c Pollutant	Maximum Values (include units)		Average Values (include units)		Number Of	
And CAS Number	Grab Sample Taken During	Flow-weighted	Grab Sample Taken During	Flow-weighted	Storm Events	
(if available)	First 30 Minutes	Composite	First 30 Minutes	Composite	Sampled	Sources of Pollutants
Fecal coliform (MPN/100ml)	240	No data	63	No data	7	small wild animals and birds
Fluoride ² (mg/l)	No data*	No data	No data	No data	N/A	N/A
FOG-3TPH (mg/l. NWTPH-Dx)	1.1	No data [®]	0.28	No data ⁴	8	construction and maintenance vehicle traffic, aircraft taxiing and landing
Surfactants ² (MBAS, mg/l)	No data	No data	No data	No data	N/A	N/A
Copper, total recoverable' (mg/l)	No data*	0.020	No data	0.012	5	See TPH above
Lead, total recoverable (mg/l)	No data*	0.010	No data	0.003	5	See TPH above
Zinc, total recoverable (mg/l)	No data ⁴	0.089	No data	0.047	5	See TPH above
Table notes				<u> </u>		

- 1. routine stormwater monitoring parameter required for this outfall by NPDES permit (WA-002465-1).
- 2. fluoride and surfactants are not required stormwater monitoring parameters in the current NPDES permit (WA-002465-1). These parameters have been analyzed for special source-tracing studies on an as-needed basis at certain outfalls.
- 3. the total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998.
- 4. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1)
- geometric mean
- 6. data for other parameters have been previously submitted to the Washington Department Ecology in Discharge Monitoring Reports (DMRs) and Annual Stormwater Monitoring Reports according to the NPDES permit requirements (WA-002465-1)
- 7. data listed are for storm runoff event samples in the period 10/15/98 through 10/15/01 that met the reporting criteria of the NPDES permit (WA-002465-1) and the Port of Seattle's Procedure Manual for Stormwater Monitoring (NPDES permit Special Condition S2.B).
- 8. This current NPDES outfall discharges to the Lake Reba detention facility and will be represented at the Lake Reba outlet (006) which consolidates multiple discharges

Part D - Provide data for the storm event(s) which resulted in the maximum values for the flow weighted composite sample.

1. 2. 3. 4. 5.

Date of Storm Event	Duration of Storm Event (in minutes)	Total rainfall during storm event (in inches)	Number of hours between beginning of storm measured and end of previous measurable rain event	Total flow from rain event (gallons or specify units)
---------------------------	--	---	--	---

Maximum data listed for each parameter occurred in samples from multiple storm events. The Annual Stormwater Reports (1999, 2000 and 20001) list rainfall and flow estimates for events sampled.

7. Provide a description of the method of flow measurement or estimate.

Flow measurements are by ISCO 4150 area-velocity Doppler flowmeter.

WAD98098016

II. Discharge I	nformation	(Continued from	om page 3 of	Form 2F)		
Part A - You mi instruct	ust provide the resultions for additional o	its of at least one a	nalysis for every p	ollutant in this table	Complete one	table for each outfall. See
Pollutant		m Values de units)	_	e Values le units)	Number Of	
And CAS Number	Grab Sample	Flow-weighted	Grab Sample	Flow weighted	Storm	1

	ons for additional					
Pollutant		um Values de units)		e Values le units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
Oil & Grease TPH' (mg/l. NWTPH-Dx)	1.6	N/A	0.17	No data ²	31	construction and maintenance vehicle traffic, aircraft taxiing and landing
Biological Oxygen Demand (mg/l, BOD5)	No data	168	No data'	13	27	ground surface deicing,
Chemical Oxygen Demand (COD)	No data ²	No data ^z	No data²	No data	N/A	N/A
Total Suspended Solids (mg/l, TSS)	No data ²	188	No data'	13.2	26	Runway/taxiway aggregate wear, ground surface deicing abrasives (sand), atmospheric deposition, construction
Total Organic Nitrogen	No data ²	No data'	No data²	No data ²	N/A	N/A
Total Phosphorus	No data²	No data²	No data	No data ²	N/A	N/A
PH (std units)	Minimum 6.7	Maximum 9.3	Minimum	Maximum	30	

Table notes: 1. total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998. 2. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1). 3. This current NPDES outfall discharges to the Lake Reba detention facility and will be represented at the Lake Reba outlet (006) which consolidates multiple discharges

Part B - List each pollutant that is limited in an effluent guideline which the facility is subject to or any pollutant listed in the facility's NPDES permit for its process wastewater (if the facility is operating under an existing NPDES permit). Complete one table for each outfall. See the instructions for additional details and requirements.

Pollutant		m Values de units)	, ,	e Values le units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Poliutants
All of the pollutants with effluent limitations for the Industrial Waste Treatment Plant's discharge (outfall 001) in the current NPDES permit for Sea-Tac International Airport are listed in Part VII. A above. See Form 2C	See VII A (above)	See VII A (above)	See VII A (above)	See VII A (above)	See VII A	See VII A (above)

OUTFALL SDN4 (011)° Pollutant	10.00	m Values le units)		e Values e units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
Fecal coliform (MPN/100ml)	>1600	No data	83	No data	29	small wild animals and birds
Fluoride ² (mg/l)	No data	No data	No data	No data	N/A	N/A
FOC- ³ TPH (mg/l, NWTPH-Dx)	1.6	No data [*]	0.17	No data	31	construction and maintenance vehicle traffic, aircraft taxiing and landing
Surfactants ² (MBAS, mg/l)	No data ⁴	0.19	No data*	No data	1	See Footnote 2
Copper, total recoverable (mg/l)	No data	0.052	No data ⁴	0.028	27	See TPH above
Lead, total recoverable (mg/l)	No data	0.006	No data	<0.002	27	See TPH above
Zinc, total recoverable (mg/l)	No data ⁴	0.127	No data	0.027	27	See TPH above
Table notes					İ	,

2. fluoride and surfactants are not required stormwater monitoring parameters in the current NPDES permit (WA-002465-1). These parameters have been analyzed for special source-tracing studies on an as-needed basis at certain outfalls.

3. the total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998.

4. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1)

geometric mean

6. data for other parameters have been previously submitted to the Washington Department Ecology in Discharge Monitoring Reports (DMRs) and Annual Stormwater Monitoring Reports according to the NPDES permit requirements (WA-002465-1)

7. data listed are for storm runoff event samples in the period 10/15/98 through 10/15/01 that met the reporting criteria of the NPDES permit (WA-002465-1) and the Port of Seattle's Procedure Manual for Stormwater Monitoring (NPDES permit Special Condition S2.B).

8. This current NPDES outfall discharges to the Lake Reba detention facility and will be represented at the Lake Reba outlet (006) which consolidates multiple discharges

Part D - Provide data for the storm event(s) which resulted in the maximum values for the flow weighted composite sample.

1.	2.	3.	4.	5.
Date of	Duration	Total rainfall	Number of hours between beginning of storm measured and end of previous measurable rain event	Total flow from
Storm	of Storm Event	during storm event		rain event
Event	(in minutes)	(in inches)		(gallons or specify units)

Maximum data listed for each parameter occurred in samples from multiple storm events. The Annual Stormwater Reports (1999, 2000 a. d 2001) list rainfall and flow estimates for events sampled.

7. Provide a description of the method of flow measurement or estimate.

Flow measurements are by Manning equation in round pipe with level measured by ISCO 4230 (bubbler) flowmeter.

WAD98098016

VII. Discharge Information (Continued from page 3 of Form 2F)

Part A - You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details.

	ons for additional	m Values			T	
Pollutant	(includ	im values de units)		e Values le units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
Oil & Grease TPH1 (mg/l, NWTPH-Dx)	0.17	N/A	0.11	No data ^z	4	service, construction and maintenance vehicle traffic, aircraft taxiing and landing
Biological Oxygen Demand (mg/l, BOD5)	No data ²	10.5	No data ²	6.3	2	ground surface deicing
Chemical Oxygen Demand (COD)	No data	No data²	No data ²	No data²	N/A	N/A
Total Suspended Solids (mg/l, TSS)	No data ⁴	36	No data ^r	15	3	Runway/taxiway aggregate wear, ground surface deicing abrasives (sand), atmospheric deposition, construction
Total Organic Nitrogen	No data ²	No data²	No data	No data ^z	N/A	N/A
Total Phosphorus	No data ²	No data²	No data²	No data²	N/A	N/A
PH (std units)	Minimum 6.8	Maximum 7.5	Minimum	Maximum	4	

Table notes: 1. total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998. 2. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1)

Part B - List each pollutant that is limited in an effluent guideline which the facility is subject to or any pollutant listed in the facility's NPDES permit for its process wastewater (if the facility is operating under an existing NPDES permit). Complete one table for each outfall. See the instructions for additional details and requirements.

Pollutant		m Values le units)		e Values le units)	Number Of	*
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
All of the pollutants with effluent limitations for the Industrial Waste Treatment Plant's discharge (outfall 001) in the current NPDES permit for Sea-Tac International Airport are listed in Part VII. A above. See Form 2C	See VII A (above)	See VII A (above)	See VII A (above)	See VII A (above)	See VII A	See VII A (above)

OUTFALL SDS4 (009) Pollutant		m Values le units)		e Values e units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
Fecal coliform' (MPN/100ml)	900	No data	59 ⁵	No data ⁴	4	small wild animals and birds
Fluoride ² (mg/l)	No data	No data	No data	No data	N/A	N/A
FOG. ³ TPH (mg/l; NWTPH-Dx)	0.17	No data	0.11	No data	4	service, construction and maintenance vehicle traffic, aircraft taxiing and landing
Surfactants ² (MBAS, mg/l)	No data	No data	No data ⁴	No data ⁴	N/A	N/A
Copper, total recoverable (mg/l)	No data	0.029	No data	0.020	4	See TPH above
Lead, total recoverable ¹ (mg/l)	No data ⁴	<0.002	No data	<0.002	4	See TPH above
Zinc, total recoverable ¹ (mg/l)	No data	0.036	No data ⁴	0.018	4	See TPH above
Table notes						

- routine stormwater monitoring parameter required for this outfall by NPDES permit (WA-002465
- 2. fluoride and surfactants are not required stormwater monitoring parameters in the current NPDES permit (WA-002465-1). These parameters have been analyzed for special source-tracing studies on an as-needed basis at certain outfalls.
- 3. the total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998.
- 4. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1)
- 5. geometric mean
 6. data for other parameters have been previously submitted to the Washington Department Ecology in Discharge Monitoring Reports (DMRs) and Annual Stormwater Monitoring Reports according to the NPDES permit requirements (WA-002465-1)
- 7 data listed are for storm runoff event samples in the period 10/15/98 through 10/15/01 that met the reporting criteria of the NPDES permit (WA-002465-1) and the Port of Seattle's Procedure Manual for Stormwater Monitoring (NPDES permit Special Condition S2.B).

Part D - Provide data for the storm event(s) which resulted in the maximum values for the flow weighted composite sample.

1	1.	2.	3.	4.	5.
	Date of Storm Event	Duration of Storm Event (in minutes)	Total rainfall during storm event (in inches)	Number of hours between beginning of storm measured and end of previous measurable rain event	Total flow from rain event (gallons or specify units)

Maximum data listed for each parameter occurred in samples from multiple storm events. The Annual Stormwater Reports (1999, 2000 and 2001) list rainfall and flow estimates for events sampled.

7. Provide a description of the method of flow measurement or estimate.

Flow measurements are by ISCO 4150 area-velocity Doppler flowmeter.

VII. Discharge Information (Continued from page 3 of Form 2F)

Part A - You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details

Pollutant	(includ	im Values de units)		e Values e units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
Oil & Grease TPH¹ (mg/l, NWTPH-Dx)	1.8	N/A	1.2	No data²	6	Passenger, construction and maintenance vehicle traffic, and parking
Biological Oxygen Demand (mg/l, BOD5)	No data ^z	24	No data ^z	N/A	1	ground surface deicing
Chemical Oxygen Demand (COD)	No data ²	No data ²	No data ^z	No data ²	N/A	N/A
Total Suspended Solids (mg/l, TSS)	No data ²	128	No data'	71	6	Roadway and parking area aggregate wear, ground surface deicing abrasives (sand), atmospheric deposition, construction
Total Organic Nitrogen	No data²	No data²	No data²	No data²	N/A	N/A
Total Phosphorus	No data ²	No data ^z	No data²	No data²	N/A	N/A
PH (std units)	Minimum 7.7	Maximum 7.7	Minimum	Maximum	1	

Table notes: 1. total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998. 2. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1)

Part B - List each pollutant that is limited in an effluent guideline which the facility is subject to or any pollutant listed in the facility's NPDES permit for its process wastewater (if the facility is operating under an existing NPDES permit). Complete one table for each outfall. See the instructions for additional details and requirements.

Pollutant	f	m Values le <i>units)</i>	_	e Values le units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
All of the pollutants with effluent limitations for the Industrial Waste Treatment Plant's discharge (outfall 001) in the current NPDES permit for Sea-Tac International Airport are listed in Part VII. A above. See Form 2C	See VII A (above)	See VII A (above)	See VII A (above)	See VII A (above)	See VII A	See VII A (above)

OUTFALL EY (012) Pollutant		m Values de <i>units)</i>	Average Values (include units)		Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted 'Composite	Storm Events Sampled	Sources of Pollutants
Fecal coliform (MPN/100ml)	No data	No data	No data ⁴	No data ⁴	N/A	N/A
Fluoride ² (mg/l)	No data	No data	No data	No data	N/A	N/A
FOG ³ TPH (mg/l, NWTPH-Dx)	1.8	No data	1.2	No data	6	Passenger, construction and maintenance vehicle traffic, and parking
Surfactants ² (MBAS, mg/l)	No data	No data	No data*	No data	N/A	N/A
Copper, total recoverable (mg/l)	No data ⁴	0.020	No data [€]	N/A	1	See TPH above
Lead, total recoverable (mg/l)	No data	0.026	No data	N/A	1	See TPH above
Zinc, total recoverable ¹ (mg/i)	No data	0.179	No data	N/A	1	See TPH above
Table notes						

have been analyzed for special source-tracing studies on an as-needed basis at certain outfalls.

3. the total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998.

4. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1)

5. geometric mean

6. data for other parameters have been previously submitted to the Washington Department Ecology in Discharge Monitoring Reports (DMRs) and Annual Stormwater Monitoring Reports according to the NPDES permit requirements (WA-002465-1)

7. data listed are for storm runoff event samples in the period 10/15/98 through 10/15/01 that met the reporting criteria of the NPDES permit (WA-002465-1) and the Port of Seattle's Procedure Manual for Stormwater Monitoring (NPDES permit Special Condition S2.B).

Part D - Provide data for the storm event(s) which resulted in the maximum values for the flow weighted composite sample.

1.	2.	3.	4.	5.
Date of Storm Event	Duration of Storm Event (in minutes)	Total rainfall during storm event (in inches)	Number of hours between beginning of storm measured and end of previous measurable rain event	Total flow from rain event (gallons or specify units)

Maximum data listed for each parameter occurred in samples from multiple storm events. The Annual Stormwater Reports (1999, 2000 and 2001) list rainfall and flow estimates for events sampled.

7. Provide a description of the method of flow measurement or estimate.

Flow measurements are by Manning equation in round pipe with level measured by ISCO 4230 (bubbler) flowmeter.

VII. Discharge Information (Continued from page 3 of Form 2F)

Pollutant	(includ	m Values le units)		e Values le units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
Oil & Grease TPH ¹ (mg/l, NWTPH-Dx)	8.3	N/A	2.7	No data²	8	Passenger, construction and maintenance vehicl traffic, and parking
Biological Oxygen Demand (mg/l, BOD5)	No data ²	No data²	No data²	No data ²	N/A	N/A
Chemical Oxygen Demand (COD)	No data ^z	No data ²	No data ²	No data ²	N/A	N/A
Total Suspended Solids (mg/l, TSS)	No data ⁴	660	No data	132	6	Roadway and parking area aggregate wear, ground surface deicing abrasives (sand), atmospheric deposition Construction
Total Organic Nitrogen	No data ^z	No data ^z	No data ^z	No data²	N/A	N/A
otal Phosphorus	No data ^z	No data ^z	No data²	No data²	N/A	N/A
PH (std units)	No data'	No data²	No data ²	No data ²	N/A	

Table notes: 1. total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998. 2. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1). 3. This current NPDES outfall discharges to the Port's SDE1 system and will be represented at the final subbasin outlet (013) which consolidates subbasin SDE1 discharges

discharges to the Port's SDE1 system and will be represented at the final subbasin outlet (013) which consolidates subbasin SDE1 discharges

Part B - List each pollutant that is limited in an effluent guideline which the facility is subject to or any pollutant listed in the facility's NPDES permit for its process wastewater (if the facility is operating under an existing NPDES permit). Complete one table for each outfall. See the instructions for additional details and requirements.

	,	ditional details and				
Pollutant	Maximum Values (include units)			Average Values (include units)		
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
All of the pollutants with effluent limitations for the Industrial Waste Treatment Plant's discharge (outfall 001) in the current NPDES permit for Sea-Tac International Airport are listed in Part VII. A above. See Form 2C	See VII A (above)	See VII A (above)	See VII A (above)	See VII A (above)	See VII A	See VII A (above)

OUTFALL TY (013) ⁸ Pollutant		m Values le units)	Average (includ	e Values e units)	Number Of		
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted ' Composite	Storm Events Sampled	Sources of Pollutants	
Fecal coliform (MPN/100ml)	No data	No data	No data*	No data	N/A	N/A	
Fluoride ² (mg/l)	No data*	No data	No data	No data	N/A	N/A	
FOG ³ TPH (mg/l, NWTPH-Dx)	8.3	No data [®]	2.7	No data	8	Passenger, construction and maintenance vehicle traffic, and parking	
Surfactants ² (MBAS, mg/l)	No data	No data ⁴	No data [*]	No data	N/A	N/A	
Copper, total recoverable¹ (mg/l)	No data	No data	No data	No data	N/A	N/A	
Lead, total recoverable¹ (mg/l)	No data	No data	No data	No data	N/A	N/A	
Zinc, total recoverable ¹ (mg/l)	No data	No data	No data	No data	N/A	N/A	
Table notes	<u> </u>						

- 2. fluoride and surfactants are not required stormwater monitoring parameters in the current NPDES permit (WA-002465-1). These parameters have been analyzed for special source-tracing studies on an as-needed basis at certain outfalls.
- 3. the total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998.
- 4. parameter/sample type not required for stormwater monitoring in current NPDES permit (WA-002465-1)
- 5. geometric mean
- data for other parameters have been previously submitted to the Washington Department Ecology in Discharge Monitoring Reports (DMRs) and Annual Stormwater Monitoring Reports according to the NPDES permit requirements (WA-002465-1)
- 7. data listed are for storm runoff event samples in the period 10/15/98 through 10/15/01 that met the reporting criteria of the NPDES permit (WA-002465-1) and the Port of Seattle's Procedure Manual for Stormwater Monitoring (NPDES permit Special Condition S2.B).
- 8. This current NPDES outfall discharges to the Port's SDE1 system and will be represented at the final subbasin outlet (013) which consolidates subbasin SDE1 discharges

Part D - Provide data for the storm event(s) which resulted in the maximum values for the flow weighted composite sample.

1.	2.	3.	4.	5 .
Date of Storm Event	Duration of Storm Event (in minutes)	Total rainfall during storm event (in inches)	Number of hours between beginning of storm measured and end of previous measurable rain event	Total flow from rain event (gallons or specify units)

Maximum data listed for each parameter occurred in samples from multiple storm events. The Annual Stormwater Reports (1999, 2000 and 2001) list rainfall and flow estimates for events sampled.

7. Provide a description of the method of flow measurement or estimate.

Flow measurements are by Manning equation in round pipe with level measured by ISCO 4230 (bubbler) flowmeter.

VII. Discharge Information (Continued from page 3 of Form 2F)

Pollutant	(includ	m Values de units)		e Values e units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
Oil & Grease TPH' (mg/l, NWTPH-Dx)	No data ²	No data²	No data²	No data'	N/A	service, construction and maintenance vehicl traffic, aircraft taxiing and landing
Biological Oxygen Demand (mg/l, BOD5)	No data ²	No data ²	No data ²	No data ²	N/A	ground surface deicing
Chemical Oxygen Demand (COD)	No data ²	No data ^z	No data ²	No data²	N/A	N/A
Total Suspended Solids (mg/l, TSS)	No data²	No data²	No data ^r	No dataʻ	N/A	Runway/taxiway aggregate wear, ground surface deicing abrasives (sand), atmospheric deposition construction
Fotal Organic Nitrogen	No data ^z	No data'	No data ²	No data²	N/A	N/A
otal Phosphorus	No data ^z	No data'	No data ²	No data ^z	N/A	N/A
PH (std units)	Minimum	Maximum	Minimum	Maximum	N/A	

Table notes: 1. total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998. 2. Future outfall will have land uses (runways and taxiways) identical to 005 (SDS3), therefore pollutant concentrations will be similar.

Part B - List each pollutant that is limited in an effluent guideline which the facility is subject to or any pollutant listed in the facility's NPDES permit for its process wastewater (if the facility is operating under an existing NPDES permit). Complete one table for each outfall. See the instructions for additional details and requirements

		ditional details and	requirements.			
Pollutant	Maximum Values (include units)		Average Values (include units)		Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
All of the pollutants with effluent limitations for the Industrial Waste treatment plant's discharge (outfall 001) in the current NPDES permit for Sea-Tac International Airport are listed in Part VII. A above. See Form 2C	No data'	No data'	No data ^r	No data'	No data'	No data

Table notes: 1. Future outfall will have land uses (runways and taxiways) identical to 005 (SDS3), therefore pollutant concentrations will be similar.

	from the Front						
Part C	- List each po	llutant shown in T	ables 2F-2, 2F-3, ai	nd 2F-4 that you ke	now or have reason	to believe is	present. See the instructions for
	additional de	etails and requiren	nents. Complete on	e table for each ou	tfall.		
OUTFAL	L SDW1A	Maximu	m Values	Average	Values	Number	
Po	llutant	(includ	e units)	(includ	e units)	Of	
	And	Grab Sample	i	Grab Sample	T	Storm	
CAS	Number	Taken During	Flow-weighted	Taken During	Flow-weighted	Events	
(if av	vailable)	First 30	Composite	First 30	Composite	Sampled	
		Minutes	,	Minutes			Sources of Poliutants
Fecal colifo	orm	No data ²	No data'	No data'	No data'	N/A	small wild animals and
(MPN/100n	nl)					77/	
Fluoride ² (n		N = 2 = 4 = 2	41 1 7				birds
	J ,	No data'	No data ^z	No data ²	No data ²	N/A	domestic water
FOG TPH		No data ²	No data ^z	No data ^z	No data ^z	N/A	service, construction
NWTPH-D	()						and maintenance vehicle
							traffic, aircraft taxiing
							and landing
Surfactants	ć (MBAS,	No data ²	No data ²	No data ²	No data ²	N/A	N/A
mg/l)							
Copper, tot		No data ^r	No data ²	No data'	No data ^z	N/A	See TPH above
recoverable							
(mg/l)	recoverable ¹	No data ²	No data'	No data'	No data ^z	N/A	See TPH above
Zinc, total r	ecoverable '	No data ^z	No data ²	No data'	No data²	N/A	See TPH above
(mg/l)							
		ļ					
Table notes							
1. future ou						<u>-</u>	
2. Future or	utfall will have la	nd uses (runways	and taxiways) iden	tical to 005 (SDS3), therefore pollutar	t concentration	ons will be similar
the total	petroleum hydro	carbons (TPH) pa	rameter replaced o	il and grease (FO	3) when the current	NPDES perr	nit was renewed in 1998.
Part D	- Provide data	for the storm eve	nt(s) which resulted	I in the maximum v	alues for the flow v	veighted com	posite sample.
1.		2.	3		4.		5.
Date of	ρ	ration	-		Number of hour	s between	
Storm		rm Event	1	rainfall	beginning of ston	m measured	Total flow from
Event		ninutes)		orm event	and end of p	revious	rain event
LVEIIL	(m n	iiriules)	(In Inc	ches)	measurable ra	ain event	(gallons or specify units)
N/A but o	data are exp	ected to be si	milar to those	for outfall 005	(SDS3).		
					,		
							į
7 D		th th - 1 - 1 - 1 - 1					
			measurement or e				
N/A Dut I	method used	to measure i	low from outfa	III 005 (SD\$3)	will be used.		
							1

VII. Discharge Information (Continued from page 3 of Form 2F)

Part A - You m instruc	ust provide the resu tions for additional o	Its of at least one a letails	nalysis for every p	ollutant in this table	Complete on	e table for each outfall. See
Pollutant		m Values de units)	,	e Values le units)	Number Of	
And CAS Number	Grab Sample Taken During	Flow-weighted	Grab Sample Taken During	Flow-weighted	Storm Events	

Pollutant	· ·	de units)		e Values le units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
Oil & Grease TPH¹ (mg/l. NWTPH-Dx)	No data'	No data²	No data'	No data²	N/A	service, construction and maintenance vehicle traffic, aircraft taxiing and landing
Biological Oxygen Demand (mg/l, BOD5)	No data	No data ²	No data ^z	No data ²	N/A	ground surface deicing
Chemical Oxygen Demand (COD)	No data ^z	No data ^z	No data ^r	No data ²	N/A	N/A
Total Suspended Solids (mg/l, TSS)	No data ²	No data ²	No data'	No data'	N/A	Runway/taxiway aggregate wear, ground surface deicing abrasives (sand), atmospheric deposition, construction
Total Organic Nitrogen	No data²	No data ²	No data ²	No data ²	N/A	N/A
Total Phosphorus	No data ²	No data ^z	No data	No data²	N/A	N/A
PH (std units)	Minimum	Maximum	Minimum	Maximum	N/A	

Table notes: 1. total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998. 2. Future outfall will have land uses (runways and taxiways) identical to 005 (SDS3), therefore pollutant concentrations will be similar.

Part B - List each pollutant that is limited in an effluent guideline which the facility is subject to or any pollutant listed in the facility's NPDES permit for its process wastewater (if the facility is operating under an existing NPDES permit). Complete one table for each outfall. See the instructions for additional details and requirements.

Pollutant	Maximum Values (include units)		Average Values (include units)		Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Storm w-weighted Taken During Flow-weighted Events	Storm Events	Sources of Pollutants	
All of the pollutants with effluent limitations for the Industrial WasteTreatment Plant's discharge (outfall 001) in the current NPDES permit for Sea-Tac International Airport are listed in Part VII. A above. See Form 2C	No data	No data'	No data'	No data'	No data'	No data'

Table notes: 1. Future outfall will have land uses (runways and taxiways) identical to 005 (SDS3), therefore pollutant concentrations will be similar.

OUTFALL SDW Pollutant	1B' Maxim	letails and requirements. Complete one Maximum Values (include units)		Average Values (include units)		
And CAS Number (if available)	First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
ecal coliform MPN/100ml)	No data ²	No data ^z	No data'	No data ²	N/A	small wild animals and birds
luoride ^z (mg/l)	No data ²	No data ²	No data ^z	No data'	N/A	domestic water
OG- ³ TPH (mg/l, WTPH-Dx)	No data ²	No data ²	No data'	No data'	N/A	service, construction and maintenance vehicle traffic, aircraft taxiing and landing
urfactants ² (MBAS ng/l)	No data ²	No data ²	No data ²	No data	N/A	N/A
opper, total ecoverable ¹ (mg/l)	No data ²	No data ²	No data ²	No data ²	N/A	See TPH above
ead, total recovera	ible No data²	No data ^z	No data²	No data²	N/A	See TPH above
inc, total recovera ng/l)	ole No data²	No data ²	No data ²	No data²	N/A	See TPH above
able notes						
future outfall will	have land uses (runway	s and taxiways) iden	ntical to 005 (SDS3) therefore poliutar	nt concentration	ons will be similar
the total petroleu	im hydrocarbons (TPH)	parameter replaced	oil and grease (FO	G) when the curren	t NPDES per	nit was renewed in 1998.
Part D - Prov	ide data for the storm ev	vent(s) which resulte	d in the maximum	values for the flow	weighted com	posite sample.
1. 2. Date of Duration Storm of Storm Event Event (in minutes)		Total during st	3. Total rainfall during storm event (in inches)		irs between m measured previous rain event	5. Total flow from rain event (gallons or specify units)
	re expected to be s			(SDS3).		

Form Approved OMB No 2040-0086 Approval expires 5-31-92

VII. Discharge Information (Continued from page 3 of Form 2F)

Part A - You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall See instructions for additional details.

instructio	ons for additional (details.				
Pollutant	(includ	m Values de units)		e Values de units)	Number Of	
And CAS Nµmber (if available)	Number Vallable) Taken During Flow-weighted Taken During Flow-weighted First 30 Composite First 30 Composite Sample Minutes Taken During Flow-weighted Even Sample First 30 Composite Sample First 30 Composite Sample Flow-weighted First 30 Composite Sample Flow-weighted First 30 Composite Flow-weighted Flow-w	Storm Events Sampled	Sources of Pollutants			
Oil & Grease TPH¹ (mg/l, NWTPH-Dx)	No dataʻ	No data²	No data'	No data ^z	N/A	service, construction and maintenance vehicle traffic, aircraft taxiing and landing
Biological Oxygen Demand (mg/l, BOD5)	No data ^z	No data ²	No data ^z	No data ²	N/A	ground surface deicing
Chemical Oxygen Demand (COD)	No data ²	No data²	No data ^z	No data ^z	N/A	N/A
Total Suspended Solids (mg/l, TSS)	No data²	No data ^z	No data [*]	No data'	N/A	Runway/taxiway aggregate wear, ground surface deicing abrasives (sand), atmospheric deposition, construction
Total Organic Nitrogen	No data ^z	No data	No data²	No data²	N/A	N/A
Total Phosphorus	No data ²	No data²	No data²	No data'	N/A	N/A
PH (std units)	Minimum No Data ²	Maximum	Minimum	Maximum	N/A	

Table notes: 1. total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998. 2. Future outfall will have land uses (runways and taxiways) identical to 005 (SDS3), therefore pollutant concentrations will be similar.

Part B - List each pollutant that is limited in an effluent guideline which the facility is subject to or any pollutant listed in the facility's NPDES permit for its process wastewater (if the facility is operating under an existing NPDES permit). Complete one table for each outfall. See the instructions for additional details and requirements.

Pollutant	Maximum Values (include units)			e Values e units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
All of the pollutants with effluent limitations for the Industrial Waste Treatment Plant's discharge (outfall 001) in the current NPDES permit for Sea-Tac International Airport are listed in Part VII. A above. See Form 2C	No data	No data'	No data'	No data'	No data	No data

Table notes: 1Future outfall will have land uses (runways and taxiways) identical to 005 (SDS3), therefore pollutant concentrations will be similar.

OUTFALL SDW2	nal details and requirer Maximu	Maximum Values		e Values	Number	
Pollutant		le units)		e units)	Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
ecal coliform MPN/100ml)	No data'	No data ^z	No data'	No data'	N/A	small wild animals and birds
luoride ² (mg/l)	No data ²	No data'	No data	No data ²	N/A	domestic water
·OG- ³ TPH (mg/i, IWTPH-Dx)	No data'	No data ^z	No data ^r	No data ²	N/A	service, construction and maintenance vehicle traffic, aircraft taxiing and landing
Surfactants ² (MBAS, ng/l)	No data ²	No data	No data'	No data'	N/A	N/A
Copper total ecoverable (mg/l)	No data ^z	No data ^z	No data'	No data ²	N/A	See TPH above
ead, total recoverable	No data	No data'	No data²	No data ^z	N/A	See TPH above
inc, total recoverable mg/l)	No data²	No data ^z	No data ^z	No data ^z	N/A	See TPH above
able notes						
. future outfall						
. Future outfall will ha	ve land uses (runways	and taxiways) ider	tical to 005 (SDS3), therefore pollutar	nt concentration	ons will be similar.
the total petroleum	hydrocarbons (TPH) p	arameter replaced	oil and grease (FO	G) when the curren	t NPDES peri	nit was renewed in 1998.
Part D - Provide	data for the storm even		o in the maximum	values for the flow t	weighted com	posite sampie.
Date of Duration Storm of Storm Event Event (in minutes)		5. Total rainfall during storm event (in inches)		Number of hours between beginning of storm measured and end of previous measurable rain event		Total flow from rain event (gallons or specify units)
N/A but data are	expected to be s	imilar to those	for outfall 005	5 (SDS3).		
		v measurement or				

No data

No data

Minimum

No data

No data

Maximum

Total Organic

Phosphorus PH (std units)

Nitrogen Total surface deicing abrasives (sand), atmospheric deposition, construction

N/A

N/A

VII. Discharge Information (Continued from page 3 of Form 2F)

Pollutant	Maximum Values (include units)		Average Values (include units)		Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
Oil & Grease TPH ¹ (mg/l, NW TPH-Dx)	No data²	No data²	No data ^z	No data²	N/A	service, construction and maintenance vehicle traffic, aircraft taxiing and landing
Biological Oxygen Demand (mg/l, BOD5)	No data ²	No data ²	No data ²	No data'	N/A	ground surface deicing
Chemical Oxygen Demand (COD)	No data²	No data ²	No data ²	No data ²	N/A	N/A
Total Suspended Solids (mg/l, TSS)	No data ^z	No data²	No data²	No data²	N/A	Runway/taxiway aggregate wear, ground

Table notes: 1. total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998. 2. Future discharge will have land uses (runways and taxiways) identical to 005 (SDS3), therefore pollutant concentrations will be similar. 3. This future discharge will drain to the NW Ponds and will be represented at the Northwest Ponds outlet which consolidates multiple discharges

No data

No data

Minimum

No data'

No data

Maximum

N/A

N/A

N/A

Part B - List each pollutant that is limited in an effluent guideline which the facility is subject to or any pollutant listed in the facility's NPDES permit for its process wastewater (if the facility is operating under an existing NPDES permit). Complete one table for each outfall. See the instructions for additional details and requirements.

		Chichar details and			Number	
Pollutant	Maximum Values (include units)		_	Average Values (include units)		
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
All of the pollutants with effluent limitations for the Industrial Waste Treatment Plant's discharge (outfall 001) in the current NPDES permit for Sea-Tac International Airport are listed in Part VII. A above. See Form 2C	No data'	No data'	No data'	No data'	No data'	No data

Table notes: 1. Future outfall will have land uses (runways and taxiways) identical to 005 (SDS3), therefore pollutant concentrations will be similar.

OUTFALL SDW3* Pollutant		Maximum Values (include units)		Average Values (include units)		Number Of	
CAS I	And Number ailable)	Grab Sample Taken Dunng First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
ecal colifor MPN/100m		No data	No data ²	No data ²	No data ^z	N/A	small wild animals and birds
luoride ² (m	•	No data	No data ²	No data	No data ²	N/A	domestic water
-OG- ³ TPH WTPH-Dx)	No data	No data²	No data ²	No data ^z	N/A	service, construction and maintenance vehic traffic, aircraft taxiing and landing
Surfactants* ng/l)	(MBAS,	No data ²	No data²	No data'	No data	N/A	N/A
Copper, tota ecoverable		No data²	No data²	No data²	No data ²	N/A	See TPH above
.ead, total r mg/l)	ecoverable	No data	No data ^z	No data²	No data	N/A	See TPH above
linc, total re mg/l)	coverable	No data ²	No data ²	No data²	No data	N/A	See TPH above
able notes				P. Jan			
the total p	scharge will ha	ocarbons (TPH) pa	ays and taxiways) arameter replaced cent(s) which resulted	oil and grease (FO	3) when the current	NPDES pen	trations will be similar mit was renewed in 1998. posite sample.
1.		2.	3	3.	4. Number of hours between		5.
Date of Duration Storm of Storm Event Event (in minutes)		orm Event	Total rainfall during storm event (in inches)		beginning of storm measured and end of previous measurable rain event		Total flow from rain event (gallons or specify units)

7. Provide a description of the method of flow measurement or estimate.

N/A but method used to measure flow from outfall 005 (SDS3) will be used.

WAD98098016

VII. Discharge Information (Continued from page 3 of Form 2F) Part A - You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See

instructio	ons for additional o	letails.	, ,	. ,		
Poliutant	(includ	m Values de <i>units)</i>		Average Values (include units)		
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
Oil & Grease TPH¹ (mg/l, NWTPH-Dx)	No data'	No Data²	No data'	No data ²	N/A	service, construction and maintenance vehicle traffic, aircraft taxiing and landing
Biological Oxygen Demand (mg/l, BOD5)	No data ²	No data ²	No data ²	No data ^z	N/A	ground surface deicing
Chemical Oxygen Demand (COD)	No data ^z	No data ^z	No data ^z	No data²	N/A	N/A
Total Suspended Solids (mg/l, TSS)	No data ^r	No data ²	No data'	No data'	N/A	Runway/taxiway aggregate wear, ground surface deicing abrasives (sand), atmospheric deposition, construction
Total Organic Nitrogen	No data²	No data ²	No data ²	No data ^z	N/A	N/A
Total Phosphorus	No data ^z	No data²	No data ²	No data ²	N/A	N/A
PH (std units)	Minimum	Maximum	Minimum	Maximum	N/A	

Table notes: 1. total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998. 2. Future outfall will have land uses (roadways, parking lots and rooftops) similar to 002 (SDE4), therefore pollutant concentrations will be similar.

Part B - List each pollutant that is limited in an effluent guideline which the facility is subject to or any pollutant listed in the facility's NPDES permit for its process wastewater (if the facility is operating under an existing NPDES permit). Complete one table for each outfall. See the instructions for additional details and requirements.

Pollutant	Maximum Values (include units)		Average Values (include units)		Number Of		
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants	
All of the pollutants with effluent limitations for the Industrial Waste Treatment Plant's discharge (outfall 001) in the current NPDES permit for Sea-Tac International Airport are listed in Part VII. A above. See Form 2C	No data	No data'	No data'	No data'	No data'	No data'	

Table notes: 1. Future outfall will have land uses (runways and taxiways) identical to 002 (SDE4), therefore pollutant concentrations will be similar.

OUTFALL SASA Pond Pollutant		m Values le units)		e Values le units)	Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
ecal coliform MPN/100ml)	No data ^z	No data	No data²	No data	N/A	small wild animals and birds
luoride² (mg/l)	No data'	No data'	No data	No data	N/A	domestic water
OG - TPH (mg/l, IWTPH-Dx)	No data²	No data ^z	No data ^r	No data'	N/A	service, construction and maintenance vehicle traffic, aircraft taxiing and landing
urfactants* (MBAS,	No data ²	No data ²	No data ²	No data'	N/A	N/A
copper, total ecoverable (mg/l)	No data'	No data ²	No data ²	No data²	N/A	See TPH above
ead, total recoverable mg/l)	No data ^z	No data ²	No data'	No data ²	N/A	See TPH above
inc, total recoverable mg/l)	No data ²	No data²	No data²	No data'	N/A	See TPH above
able notes						
. future outfall						L
						t concentrations will be similar.
						mit was renewed in 1998.
Part D - Provide d	lata for the storm even			values for the flow	weighted com	nposite sample.
Date of Storm of	Duration Storm Event in minutes)	Total during st	3. 4. Number of hour beginning of ston and end of process measurable references.		m measured previous	Total flow from rain event (gallons or specify units)

7. Provide a description of the method of flow measurement or estimate.

N/A but method used to measure flow from outfall 002 (SDE4) will be used.

(Continued from page 3 of Form 2F) VII. Discharge Information

Pollutant	Maximum Values (include units)		Average Values (include units)		Number Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Poliutants
Oil & Grease TPH ¹ (mg/l, NWTPH-Dx)	No data	N/A	No data	No data*	N/A	service, construction and maintenance vehicle traffic, aircraft taxiing and landing
Biological Oxygen Demand (mg/l, BOD5)	No data	No data	No data	No data	N/A	ground surface deicing
Chemical Oxygen Demand (COD)	No data	No data*	No data	No data	N/A	N/A
Total Suspended Solids (mg/l, TSS)	No data	No data	No data	No data	N/A	Runway/taxiway aggregate wear, ground surface deicing abrasives (sand), atmospheric deposition, construction
Total Organic Nitrogen	No data	No data	No data	No data	N/A	N/A
Total Phosphorus	No data"	No data	No data	No data*	N/A	N/A
PH (std units)	Minimum	Maximum	Minimum	Maximum	N/A	

Table notes: 1. total petroleum hydrocarbons (TPH) parameter replaced oil and grease (FOG) when the current NPDES permit was renewed in 1998. 2. Future outfall will have land uses (runways and taxiways) identical to 005 (SDS3), therefore pollutant concentrations will be similar. Part B - List each pollutant that is limited in an effluent guideline which the facility is subject to or any pollutant listed in the facility's NPDES permit for its process wastewater (if the facility is operating under an existing NPDES permit). Complete one table for each outfall.

See the instructions for additional details and requirements

		m Values	· · · · · · · · · · · · · · · · · · ·	a Values	Number	
Pollutant	(include units)		Average Values (include units)		Of	
And CAS Number (if available)	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutants
All of the pollutants with effluent limitations for the Industrial Waste Treatment Plant's discharge (outfall 001) in the current NPDES permit for Sea-Tac International Airport are listed in Part VII. A above. See Form 2C	No data	No data'	No data'	No data'	No data'	No data'

Table notes: 1. Future outfall will have land uses (runways and taxiways) identical to 005 (SDS3), therefore pollutant concentrations will be similar.

Continued f	rom the Front							
Part C						to believe is	present. See the instructions for	
			nents Complete on					
				Values	Number Of			
	llutant		le units)		e units)	Storm		
	And Number	Grab Sample Taken During	Flow-weighted	Grab Sample Taken During	Flow-weighted	Events		
	ailable)	First 30	Composite	First 30	Composite	Sampled		
(" 0	anabic)	Minutes	Composite	Minutes	Composite	Jampied	Sources of Pollutants	
Fecal colifo	rm	No data ²	No data	No data ²	No data	N/A	small wild animals and	
(MPN/100m		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	WO GETE	110 00.0	110 00.0	14/4	birds	
					ļ			
Fluoride' (m	•	No data ²	No data [*]	No data ²	No data ²	N/A	domestic water	
FOG TPH		No data ²	No data	No data ^z	No data ²	N/A	service, construction	
NWTPH-Dx)						and maintenance vehicle	
							traffic, aircraft taxiing	
							and landing	
Surfactants	Z /MADA C	No data ²	No data²	No data ²	No data ²	N/A		
mg/l)	(IVIDAS.	NO data	NO data	NO data	NO Gala	N/A	N/A	
Copper, tota	al	No data ²	No data ²	No data ²	No data ²	N/A	See TPH above	
recoverable		, , , , , , , , , , , , , , , , , , ,					Jee II II above	
Lead, total r		No data ²	No data ²	No data ²	No data ²	N/A	See TPH above	
(mg/l)								
Zinc, total re	ecoverable '	No data ²	No data ²	No data ²	No data ²	N/A	See TPH above	
(mg/l)	***							
Table notes	i							
1. future out		· · · · · · · · · · · · · · · · · · ·						
			and taxiways) iden					
							mit was renewed in 1998.	
	- Provide dat		ent(s) which resulted		values for the flow	weighted com	posite sample.	
1.		2.		3.	4.	b_b	5.	
Date of	Dı	uration	Total	rainfall	Number of hou		Total flow from	
Storm	of Sto	orm Event	during st	orm event	beginning of stor		rain event	
Event	(in r	minutes)	(in in	ches)	measurable r		(gallons or specify units)	
N/A but data are expected to be similar to those for outfall 005 (SDS3).								
1								
7. Provide	a description of	the method of flow	v measurement or e	estimate				
			flow from outfa		will be used.			
				· · · · · · · · · · · · · · · · · · ·				
ı								

Sound Analytical Services, Inc.

ANALYTICAL & ENVIRONMENTAL CHEMISTS 4813 Pacific Hwy East Tacoma, WA 98424 (253) 922-2310 FAX (253) 922-5047 e-mail: info@suslah.com

TRANSMITTAL MEMORANDUM

DATE: December \$3, 2001

TO: Al Audette Port of Seattle - Maintenance Dept. P.O. Box 68727 Seattle, WA 98168

PROJECT: DMR

REPORT NUMBER: 95023

Enclosed are the revised test results for one sample received at Sound Analytical Services on December 27, 2000. Please replace the pages from the originally submitted report with the enclosed pages.

The originally submitted results for 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene were reported incorrectly. Due to an undetected retention time shift that occurred during the initial calibration associated with your sample ar alyses, 1,2,4-trimethylbenzene was reported as 1,3,5-trimethylbenzene and 1,3,5trimethylbenzene was reported as isopropylbenzene Unfortunately, this error was not discovered until October 2001. All affected data are in the process of being reviewed, and revised results are being submitted as they become available. Results for other reported analytes are not affected.

Please accept our sincerest apologies for this oversight. At STL Seattle, high quality data and impeccable customer service are our top priorities. I can assure you that this was an isolated incident, and in order to ensure that this type of error does not happen again, we have implemented new data review procedures.

l apologize for any inconvenience this reporting error may have caused. Should there be any questions regarding this report, please contact me at (253) 922-2310.

Sincerely,

Terri Howard

Project Manager

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
% Solids

Diluton Fector

Port of Seattle - Maintenance Dept.

DEC-300-EFF 95023-01 12/27/00 12/28/00 12/28/00

1

Volatile Organics by USEPA Method 8260

			Recovery	Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	104		84	115
Fluorobenzene	103		82	108
Toluene-D8	101		95	106
Ethylbenzene-d10	91.4		90	111
Bromofluorobenzene	92		81	113
				į

	Result		1	
Analyte	(ug/ L)	PQL	MDL	Flags
Dichlorodifluoromethane	ND-	0.4	0 0227	
Chloromethane	ND -	0.4	0 0312	
Vinyl chloride	ND-	0.4	0,0193	
Bromomethane	ND-	0.4	0,0503	
Chloroethane	ND -	0.4 —	0.122	
Trichlorofluoromethane	ND -	0.4	0 0225	
1,1-Dichloroethene	ND /	0.4	0.0824	
Acrolein	25.8 /	2	0.052	
Methylene chloripe	0.192	0.4	0 0492	J
trans-1,2-Dichlorpethene	ND /	0.4 —	0,0518	
Acrylonitrile	ND-	2 —	0.107	
1,1-Dichloroethahe	ND —	0.4 —	0,0358	
2.2-Dichloropropane	ND —	0.4 —	0.075	
cis-1,2-Dichloroethene	ND -	0.4	0 0553	
Bromochloromethane	ND —	0.4 —	0 0444	
Chloroform	0.663	0.4 —	0.0516	
1,1,1-Trichloroethane	ND —	0.4	0.0759	
Carbon Tetrachieride	ND -	0.4	0.0527	
1.1-Dichloropropene	ND -	0.4 —	0,0499	
Benzene	1.99	0.4 —	0 0319	
1,2-Dichloroethane	ND	0.4 —	0 0319	
Trichloroethene	ND -	0.4	0,0597	
1,2-Dichloropropane	ND -	0.4	0,0498	
Dibromomethane	ND-	0.4 /	0.024	
Bromodichloromethane	ND-	0.4 /	0,0324	
cis-1,3-Dichloropropere	ND /	0.4	0 0373	

Volatile Organics by USEPA Method 8260 data for 95023-01 continued...

1 1	Result		
Analyte	(u g /L)	PQL	MDL
Toluene	23.8	0.4	0 0357
trans-1,3-Dichloropropene	ND -	0.4	0 0307
1,1,2-Trichloroethane	ND <	0.4	0 0479
Tetrachloroethene	ND -	0.4	0 0549
1,3-Dichloropropene	ND ~	0.4 —	0 0276
Dibromochloromethan	ND^	0.4 —	0 0479
1,2-Dibromoethane	ND-	0.4—	0 0743
Chlorobenzene	0.0489	0.4	0.0475
Ethylbenzene	7.83 -	0.4 —	0,0318
1.1,1,2-Tetrachio oethene	ND -	0.4 —	0,0401
m,p-Xylene	34.4—	0.8 ~	0.087
o-Xylene	18.4	0.4	0.0432
Styrene	ND —	0.4	0.0372
Bromoform	ND	0.4	0.0455
Isopropylbenzene	0.814	0.4 —	0.0473
Bromobenzene	ND-	0.4 ~	0,0449
n-Propylbenzene	2.34	0.4—	0.0668
1,1,2,2-Tetrachio oethane	ND —	0.4 /	0,0705
1,2,3-Trichloropropane	ND —	0.4	0.0787
2-Chlorotoluene	ND =	0.4	0.0544
1,3,5-Trimethylbenzene	8.66	0.4 /	0.0473
4-Chlorotoluene	ND-	0.4	0,0835
t-Butylbenzene	ND /	0.4 _	0.0766
1,2,4-Trimethylbenzene	27.5	0.4	0.0523
sec-Butylbenzene	0.667 —	0.4 —	0.0632
1,3-Dichlorobenzene	ND-	0.4	0.0569
4-Isopropyltoluene	0.938 —	0.4 —	0.0478
1,4-Dichlorobenzene	ND /	0.4 ~	0.0546
n-Butylbenzene	ND -	0.4	0 053
1,2-Dichlorobeпzene	ND —	0.4 —	0.0436
1,2-Dibromo-3-chloroplopan	e ND /	0.4	0 129
1,2,4-Trichlorobenzene	ND /	0.4 ~	0.0852
Hexachiorobutadiene	ND -	0.4 —	0 115
Naphthalene	12 (_	0.4	0.0914
1,2,3-Trichlorobenzene	ND	0.4	0.0962
· · · · · · · · · · · · · · · · · · ·			ľ

AR 015497

Client Name

Client ID:

Date Prepared:

Date Analyzed: % Solids

Dilution Factor

Port of Seattle - Maintenance Dept.

DEC-300-EFF 95023-01

> 12/27/00 12/28/00 12/28/00

> > 10

Semivolatile Organics by USEPA Method 8270

į		Reco	very Limits
Surrogate	% Recovery F	lags Low	High
Nitrobenzene - d5	96.1	48	1\$0
2 - Fluorobiphenyl	93.6	59	126
p - Terphenyl - d14	106	48	1\$7
Phenol - d5	29.6	11	67
2 - Fluorophenol	45.3	17	113
2,4,6 - Tribromophenol	99.1	54	1\$1

	Res				
Analyte	(ug/	L)	PQL	MPL	Flags
Phenol	_	5.38	0.952	0.305	
bis(2-Chloroethyl)ether	ND _		0.952	0.181	
2-Chlorophenol	ND		0.952	0.162	
1,3-Dichlorobenze	ND -		0.952	0.162	
1,4-Dichlorobenzeee	ND ~	_	0.952	0.143	
Benzyl Alcohol		1.17	0.952	0.305	
1,2-Dichlorobenzese	ND T		0.952	0.152	
2-Methylphenol		0.581	0.952	0.229	
bis(2-Chloroisopropyl)ether	ND ~		0.952	0.2	
3- & 4-Methylphenol		3.46	0.952	0.219	
N-nitroso-di-n-propylamine	ND —		0.952	0.2	
Hexachloroethane	ND/		0.952	0.381	
Nitrobenzene	ND-		0.952	0.429	
Isophorone	ND T		0.952	0.171	
2-Nitrophenol	ND -		0.952 —	0.21	
2,4-Dimethylphend	ND -		0.952	0.143	
Benzoic Acid	ND -		4.78	0.19	
bis(2-Chioroethoxy)methane	ND -		0.952	0.171	
2,4-Dichloropheno	ND /		0.952	0.143	
1,2,4-Trichlorobenzene	ND -		0.952-	0.152	
Naphthalene		10.8 -	0.0952	q.02 08	
4-Chloroaniline	ND_		0.952	0.371	
Hexachlorobutadiene	ND -		0.952 /	0,276	
4-Chloro-3-methylpheno	NDZ		0.952	0.514	
2-Methylnaphthalene		16.4	0.0952 /	0.0145	
Hexachlorocyclopentadiene	ND /		0.476 —	0.248	

AR 015498

Ţ

Semivolatile Organics by USEPA Method 8270 data for 95023-01 continued...

1	Res	ult		
Analyte	(ug	/L)	PQL	MPL
2,4,6-Trichlorophenol	ND'	,	0.952 ~	0.114
2,4,5-Trichiorophenol	ND/		0.952 -	0.105
2-Chloronaphthalene	ND /		0.0952 /	0.013
2-Nitroaniline	ND/		0.952 🗸	0.171
Dimethylphthalate		7.09	0.952	0.152
Acenaphthylene	ND/		0.0952	0 ,0145
2,6-Dinitrotoluene	ND ~		0.952	0.19
3-Nitroaniline	ND		0.952	0.314
Acenaphthene	ND-		0.0952	0.015
2,4-Dinitrophenol	ND/		2.38 /	D.286
4-Nitrophenol	ND-		2,38 ′	0.276
Dibenzofuran		0.448	0.952	0.133
2,4-Dinitrotoluene		0.238	0.952	0.124
Diethylphthalate		0.782	2.38	0.552
4-Chlorophenylphenylether	ND /	_	0.952	0.143
Fluorene		0.752	0.0952	0.013
4-Nitroaniline	ND-		0.952 /	0.295
4,6-Dinitro-2-methylpherol	ND/		2.38 —	0.21
N-Nitrosodiphenylamine	ND /		0.952 /	0.0952
4-Bromophenylphenylether	ND/		0.952	D.114
Hexachlorobenzene	ND /		0.952 -	0.19
Pentachlorophenol	ND /		0.952	0.162
Phenanthrene		0.505 /	0.0952	0.0212
Anthracene	ND /		0.0952 ~	0,0145
Di-n-butylphthalate	ND /		4.76	2.2
Fluoranthene	ND/		0.0952 /	0,0179
Pyrene	ND /		0.0952	D. 013
Butylbenzylphthalale	ND -		4.76	1.78
3,3'-Dichlorobenzione	ND /		0.952	D.343
Benzo(a)anthracene	ND/		0.0952 -	0,0417
Chrysene	ND -		0.0952 ^	0,0234
bis(2-Ethylhexyl)phthalate		0.933 🦳	0.952 ~	p.619
Di-n-octylphthalate	ND/		0.952	0.324
Benzofiuoranthenes	ND		0.19	0,0362
Benzo(b)fluoranthene	ND_		0.0952	0,0276
Benzo(k)fluoranthene	ND		0.0952	. 0 .03 6 5
Benzo(a)pyrene	ND/		0.0952 ~	0.0447
Indeno(1.2,3-cd)pyrene	ND 🗥		0.0952	0.029
Dibenz(a,h)anthracene	ND ~		0.0952	0.0256
Benzo(g,h,i)perylene	ND		0.0952	0.0326
N-nitrosodimethylamine	ND (2.38	0.314
Benzidine	ND C		2.38	0.229
1,2-Diphenylhydrazine	ND/		0.952 <	0.267
1 is pipilonymy diading	· -			

AR 015499

Lab ID:

Method Blank - HP0033

Date Received: Date Prepared: Date Analyzed:

12/28/00 12/28/00

Recovery Limits

% Solids Dilution Factor

Volatile Organics by USEPA Method 5030/8260B Modified

Surrogate Dibromofluorome hane Fluorobenzene Toluene-D8 Ethylbenzene-d10 Bromofluorobenzene	% Recove 105 105 98.7 90.7 91.8	ry Flags	Low High 84 115 82 108 95 106 90 111 81 113	
Analyte Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Acrolein Methylene chloride trans-1,2-Dichloroethene Acrytonitrile 1,1-Dichloroethane 2,2-Dichloroethane 2,2-Dichloroethane Chloroform 1,1,1-Trichloroethane Chloroform 1,1,1-Trichloroethane Carbon Tetrachloride 1,1-Dichloropropane Benzene 1,2-Dichloropropane Benzene 1,2-Dichloroethane Trichloroethane Trichloroethane Trichloroethane Trichloroethane 1,2-Dichloropropane Dibromomethane Bromodichloromethane Bromodichloromethane Bromodichloromethane	6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	PQL 0.4	MDL FINAL OLD STATE OLD ST	ags
			AR 015500	

Volatile Organics by USEPA Method 5030/8260B Modified data for HP0033 continued...

	Result) - • • • •
	(ug/L)	PQL	MDL
Analyte	ND /	0.4	0.0357
Toluene	ND ^	0.4	0.0307
trans-1,3-Dichloropropene	ND /	0.4	0.0479
1,1,2-Trichloroethane	ND -	0.4	0.0549
Tetrachioroethene	ND -	0.4	0.0276
1,3-Dichloropropane	ND -	0.4	0.0479
Dibromochlorome hand	ND/	0.4	0.0743
1.2-Dibromoethane	ND -	0.4	0.0475
Chlorobenzene	ND/	0.4 —	0.0318
Ethylbenzene	ND -	0.4 —	0.0401
1,1,1,2-Tetrachlomethane	ND -	0.8	0 087
m,p-Xylene	ND /	0.4	0.0432
o-Xylene	ND /	0.4	0.0372
Styrene		0.4	0.0455
Bromoform	ND -	0.4 /	0.0473
Isopropylbenzene	ND/ ND/	0.4	0.0449
Bromobenzene		0.4 —	0.5668
n-Propylbenzene	ND /	0.4~	0.0705
1,1,2,2-Tetrachloloethane	ND-	0.4	o.p7 8 7
1,2,3-Trichloroprepane	ND /	0.4 -	0.0544
2-Chlorotoluene	ND -	0.4	0.0473
1,3,5-Trimethylbenzene	ND -	0.4-	0.0635
4-Chiorotoluene	ND _	0.4	0,0766
t-Butylbenzene	ND /	0.4 —	0.0523
1,2,4-Trimethylbenzene	ND -	0.4 ~	0,0832
sec-Butylbenzen	ND-	0.4 —	0,0569
1,3-Dichlorobenzene	ND /	0.4 —	0.0478
4-Isopropyltoluene	ND /	0.4-	0,0546
1,4-Dichlorobenzene	ND /	0.4	q.053
n-Butylbenzene	ND	0.4	0 0436
1 2-Dichlorobenzene	ND	0.4	d.129
1,2-Dibromo-3-chloropropane	ND-	0.4 <	0 0852
1,2,4-Trichlorobenzen	ND —	0.4	d.115
Hexachlorobutadiene	ND -	0.4	0 0914
Naphthalene	ND _	0.4	0 0962
1,2,3-Trichlorobenzene	ND	5 . 4	Ī
1,2,0 1,10,			

Lab ID:

Method Blank - SV3280

Date Receive:

12/28/00

Date Prepared: Date Analyzed:

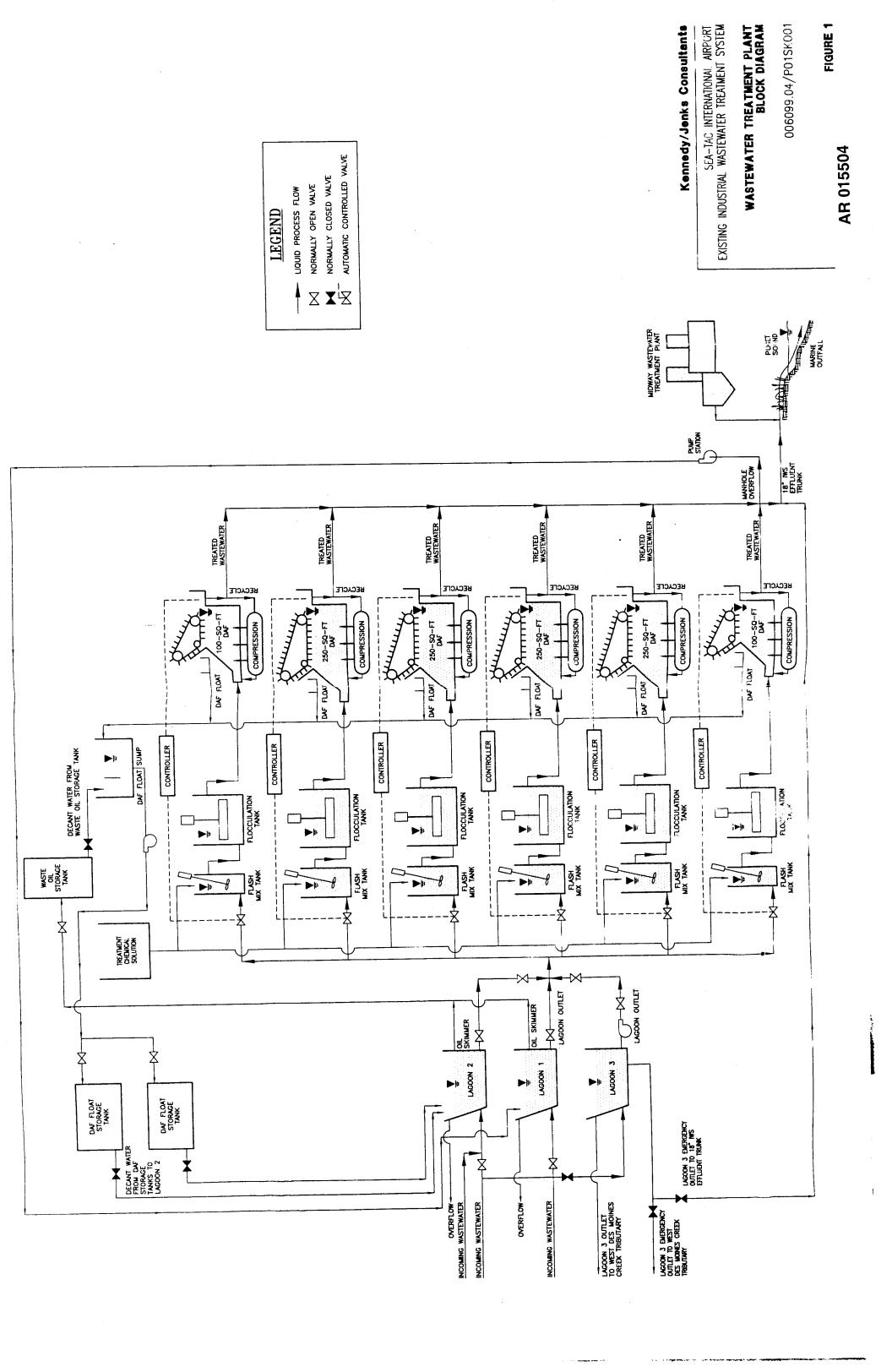
12/28/00

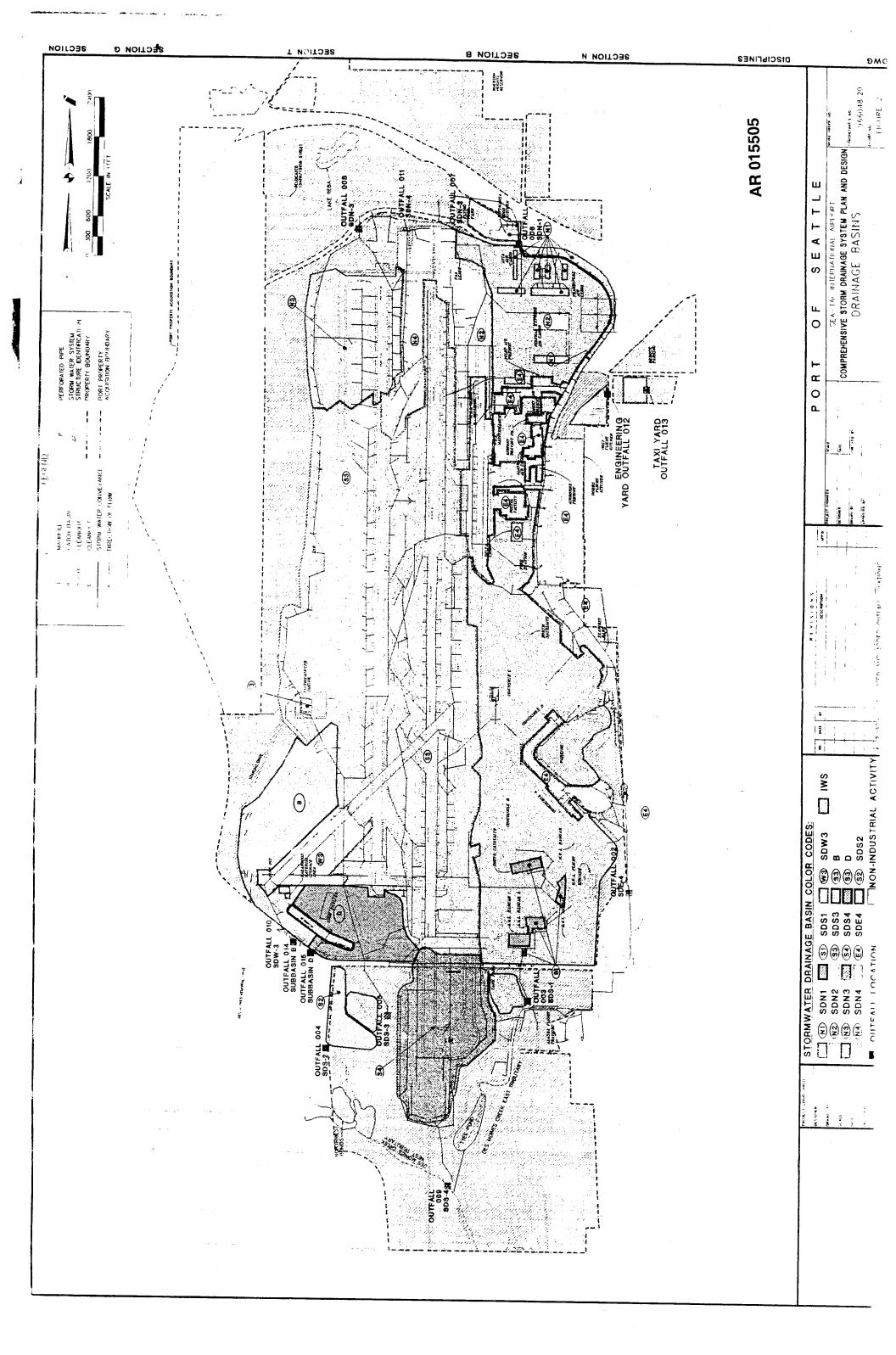
% Solids

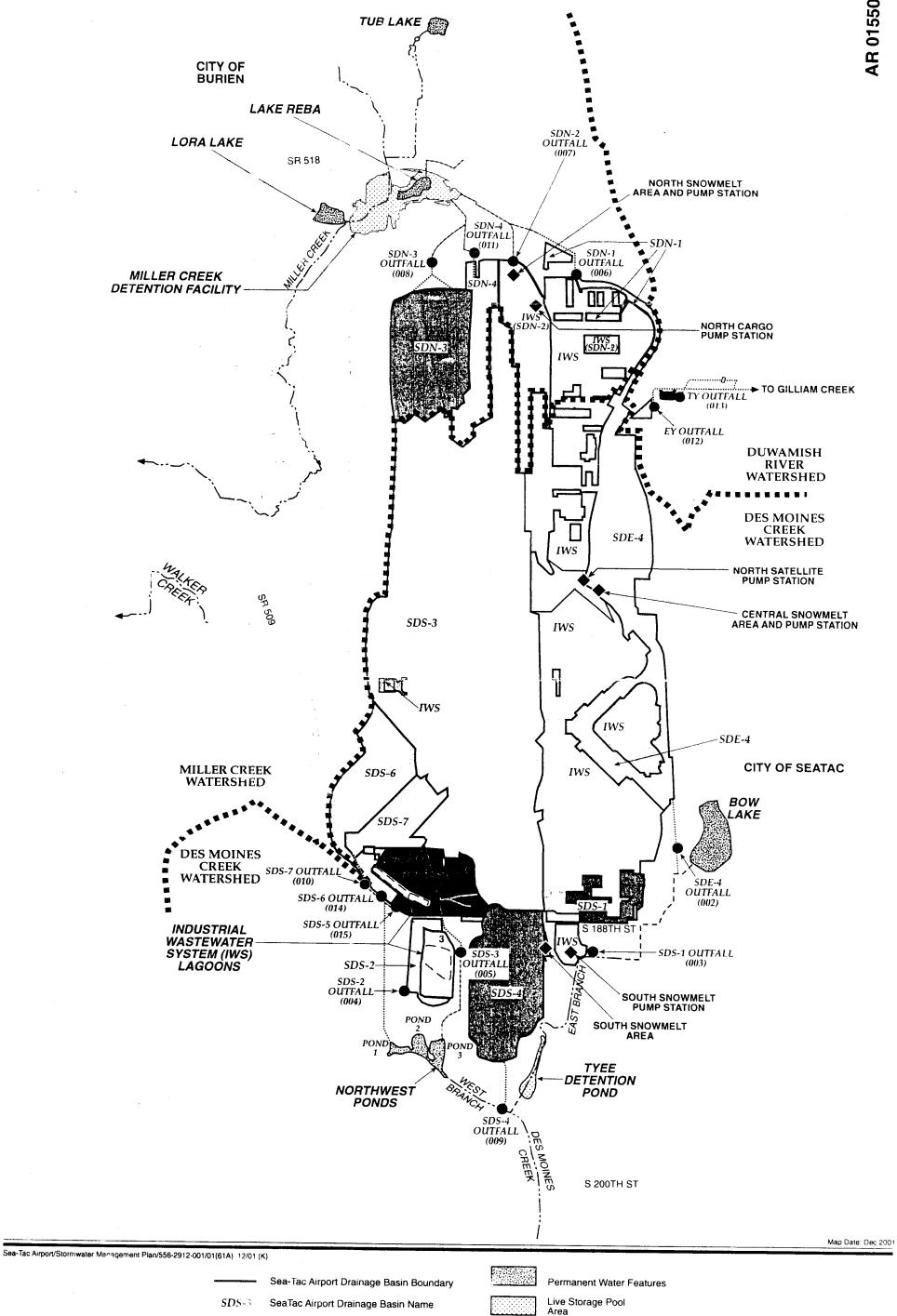
Dilution Factor

10

Semivolatile Organics by USEPA Method 8270


			Recove	ery Limits
Surrogate Nitrobenzene - d5 2 - Fluorobiphenyl p - Terphenyl - d14 Phenoi - d5 2 - Fluorophenol 2,4,6 - Tribromophenol	% Recovery 93.3 97.1 93.4 32.9 55	Flags	Low 48 59 48 11 17 54	High 150 128 137 67 113 151


		Result (ug/L)	PQL		lags
Analyte	ND	. • ,	1	0.32	
Phenol	ND		1	0,19	
bis(2-Chloroethyl)ether	ND		1	0.17	
2-Chlorophenol	ND		1	0.17	
1,3-Dichiorobenzene	ND		1	0.15	
1,4-Dichlorobenzene	ND		1	0.32	
Benzyl Alcohol	ND		1	0,16	
1,2-Dichlorobenzehe	ND		1	0.24	
2-Mathylphenol			1	0.21	
bis(2-Chloroisopropyl)eth	er ND		1	0.23	
3- & 4-Methylphenol			1	0.21	
N-nitroso-di-n-propylam	e ND		1	0.4	
Hexachloroethane	ND		1	0.45	
Nitrobenzene	ND		1	0.18	
Isophorone	ND		1	0.22	
2-Nitrophenol	ND		1	0.15	
2,4-Dimethylphenol	ND		5	0.2	
Benzoic Acid	ND		1	0,18	
bis(2-Chloroethoxy)meth	ane ND		<u>;</u>	0.15	
2,4-Dichlorophendl	ND		; 1	0.16	
1,2,4-Trichlorober zene	ND		0.1	0,0219	
Naphthalene	ND		0.1	0.39	
4-Chloroaniline	ND		1	0.29	
Hexachlorobutadiene	ND			0.54	
4-Chloro-3-methy phenol	ND		0.4	0.0152	
2-Methylnaphthaiene	ND		0.1	0.26	
Hexachlorocyclopentadie	ene ND		0.5	0.20	


AR 015502

Semivolatile Organics by USEPA Method 8270 data for SV3280 continued...

	Result		
	(ug/L)	PQL	MDL
Analyte	ND	1	0.12
2,4,6-Trichlorophenol	ND	1	0.11
2,4,5-Trichlorophenol	ND	0.1	0.0136
2-Chloronaphthalene	ND	1	0.18
2-Nitroaniline	ND	1	0.16
Dimethylphthalate	ND	0.1	0,0152
Acenaphthylene	ND	1	0.2
2,6-Dinitrotoluene	ND	1	0.33
3-Nitroaniline	ND	0.1	0 0157
Acenaphthene	ND	2.5	0.3
2,4-Dinitrophenol	ND ND	2.5	0.29
4-Nitrophenol		1	0.14
Dibenzofuran	ND	1	0.13
2,4-Dinitrotoluene	ND	2.5	0.58
Diethylphthalate	ND	1	0.15
4-Chlorophenylphenylether	ND	0.1	0.0136
Fluorene	ND	1	0.31
4-Nitroaniline	ND	2.5	0.22
4.6-Dinitro-2-methylphenol	ND	1	0.1
N-Nitrosodiphenylamine	ND	1	0,12
4-Bromophenylphenyletter	ND ND	1	0.2
Hexachiorobenzene	. ND	1	0.17
Pentachiorophenol	ND	0.1	0.0222
Phenanthrene	ND	0.1	0.0152
Anthracene	ND ND	5	2.31
Di-n-butylphthalate	ND ND	0.1	0.0188
Fluoranthene	ND ND	0.1	4 .0136
Pyrene	ND NO	5	1.87
Butylbenzylphthalate	ND	1	0.36
3.3'-Dichlorobenzigine	ND	0.1	ф.0438
Benzo(a)anthrace e	ND ND	0.1	0.0245
Chrysene		1	0,65
bis(2-Ethylhexyl)phthalate	ND ND	1	0.34
Di-n-octylphthalate]		0.2	0.038
Benzofluoranthenes	ND	0.1	0.029
Benzo(b)fluoranthene	ND ND	0.1	p.0383
Benzo(k)fluoranth≥ne	ND ND	0.1	0.047
Renzo(a)pyrene	ND ND	0.1	0.0304
indeno(1,2,3-cd)pyrene	ND ND	0.1	0.0269
Dibenz(a,h)anthracene	ND ND	0.1	0.0343
Berzo(a.h.i)peryi≰ne	ND	2.5	0.33
N-nitrosodimethy amine	ND	2.5	0.24
Benzidine	ND	1	0.28
1,2-Diphenylhydrazine	ND		į
· ' ' '			(

Watershed Divide SCALE IN FEET **Existing** Piped Stream Drainage Channel Pipe (only connections between subabsins Snowmelt Pump Station 750 and outfalls shown) Monitoring Location

NPDES Drainage Subbasins, **Snowmelt Areas and Pump** Stations, and Permit 'Outfalls

AR 015507

Monitoring Location

Consolidated Outfall

New Impervious Surfaces

Snowmelt Pump Station

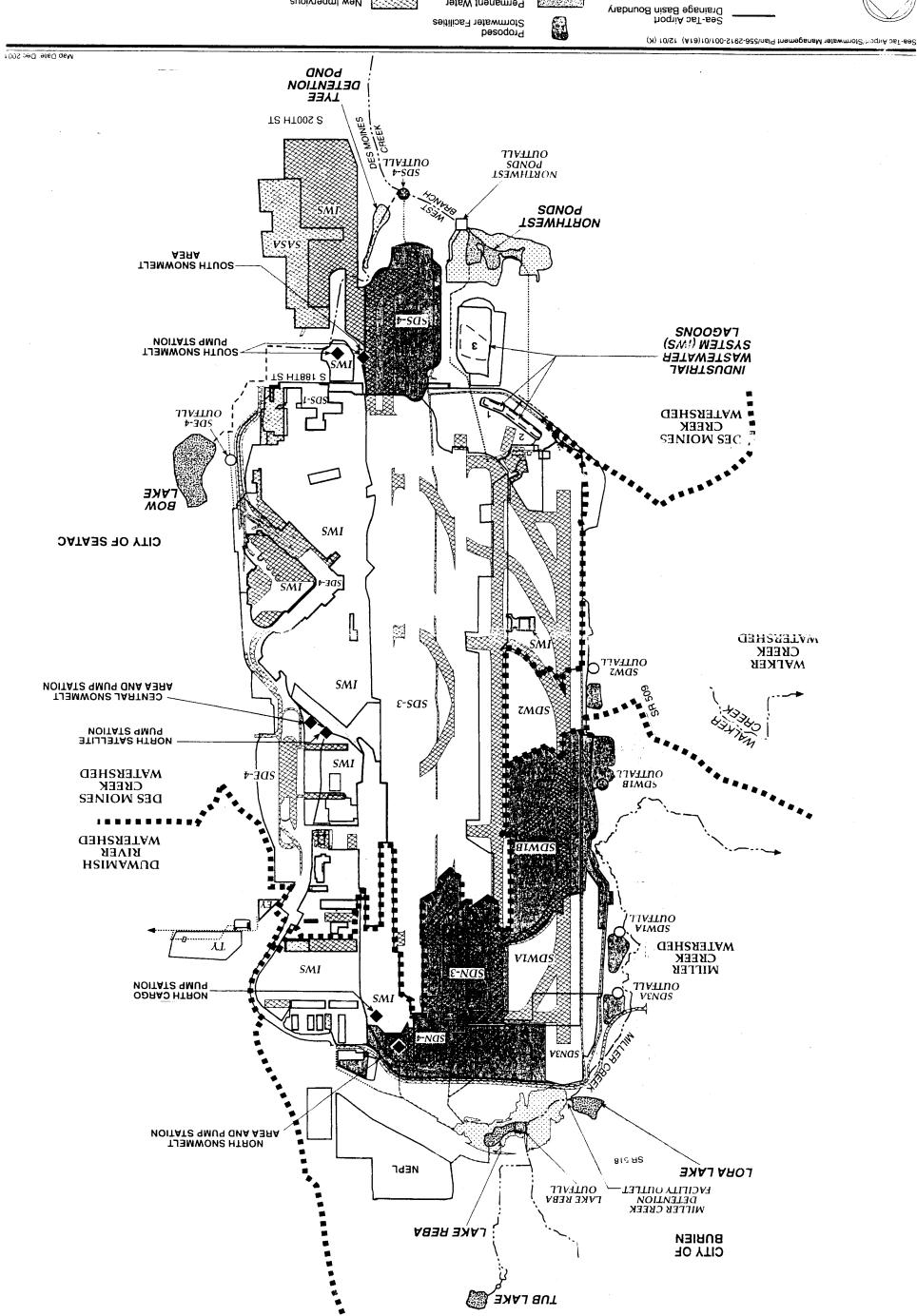
Stations, and Permitted Outfalls

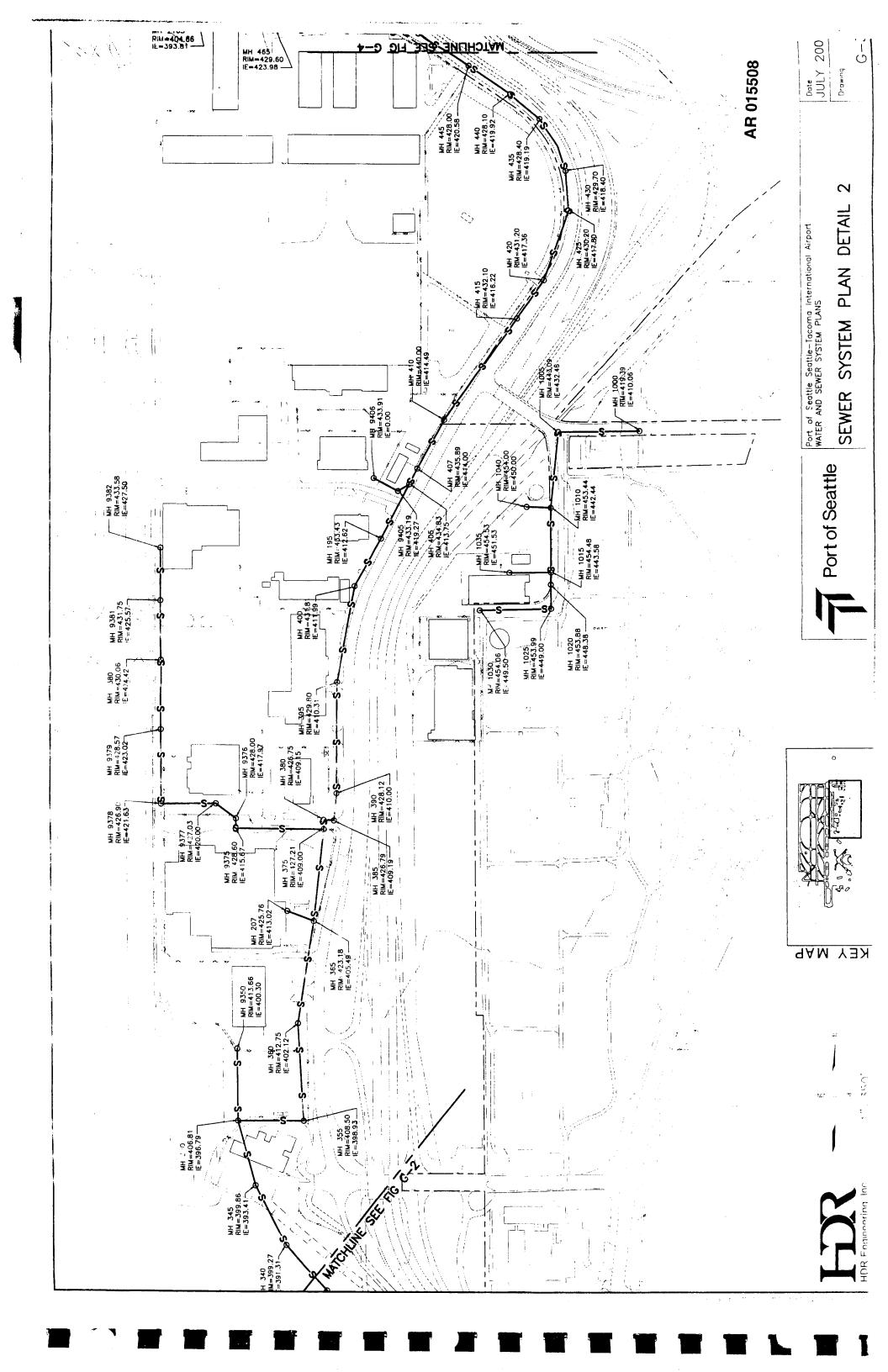
Snowmelt Areas and Pump

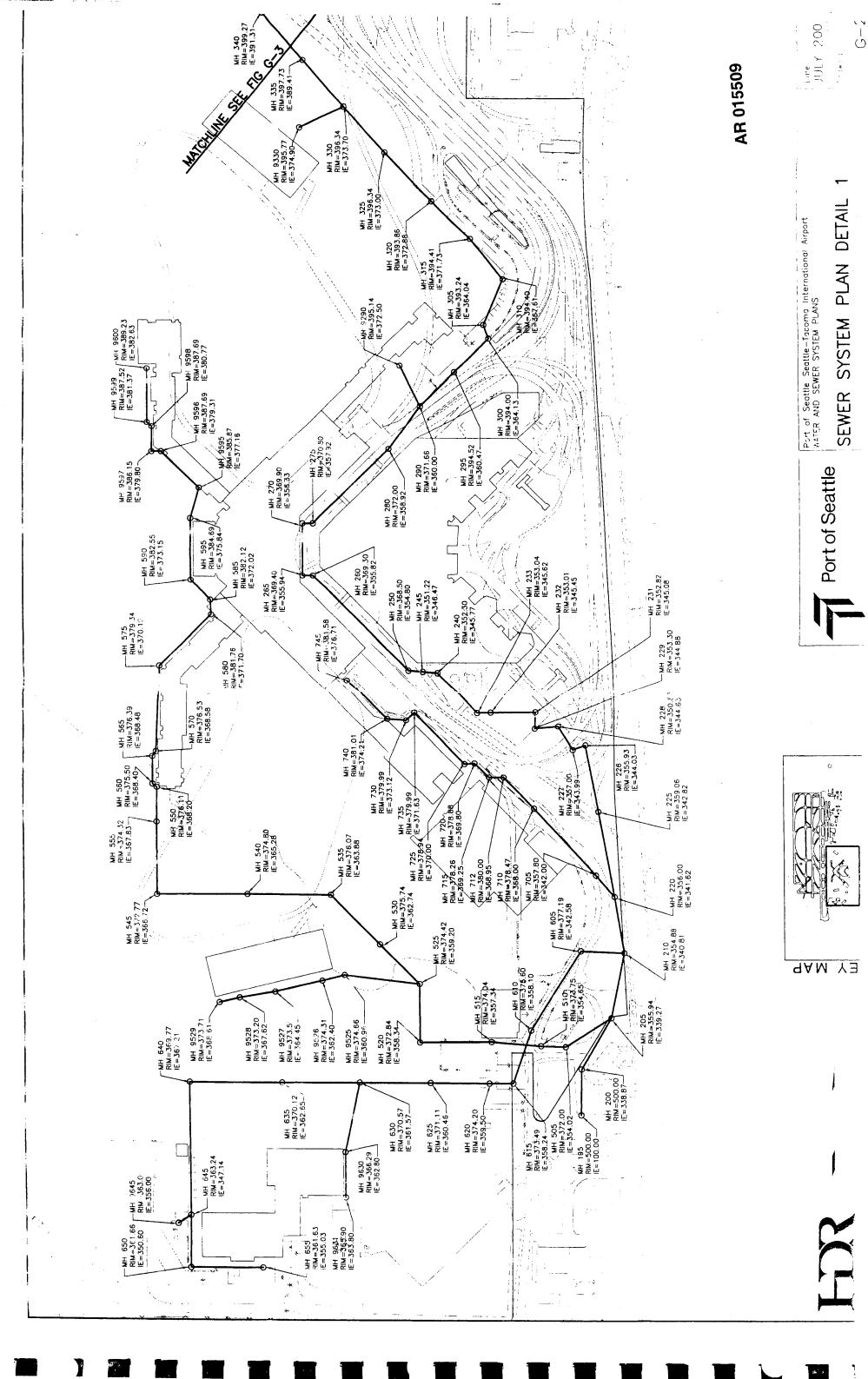
Proposed

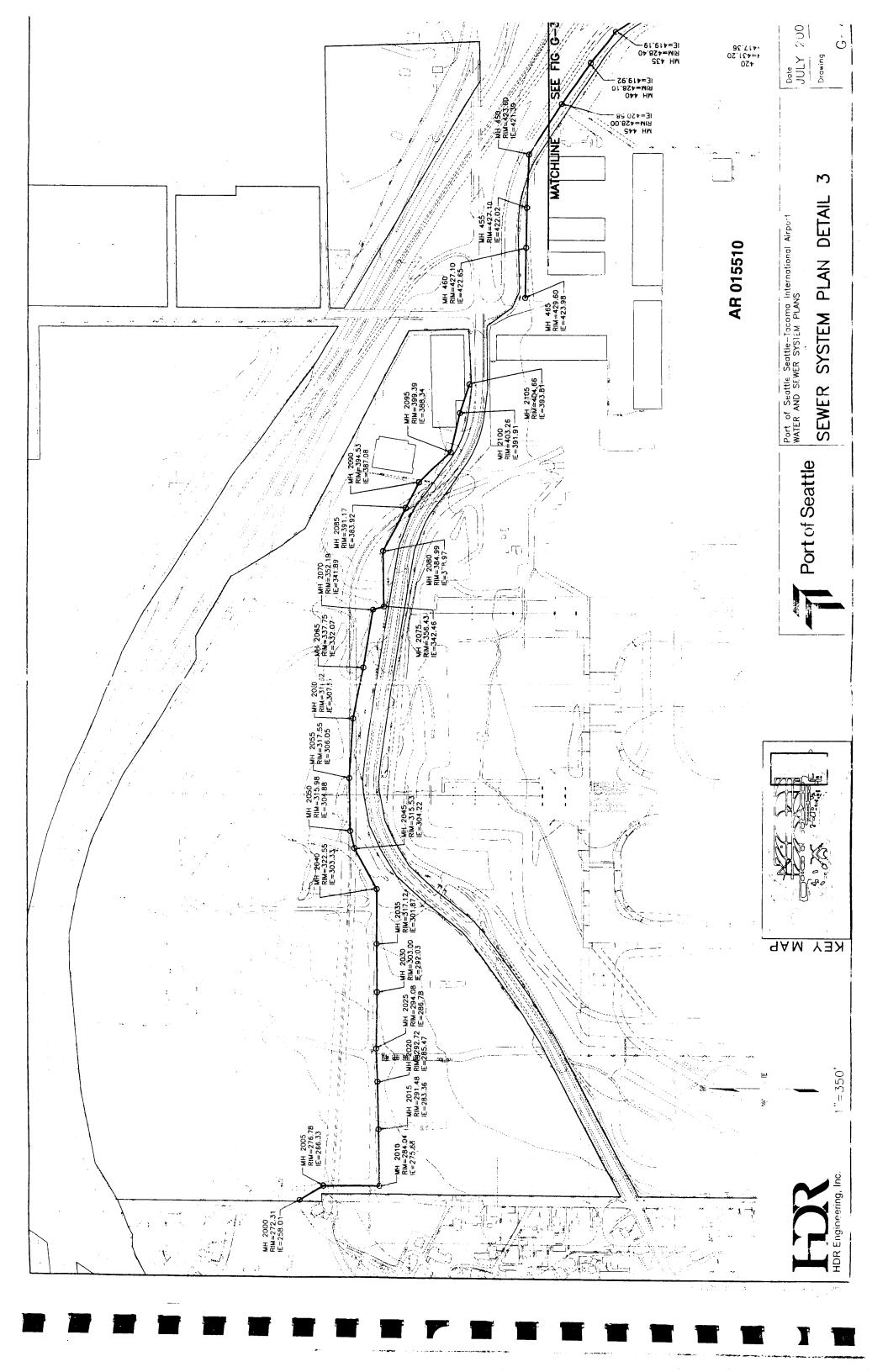
NPDES Drainage Subbasins,

Pipe (only connections between subabsins and outfalls shown) Piped Stream


SeaTac Airoort


Stream Drainage Basin Name


E-SAS


SOME WILE

1,500

