Mobile ObserVations of Ultrafine Particles (MOV-UP) Advisory

January 23, 2019 Highline Forum

Elena Austin, Tim Gould, Jeff Shirai, Michael Yost, Edmund Seto, Tim Larson

Outline

- 1. Current Monitoring Status
- 2. Background literature updates
- 3. Preliminary Data Analysis
- 4. Discussion
- 5. Questions

WA State Proviso

- Study the implications of air traffic at Sea-Tac
- Assess the concentrations of ultrafine particulate matter (UFP) in areas surrounding and directly impacted by air traffic
- Distinguish between and compare concentrations of aircraft-related and other sources of UFP
- Coordinate with local governments, and share results and solicit feedback from community
- Produce study report by December 1, 2019

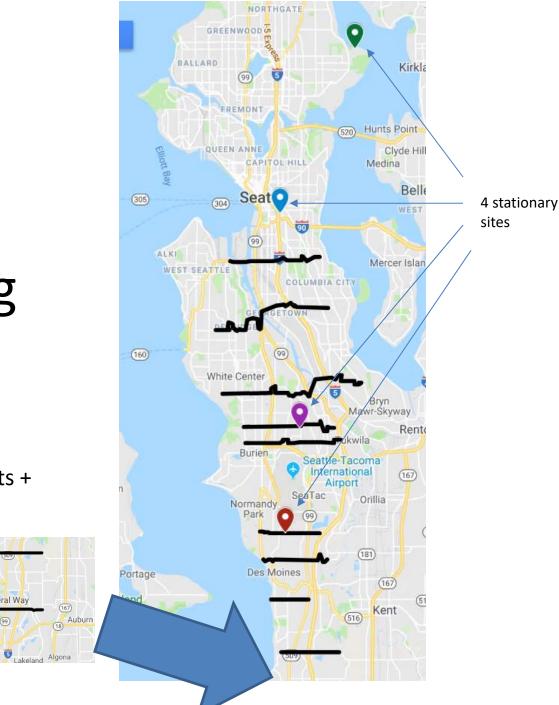
Environment International 118 (2018) 48-59

Short-term effects of airport-associated ultrafine particle exposure on lung function and inflammation in adults with asthma

Rima Habre^{a,*}, Hui Zhou^a, Sandrah P. Eckel^b, Temuulen Enebish^a, Scott Fruin^a, Theresa Bastain^a, Edward Rappaport^a, Frank Gilliland^a

^aDivision of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA ^bDivision of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA

- Randomized crossover study of 22 non-smoking adults with mild to moderate asthma
- 2-hr scripted, mild walking activity both inside and outside of the high LAX UFP impact zone (avg. difference ~30,000 /cc)
- Mean particle size at LAX impact zone was 29 nm
- "We found significant increases in markers of systemic inflammation associated with 'Airport UFPs' (IL-6) and 'Traffic' (sTNFrII) exposure and a significant decrease in FEV1 associated with measured PM and BC and modeled 'Traffic' exposure. The robust IL-6 effects we found with the 'Airport UFPs' source, which would have been masked by considering PN alone..."


MOVUP Monitoring Locations

Mobile Monitoring Transects + **Stationary Sites**

Dash Point

Federal Way

(99)

Data collection as of 2018

	Number of sampling days					
Season	Mobile monitoring	Airport fixed sites	Near highway fixed sites			
Winter 2018	16					
Spring 2018	14	10	8			
Summer 2018	16	15				
Autumn 2018	12	7				
Total finished	58	32	8			

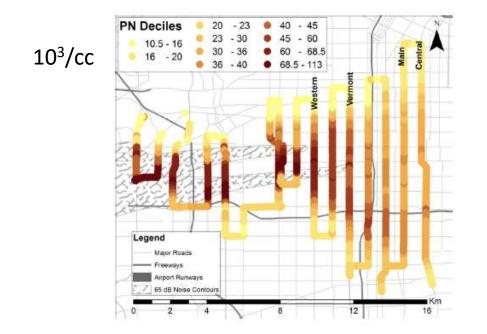
- Mobile monitoring typically occurs between 12 PM and 5 PM
- Typically monitoring consists of 2 concurrent cars (N and S of the airport)
- Another round of Mobile and Fixed site monitor was recently completed in January 2019.

Fixed Site Monitoring Status

	May 4th -	June 4th -	July 13th -	July 27th -	
Fixed Site Monitoring	May 11th	June 13th	July 16th	Aug 1st	
10th & Weller					
Maywood					
SeaTac Community Center					
NOAA- Sand Point					Backgrour

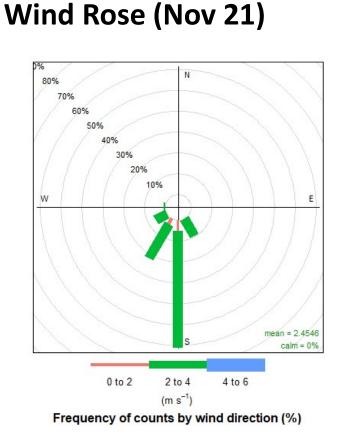
Instruments used in mobile and fixed location sampling

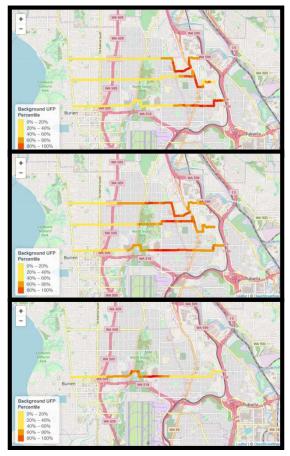
Parameter	Instrument
Mobile and Fixed sampling:	
Particle number concentration (35 nm – 1 μ m)	P-Trak 8525, w/ diffusion screens
Particle number concentration (20 nm – 1 μ m)	P-Trak 8525
Particle number concentration (10 nm – 1 μ m)	Condensation Particle Counter 3007
Black Carbon PM	Micro-Aethalometer AE51
CO2	LI-850 Gas Analyzer
Temperature & Humidity	Hobo T, RH datalogger
Position & Time tracking	GPS Receiver DG-500
Fixed Location sampling:	
Particle size distribution, 13 bins	NanoScan 3910


TSI, Inc. model 3007 CPC

MOV-UP Study

Mobile ObserVations of Ultrafine Particles (MOV-UP) Study


Area-weighted number concentration equivalent to ~ half the freeways in LA!


Particle size between ~10 and 30 nm diameter are present at high concentrations at ground level

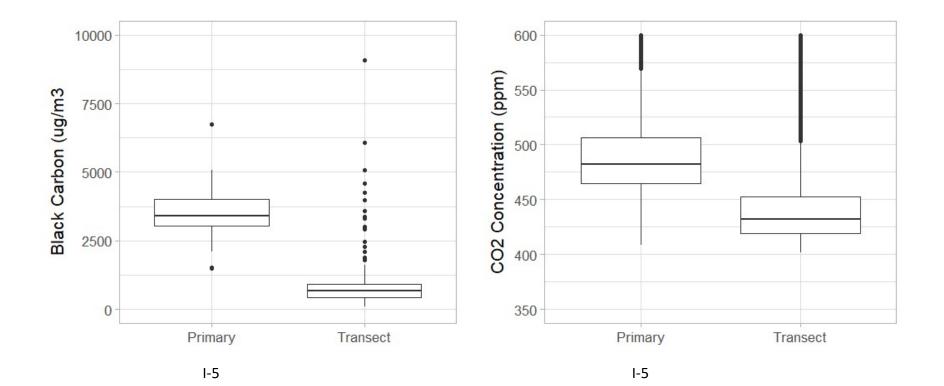
Hudda et al, ES&T 2014

Local Background UFP (Hudda 2014 Method)

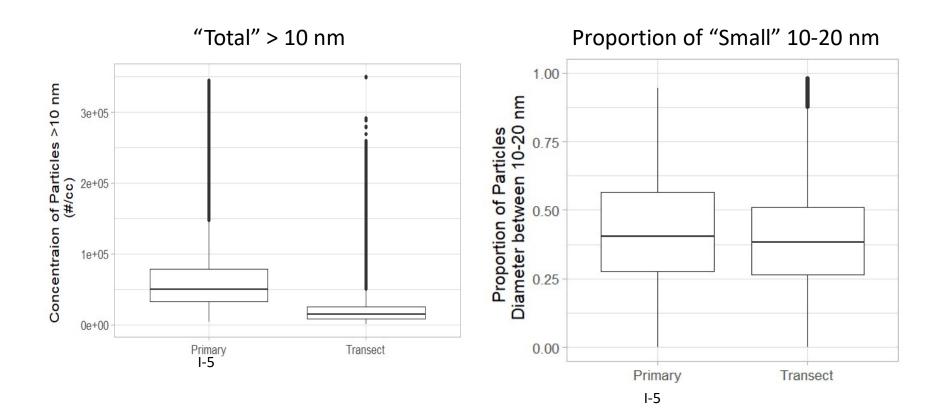
Plume Shifting

1st Drive

2nd Drive

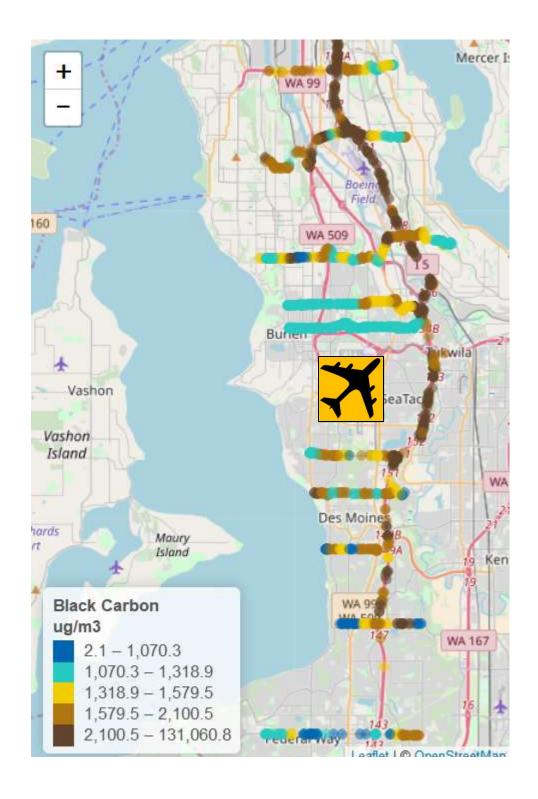

3rd Drive (146th only

PRELIMINARY RESULTS

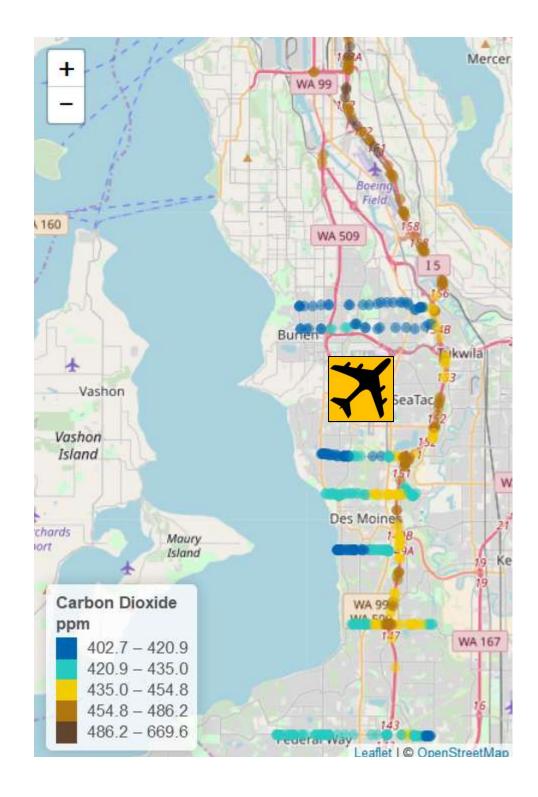

Winter and partial Spring Mobile Monitoring (2018)

Mean		Predominant Wind	Landing Direction		
Date	Temperature (F)	Direction	(Field Notes)		
7-Feb-18	53	South-east	Ν		
8-Feb-18	52	South-west	N		
9-Feb-18	48	South-west	Ν		
12-Feb-18	44	North-west	S		
13-Feb-18	46	South	Ν		
14-Feb-18	42	South	N then S		
15-Feb-18	43	South-west	N		
16-Feb-18	46	South	N		
7-Mar-18	48	West	S		
8-Mar-18	50	South	N		
9-Mar-18	49	South-west	Ν		
12-Mar-18	71	East	S then N		
13-Mar-18	51	South-west	N		
14-Mar-18	50	South-west	N		
15-Mar-18	54	West	S		
16-Mar-18	54	South-west	S		
18-Apr-18	55	South-west	S		
19-Apr-18	60	West	S		
20-Apr-18	59	South-west	N		
23-Apr-18	66	North-west	S		
24-Apr-18	74	West	S		
25-Apr-18	69	North-west	S		
26-Apr-18	76	North-west	S		
27-Apr-18	55	South-west	N ,		

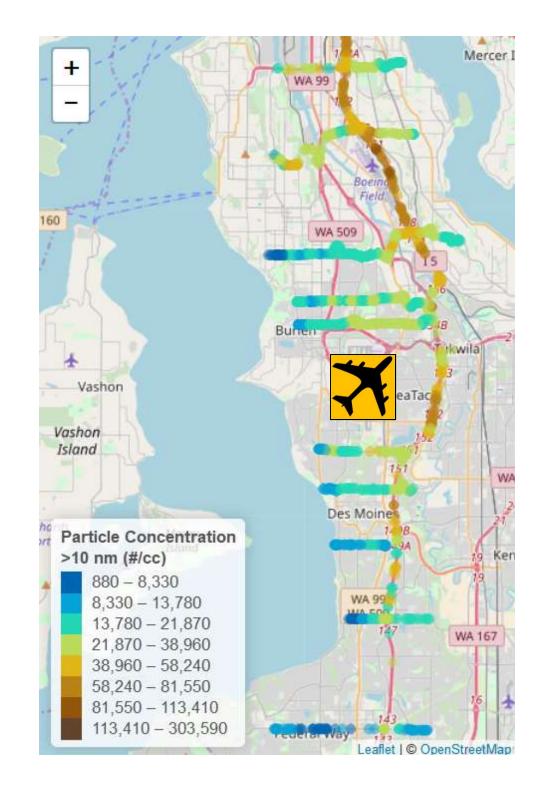
Measurements Primary Roadway (I-5) vs Transect Winter - Spring Data



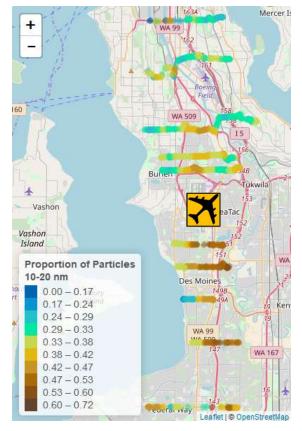
Measurements Primary Roadway (I-5) vs Transect Winter - Spring Data

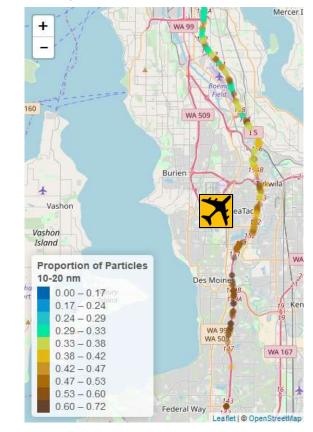


PRELIMINARY SPATIAL DISTRIBUTION OF POLLUTANTS


Black Carbon Spatial Distribution

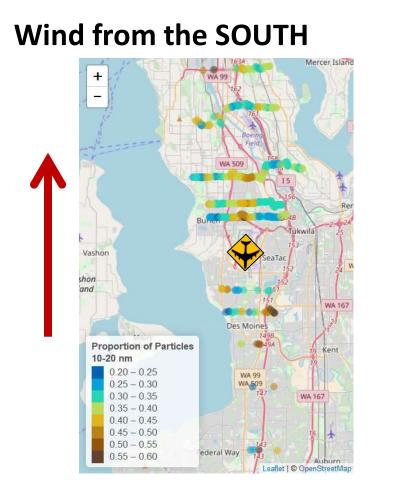
Carbon Dioxide Spatial Distribution


Particle Number Concentration ("Total" >10 nm) Spatial Distribution

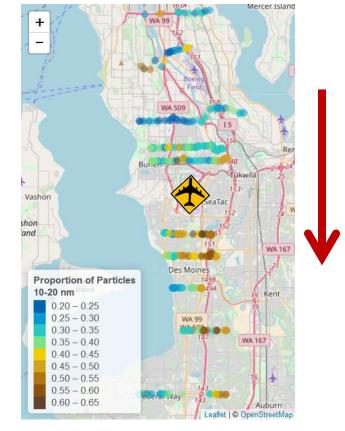

Proportion of small 10-20 nm particles

Transects vs Primary Road (I-5)

Proportion of Small Particles (10-20 nm)



Proportion of Small Particles (10-20 nm)



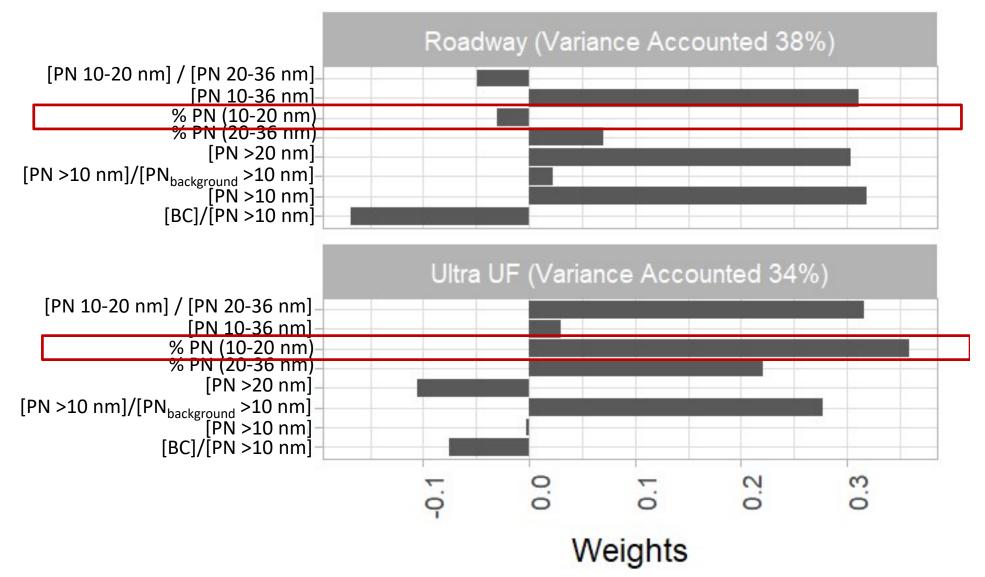
Proportion of small 10-20 nm particles

By Wind Direction

Wind from the NORTH

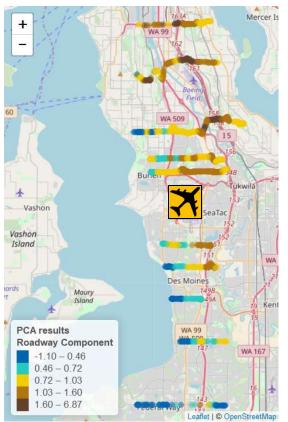
How can we make better use of the multi-pollutant data we've collected?

Principal Component Analysis (PCA)

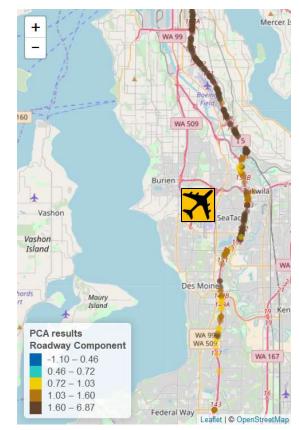

Data reduction technique that allows for capturing the variance in the data in a smaller set of variables.

The goal is to summarize the correlations among the observed variables with a smaller set of linear combinations.

Principal Component Analysis (PCA)

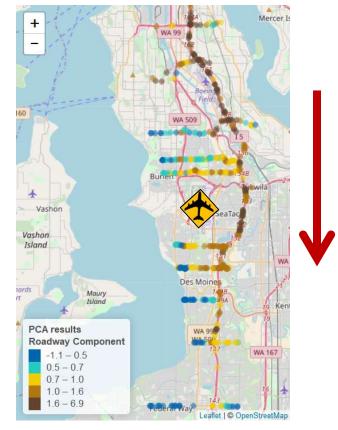

- Hypothesis: Using particle size distribution measures collected during mobile monitoring we can identify correlations that correspond to roadway and Ultra-Ultrafine features.
- Method: Perform a PCA with varimax-rotation. Varimax rotation searches for a rotation (i.e., a linear combination) of the original factors such that the variance of the loadings is maximized.

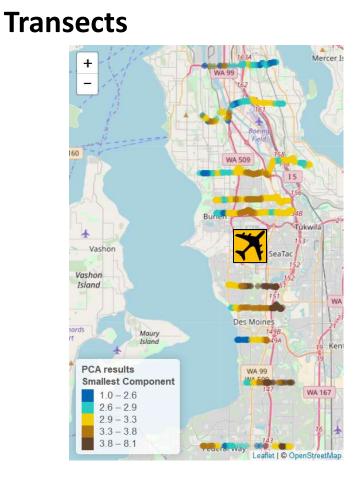
Preliminary PCA Results

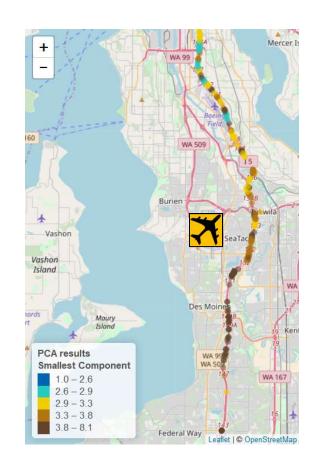


PCA Results "Roadway" Feature

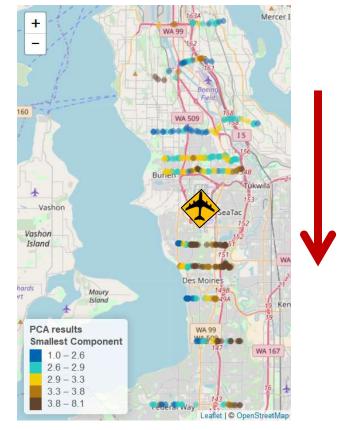
On Transect


On I-5


PCA "Roadway" Feature

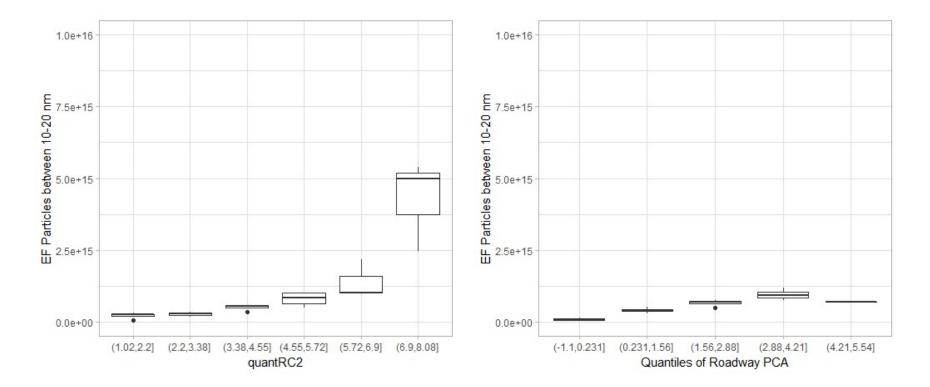

Wind from the NORTH

PCA Results "Ultra-UF" Feature


I-5

PCA "Ultra-UF" Feature

Wind from the SOUTH Mercer I + WA 99 60 WA 509 * Vashon Vashon Island Des Moine hards Moury Island **PCA** results WA 99 WA 509 **Roadway Component** WA 167 1.0 - 2.62.6 - 2.92.9 - 3.33.3 - 3.8 3.8 - 8.1Federal Way Leaflet | © OpenStreetMap


Wind from the NORTH

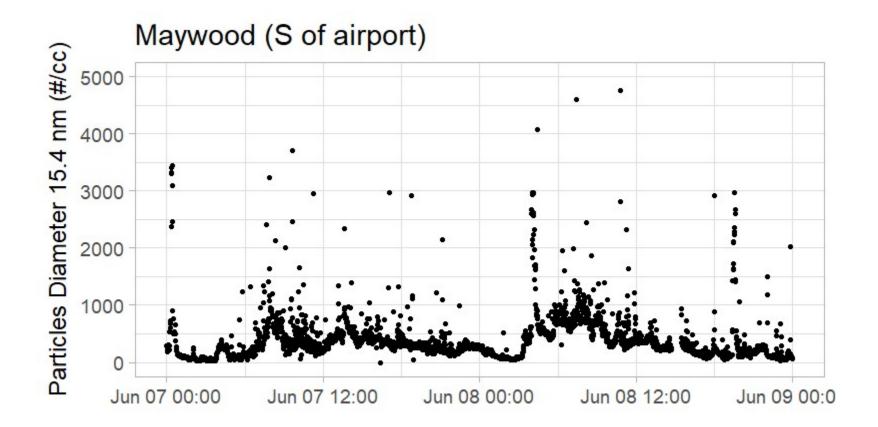
Fuel-Based Emission Factors (EF) # Particles/kgC_{Fuel}

Quantiles of PCA (Ultra-UF)

Quantiles of PCA (Roadway)

Winter – Spring Data

Fuel-Based Emission of UF particles (Particles/kgC_{Fuel})


Table 2

Summary of the results reported by previous studies for pollutants' concentrations and emission factors (EF) at different airports.

Study	Airport	Take-off/ Landing	Particle size range (nm)	Particle number (particles/cm ³)	BC (μg/m ³)	PM _{2.5} (µg/m ³)	EF Number (particles/kg fuel)	EF BC (g/kg fuel)	EF PM _{2.5} (g/kg fuel)
Herndon et al., 2005	John F. Kennedy International Airport, New York, USA	Takeoff	7-2500	2	-	-	$(1.0{\pm}0.7)\times 10^{14}$		-
Herndon et al., 2005	Logan International Airport, Boston, USA	Takeoff	7-2500	-	-	-	$(8.8\pm7.6) \times 10^{15}$	-	-
Westerdahl et al., 2008	Los Angeles International Airport, USA	Takeoff/ Landing	7-350	$2\times 10^4 - 5.8\times 10^5$	1.8-3.8	-	-	-	-
Fanning et al., 2007	Los Angeles International Airport, USA	Takeoff	10-100	$1.4 \times 10^5 - 1.4 \times 10^5$	13.9 ± 14.3 & 14.0 ± 10.2	32-42	a .	~ -	-
Herndon et al., 2008	Hartsfield Jackson Atlanta International Airport, USA	Takeoff	7-2500	-	-	-	$1.8\ \times 10^{15} - 5.6\ \times 10^{15}$	0.2-1.5	-
Hu et al., 2009	Santa Monica Airport, CA, USA	Takeoff	5.6-560	$1\times 10^4 - 3\times 10^5$	0.7-2.7		5×10^{16}		
Mazaheri et al., 2009	Brisbane Airport, Australia	Takeoff	4-710		-	-	$2.1\times 10^{16}-5.4\times 10^{16}$	-	0.2-0.3
		Landing					$7.7 \times 10^{15} - 4.3 \times 10^{16}$		0.3-0.5
Zhu et al., 2011	Los Angeles International Airport, USA	Takeoff	7-320	$0.4 \times 10^4 - 8.4 \times 10^4$	0.01-3.6	37.1 ± 15.4	3.4×10^{16}	-	2 7 3
Klapmeyer and Marr 2012	Roanoke Regional Airport in western Virginia, USA	Takeoff	5	$1.5 \times 10^3 - 1.7 \times 10^5$		-	$1.4\times 10^{16}-7.1\times 10^{16}$	0.2-0.5	-
Lobo et al., 2012	Oakland International Airport, CA, USA	Takeoff	5-1000	$2 \times 10^5 - 1.3 \times 10^6$	1	121	$4 \times 10^{15} - 2 \times 10^{17}$	-	0.1-0.7
Hudda et al., 2014	Los Angeles International Airport, USA	Takeoff/ Landing	10-1000	$4\times 10^4 - 6\times 10^4$	1.4-1.6	-	-	-	-
Lobo et al., 2015	Hartsfield-Jackson Atlanta International Airport	Takeoff	5-1000	-	-	-	$6 \times 10^{17} - 2 \times 10^{18}$	-	0.1-0.6
Ren et al., 2016	Tianjin International Airport, China	Takeoff	10-1000	$4\times10^4-4.4\times10^5$	-	-	$2 \times 10^{15} - 3.2 \times 10^{16}$	-	-
		Landing		$6 \times 10^4 - 4.5 \times 10^5$	-	-	$2.5 \times 10^{15} - 3.3 \times 10^{16}$		
Current study	Los Angeles International Airport, USA	Takeoff Landing	7-500	$1.53\times 10^5 \pm 3.11\times 10^4$	2.87 ± 0.0.3	33 ± 0.15	$(8.69 \pm 1.20) \times 10^{15}$ $(8.16 \pm 1.00) \times 10^{15}$	$\begin{array}{c} 0.12 \pm 0.02 \\ 0.11 \pm 0.01 \end{array}$	$\begin{array}{c} 0.38 \pm 0.04 \\ 0.40 \pm 0.05 \end{array}$

Shirmohammadi, F., Sowlat, M. H., Hasheminassab, S., Saffari, A., Ban-Weiss, G., & Sioutas, C. (2017). Emission rates of particle number, mass and black carbon by the Los Angeles International Airport (LAX) and its impact on air quality in Los Angeles. *Atmospheric Environment*, *151*, 82-93.

Preliminary Fixed Site Small Particles (~15.4 nm)

Submitted NIH Proposal in Nov 2018 for Further Study

Develop a "Selective Ultrafine Particle Respirator" (SUPR)

Selectively filters out the smallest ultrafine particles so that we can use it in controlled experiments to measure shortterm health effects.

We should find out about the status of this proposal by summer 2019.

Next Steps

- Repeat analyses on full data set
- Analyze fixed site data
- Estimate daily Emission Rates for roadways and airport
- Report by December 2019

QUESTIONS