

Overview of Community Response Test Campaign with NASA's X-59 Aircraft

Nathan B. Cruze

NASA Langley Research Center

UC Davis Aircraft Noise and Emissions Symposium

Davis, CA

May 3, 2023

Sonic Boom Moves With The Aircraft

<u>14 C.F.R. § 91.817</u> Civil Aircraft Sonic Boom

- (a) No person may operate a civil aircraft in the United States at a true flight Mach number greater than 1...
- (b) In addition, no person may operate a civil aircraft for which the maximum operating limit M_{M0} exceeds a Mach number of 1, to or from an airport in the United States...

The Quesst mission will collect data to inform regulation of civil supersonic flight over land.

The Quesst Mission

Phase 1—X-59 Aircraft Development

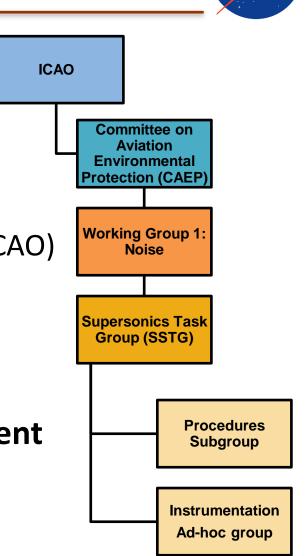
- Detailed design
- Fabrication, integration, ground test
- Checkout flights
- Subsonic envelope expansion
- Supersonic envelope expansion

Phase 2—Acoustic Validation

- In-flight and ground measurements
- Validation of X-59 signature and prediction tools
- Development of acoustic prediction tools for Phase 3

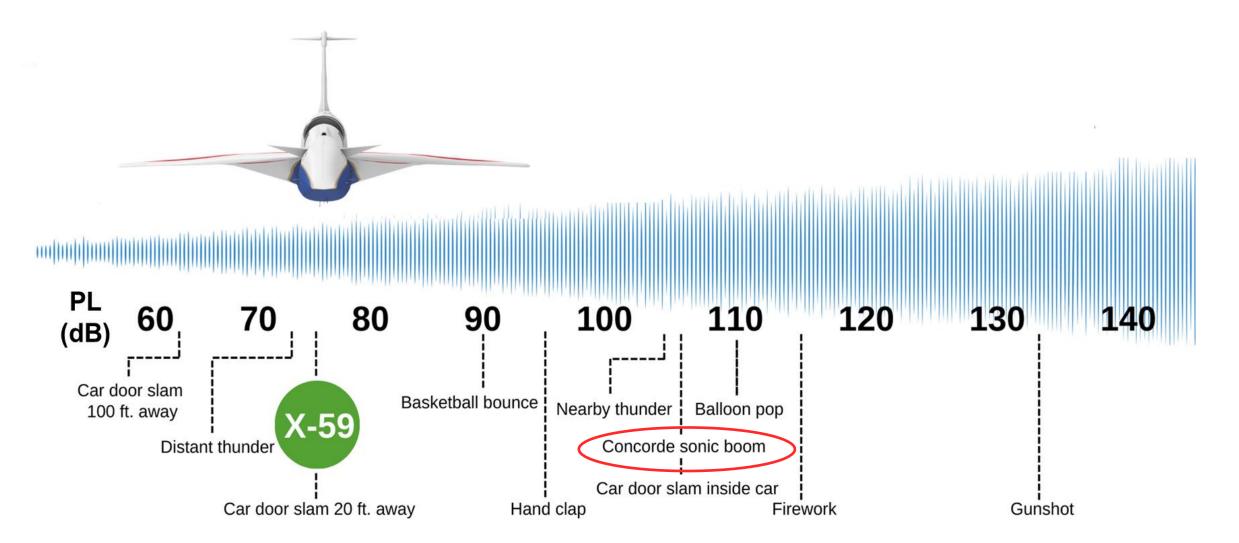
Phase 3—Community Response

- Multiple campaigns across U.S.
- Community response surveys
- Ground measurements in communities
- Data analysis
- Database delivery for regulators


National and International Regulatory Entities

- Federal Aviation Administration (FAA)
 - FAA Reauthorization Act of 2018—Pub. L. 115-254 \S 181

Committee on Aviation Environmental Protection (CAEP)

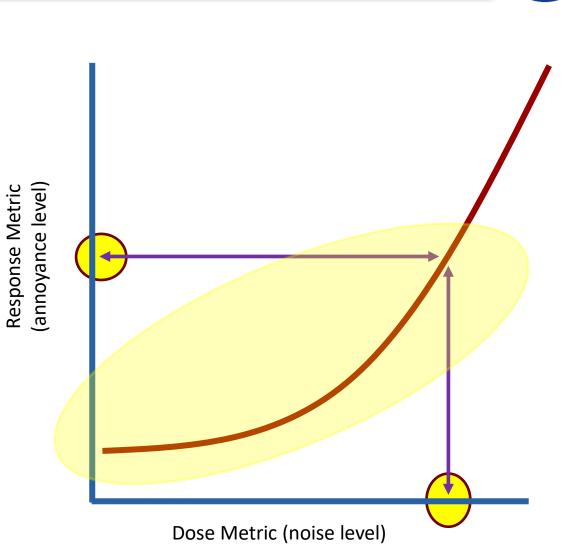

- Committee within International Civil Aviation Organization (ICAO)
- FAA is United States representative to CAEP
- NASA serves as technical advisor to FAA

> NASA community test data support standards development

How Quiet Could Future Quiet Supersonic Transports Be?

Community Testing Research Questions and Products

Produce dose-response models


- Single flyover events
- Cumulative dose

> Assess effects on annoyance

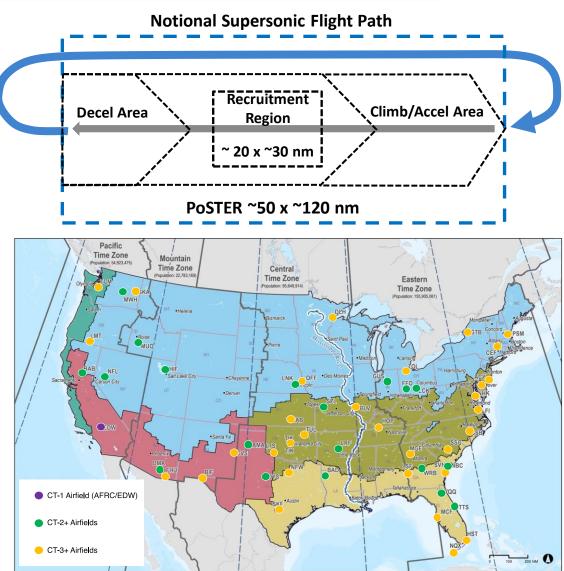
- Rattle, vibration, startle
- Listening environment, time of day

> Outside of mission scope

- Sleep disturbance
- Takeoff/landing noise, emissions

Airfield and Community Test Site Selection

Four to six planned tests in 2025-2027

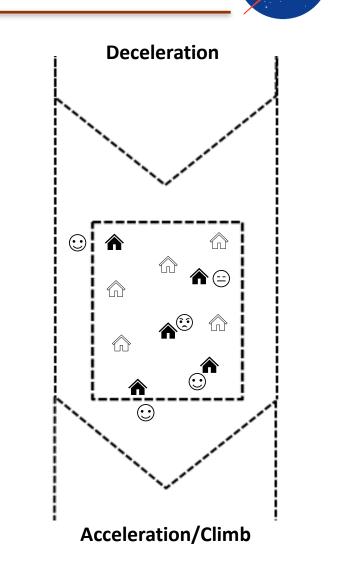

- Conduct first test from NASA Armstrong
- Future airfields to be determined

Fechnical, aircraft-related constraints

- Runway, airfield infrastructure
- Emergency, alternate landing sites

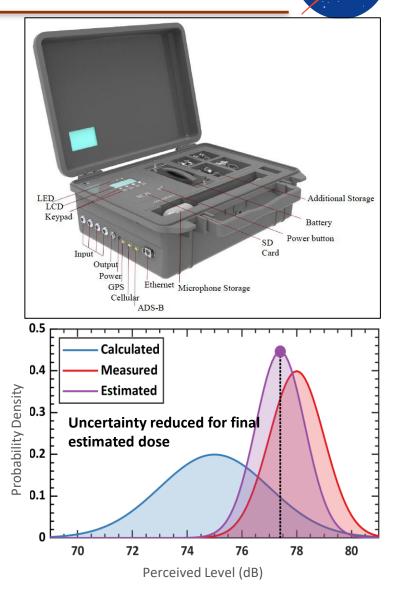
Ensuring representativeness

- Regional variation (Doebler et al. 2022b)
- Demographic diversity

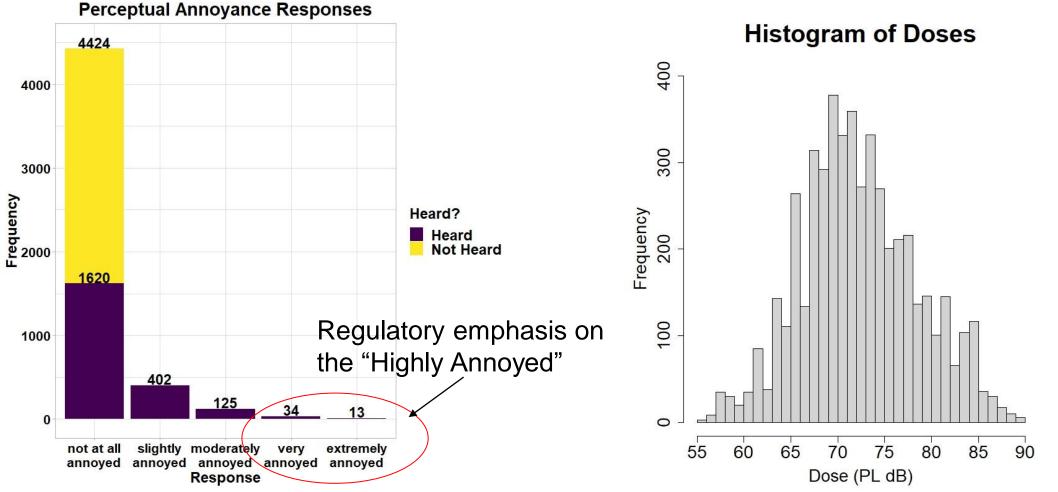

Deploy repeated single-event, daily summary surveysi

- Near-real-time need for ~100 passes during one month
- Survey modes: internet, custom smart phone apps

Population: all residents in recruitment region

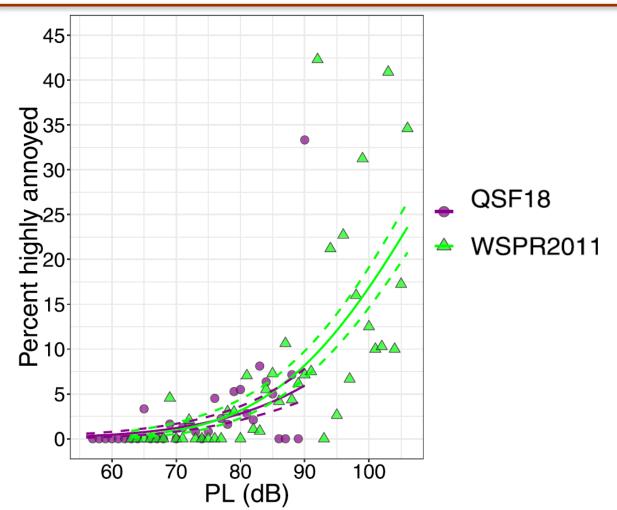

Sample: panel of ~1,000 residents in community

- Take every nth household on sorted list
- Within-household sampling



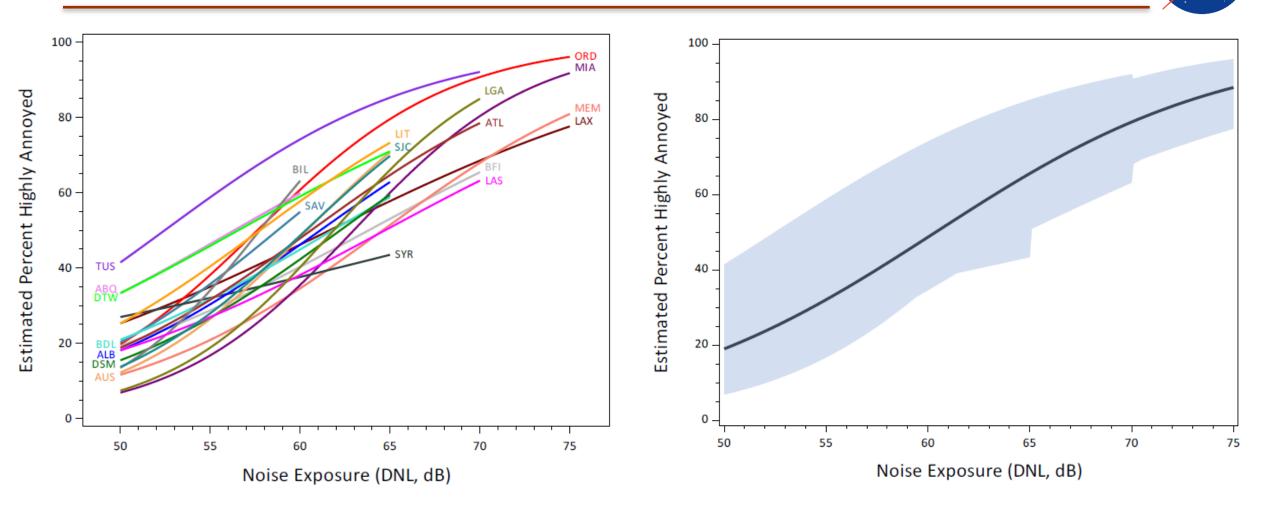
- Estimation, refinement of attainable noise levels
- > Noise exposure scheduling tool developed
- Meteorological data needs identified
- Progress of Ground Recording System (GRS)
- Components of dose estimation and uncertainty

What Might We See in Collected Data?



Quiet Supersonic Flights 2018 Study (QSF18) in Galveston, TX

• Page et al. (2020a,b), Lee et al. (2020)


Dose Response Curves From Past NASA Studies

Waveforms and Sonic Boom Perception and Response 2011 at Edwards AFB

• Page et al. (2014); comparison with QSF18 dose response curves in Lee et al. (2020)

Toward National Dose Response Curves

> Analysis of the Neighborhood Environmental Survey (Miller et al. 2021)

• Note cumulative, A-weighted Day Night Level metric

Quesst mission culminates in community test campaigns

> Anticipate first flight of the X-59 later this calendar year

> Beginning in 2025, community testing will contribute data for regulation

If the speed limit restricting civil supersonic flights over land is replaced with a noise limit, what should that limit be?

Thank You!

OUE55

https://www.nasa.gov/quesst

nathan.b.cruze@nasa.gov

Supplement: NASA is Building the X-59 Research Aircraft

- Flights will confirm that a full-scale supersonic aircraft can produce just a gentle sonic "thump"
- Key data will be gathered on public perception of quiet supersonic flights in several cities across the nation

Length	
	99.7 feet long
Width	
29.5 feet wingspan	
Cruise Speed	
Mach 1.4	
Cruise Altitude	
	55.000 feet

Supplement: X-59 Design Features

Quiet design approaches adapted for a unique flight demonstrator

X-plane approach that meets key requirements in a cost-effective design

T-tail minimizes aft shock

Single GE-F414 engine with standard nozzle minimizes cost and schedule

External and forward vision systems for forward visibility

T-38 aft canopy and ejection seat minimizes qualification cost and schedule

4.59

Conventional tail arrangement simplifies stability and control

considerations

Long nose to shape forward shock

Fixed canard for nose-up trim at low-boom design point

Large, unitized skins reduce parts count and manufacturing cost

F-16 landing gear and other systems from high performance aircraft minimize qualification cost and schedule

Wing shielding minimizes impact of inlet spillage on sonic boom

References

- Borsky, P. N. (1965). Community Reactions to Sonic Booms in the Oklahoma City Area. Research Report, National Opinion Research Center. Accession Number: AD0613620. <u>https://apps.dtic.mil/sti/citations/AD0613620</u>
- Cruze, N. B., Ballard, K. M., Vaughn, A. B., Doebler, W. J., Rathsam, J., & Parker, P. A. (2022). Comparison of Likelihood Methods for Generalized Linear Mixed Models with Application to Quiet Supersonic Flights 2018 Data. Technical Memorandum, NASA Langley Research Center. NASA/TM–20220014998. <u>https://ntrs.nasa.gov/citations/20220014998</u>
- Czech, J. J., Shah, G. H., & Richwine, D. M. (2022). NASA Quesst Mission–Site Selection Process for Community Testing. 183rd Meeting of the Acoustical Society of America. [Conference Presentation]. <u>https://ntrs.nasa.gov/citations/20220018320</u>
- Doeber, W. J. and Rathsam, J. (2019) How Loud is X-59's Shaped Sonic Boom. Proceedings of Meetings on Acoustics, Volume 36. <u>https://doi.org/10.1121/2.0001265</u>
- Doebler, W. J., Vaughn, A. B., Ballard, K. M., & Rathsam, J. (2022a). Simulation and Application of Bayesian Dose Uncertainty Modeling for Low-Boom Community Noise Surveys. Proceedings of Meetings on Acoustics, Volume 45. <u>https://doi.org/10.1121/2.0001592</u>
- Doebler, W. J., Wilson, S. R., Loubeau, A., & Sparrow, V. W. (2022b). Simulation and Regression Modeling of NASA's X-59 Low-Boom Carpets Across America. Journal of Aircraft, 1–12. [First Online Access, October 10, 2022]. <u>https://doi.org/10.2514/1.C036876</u>
- Ferg, R. & Opsomer, J. (2022). Modeling Approaches to Estimate Community Annoyance Due to Sonic Booms Using Data from Repeated Surveys. Seventh Italian Conference on Survey Methodology (ITACOSM 2022). [Presentation Slides]. <u>https://ntrs.nasa.gov/citations/20220008195</u>
- Fidell, S. & Horonjeff, R. D. (2019). Field Evaluation of Sampling, Interviewing, and Flight Tracking of NASA's Low Boom Flight Demonstrator Aircraft. Contractor Report, NASA Langley Research Center. NASA/CR-2019-220257. <u>https://ntrs.nasa.gov/citations/20190001426</u>
- Harker, B. M., Lympany, S. V., & Page, J. A. (2022a). Performance Evaluation of a Shaped Sonic Boom Detector and Classifier. The Journal of the Acoustical Society of America, 152(4), A86. [Conference Presentation Abstract]. <u>https://doi.org/10.1121/10.0015631</u>
- Harker, B. M., Lympany, S. V., & Page, J. A. (2022b). Performance Evaluation of a Shaped Sonic Boom Detector and Classifier. 183rd Meeting of the Acoustical Society of America. [Conference Presentation]. <u>https://ntrs.nasa.gov/citations/20220017378</u>
- Klos, J. (2020). Recommendations for Using Noise Monitors to Estimate Noise Exposure During X-59 Community Tests. Technical Report, NASA Langley Research Center. NASA/TM–20205007926 Corrected Copy. <u>https://ntrs.nasa.gov/citations/20205007926</u>

References

- Kryter, K. D., Johnson, P. J., & Young, J. R. (1968). Pyschological Experiments on Sonic Booms Conducted at Edwards Air Force Base. Research Report, Stanford Research Institute, Menlo Park, CA. Final Report, AD689844.
- Lee, J., Rathsam, J., & Wilson, A. (2020). Bayesian Statistical Models for Community Annoyance Survey Data. The Journal of the Acoustical Society of America, 147(4), 2222–2234. <u>https://doi.org/10.1121/10.0001021</u>
- Lympany, S. V. & Page, J. A. (2022a). Estimating Sonic Boom Metrics Across a Community Using a Kalman Filter. The Journal of the Acoustical Society of America, 152(4), A86. [Conference Presentation Abstract]. <u>https://doi.org/10.1121/10.0015632</u>
- Lympany, S. V. & Page, J. A. (2022b). Estimating Sonic Boom Metrics Across a Community Using a Kalman Filter. 183rd Meeting of the Acoustical Society of America. [Conference Presentation]. <u>https://ntrs.nasa.gov/citations/20220017380</u>
- Miller, N.P., Czech, J.J., Hellauer, K.M. Nicholas, B.L., Lohr, S., Broene, P., Morganstein, D., Kali, J., Zhu, X., Canort, D., Hudnall, J., & Melia, K. (2021) Analysis of the Neighborhood Environmental Survey. Technical Report, US Department of Transportation Federal Aviation Administration. DOT/FAA/TC-21/4. <u>https://www.airporttech.tc.faa.gov/Products/Airport-Safety-Papers-Publications/Airport-Safety-Detail/ArtMID/3682/ArticleID/2845/Analysis-of-NES</u>
- Nixon, C. W. & Borsky, P. N. (1966). Effects of Sonic Boom on People: St. Louis, Missouri, 1961–1962. The Journal of the Acoustical Society of America, 39(5B), S51–S58. <u>https://doi.org/10.1121/1.1914044</u>
- Page, J. A., Hodgdon, K. K., Hunte, R. P., Davis, D. E., Gaugler, T., Downs, R., Cowart, R. A., Maglieri, D. J., Hobbs, C., Baker, G., Collmar, M., Bradley, K. A., Sonak, B., Crom, D., & Cutler, C. (2020a). Quiet Supersonic Flights 2018 (QSF18) Test: Galveston, Texas Risk Reduction for Future Community Testing with a Low-Boom Flight Demonstration Vehicle. Contractor Report, NASA Langley Research Center. NASA/CR-2020-220589/Volume I. https://ntrs.nasa.gov/citations/20200003223
- Page, J. A., Hodgdon, K. K., Hunte, R. P., Davis, D. E., Gaugler, T., Downs, R., Cowart, R. A., Maglieri, D. J., Hobbs, C., Baker, G., Collmar, M., Bradley, K. A., Sonak, B., Crom, D., & Cutler, C. (2020b). Quiet Supersonic Flights 2018 (QSF18) Test: Galveston, Texas Risk Reduction for Future Community Testing with a Low-Boom Flight Demonstration Vehicle. Contractor Report, NASA Langley Research Center. NASA/CR-2020-220589/Appendices/Volume II. https://ntrs.nasa.gov/citations/20200003224
- Page, J. A., Hodgdon, K. K., Krecker, P., Cowart, R., Hobbs, C., Wilmer, C., Koening, C., Holmes, T., Gaugler, T., Shumway, D. L., Rosenberger, J. L., & Philips, D. (2014). Waveforms and Sonic Boom Perception and Response (WSPR): Low-Boom Community Response Program Pilot Test Design, Execution, and Analysis. Contractor Report, NASA Langley Research Center. NASA/CR-2014-218180. https://ntrs.nasa.gov/citations/20140002785