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BACKGROUND: Growing evidence shows ultrafine particles (UFPs) are detrimental to cardiovascular, cerebrovascular, and respiratory health.
Historically, racialized and low-income communities are exposed to higher concentrations of air pollution.

OBJECTIVES: Our aim was to conduct a descriptive analysis of present-day air pollution exposure disparities in the greater Seattle, Washington, area
by income, race, ethnicity, and historical redlining grade. We focused on UFPs (particle number count) and compared with black carbon, nitrogen
dioxide, and fine particulate matter (PM2:5) levels.
METHODS: We obtained race and ethnicity data from the 2010 U.S. Census, median household income data from the 2006–2010 American
Community Survey, and Home Owners’ Loan Corporation (HOLC) redlining data from the University of Richmond’s Mapping Inequality. We pre-
dicted pollutant concentrations at block centroids from 2019 mobile monitoring data. The study region encompassed much of urban Seattle, with red-
lining analyses restricted to a smaller region. To analyze disparities, we calculated population-weighted mean exposures and regression analyses
using a generalized estimating equation model to account for spatial correlation.
RESULTS: Pollutant concentrations and disparities were largest for blocks with median household income of <$20,000, Black residents, HOLC Grade
D, and ungraded industrial areas. UFP concentrations were 4% lower than average for non-Hispanic White residents and higher than average for
racialized groups (Asian, 3%; Black, 15%; Hispanic, 6%; Native American, 8%; Pacific Islander, 11%). For blocks with median household incomes of
<$20,000, UFP concentrations were 40% higher than average, whereas blocks with incomes of >$110,000 had UFP concentrations 16% lower than
average. UFP concentrations were 28% higher for Grade D and 49% higher for ungraded industrial areas compared with Grade A. Disparities were
highest for UFPs and lowest for PM2:5 exposure levels.
DISCUSSION: Our study is one of the first to highlight large disparities with UFP exposures compared with multiple pollutants. Higher exposures to
multiple air pollutants and their cumulative effects disproportionately impact historically marginalized groups. https://doi.org/10.1289/EHP11662

Introduction
Long-term exposure to air pollution is associated with adverse
health effects, such as cardiovascular and respiratory diseases and
cognitive decline.1–3 Historically, racialized groups and low-
income communities have been more likely to be exposed to
higher concentrations of air pollution, contributing to health dis-
parities.4–13 Many different factors can affect health outcomes,
and it has been well documented that life expectancy, morbidity,
and mortality in the United States varies based on income level,
race and ethnicity, and residential location.14–19

Disparities in environmental health in the United States are a
result of structural racism, including ongoing and historic segre-
gation and urban planning decisions. For example, starting in the
1930s, the Home Owners’ Loan Corporation (HOLC) graded res-
idential areas by “mortgage security” on an A-to-D scale: “A”
indicated the lowest financial risk to lenders that borrowers
would default on mortgage loans and “D” indicated highest risk
to lenders. Several factors, such as closeness to transportation,
amenities, or industry presence, also contributed to grading.20

Racial, ethnic, and religious composition were significant con-
tributing factors to a neighborhood’s grade, allowing lenders to
reduce the accessibility of mortgage financing for people of
color and immigrants.21 The HOLC’s maps depicted Grade D
in a red color, and this grading practice became known as red-
lining. HOLC grades were delineated decades ago, yet they cor-
relate with present-day social and environmental attributes of
neighborhoods.22–25 In addition, “racial covenants” on homes
and neighborhoods established and enforced “White only” com-
munities, resulting in further racial residential segregation.26

Furthermore, zoning regulation, the barriers to homeownership
faced by Black people as a result of discriminatory lending
practices, the continual lack of enforcement by government offi-
cials in the face of discriminatory practices, and placement of
polluting activities such as highways and industry, into com-
munities of color all reinforced residential segregation, which
resulted in higher exposure to environmental hazards among
these communities.26 Historically, and still today, racialized
and low-income communities generally have fewer health-
promoting resources to adequately address the health effects of
air pollution, including less access to amenities such as green-
spaces and health care facilities, maintaining the health dispar-
ities created by structural racism.27 When racism or classism
impede the right to a healthy living environment, including the
air we breathe, this is an environmental injustice.

Ultrafine particles (UFPs) are particles suspended in air with
aerodynamic diameters of <100 nm. As a result of their small
size, UFPs can pass through the blood–air barrier in the lungs
that transfers oxygen to blood.28 Growing evidence suggests that
UFPs can also cross the blood–brain barrier, which serves to pro-
tect the brain from toxins and pathogens.29 UFPs are composed
of toxic metals and compounds that have been associated with
adverse heart, lung, and brain health effects.28 UFPs are emitted
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by transportation and other sources of fossil fuel combustion.28,30

In most ambient urban environments, UFPs dominate particle
numbers but weigh very little and thus contribute nearly zero to
the regulatory mass-based measurements for fine particulate mat-
ter [PM ≤2:5 lm in aerodynamic diameter (PM2:5)].30 This is
why UFPs are often measured as particle number count (PNC).

Limited existing research has explored UFP exposure dispar-
ities by race and ethnicity, income, or redlining grade. Chambliss
et al. compared nitric oxide (NO), nitrogen dioxide (NO2), black
carbon (BC), and UFP exposure disparities between different
races and ethnicities in the San Francisco Bay area.5 The authors
measured pollutants by mobile monitoring, and they found me-
dian concentrations of NO, NO2, and UFPs to be higher for
Hispanic and Black populations and lower for White populations
in their study region. Saha et al. studied UFP disparities by race
and ethnicity and income across the United States, and found
35% higher than average concentrations for Asian, Black, and
Hispanic populations.6 Other observational studies on air pollu-
tion exposure disparities by race, ethnicity, and socioeconomic
status have focused on criteria pollutants, such as NO2, PM2:5,
and ozone (O3) across the United States; most have found higher
pollution levels in low-income and racialized communities.7–13

Previous studies have also examined the association of redlining
grade with BC, NO2, and PM2:5, and found that pollutant concen-
trations increased with less desirable HOLC grades.31–34 Other
studies examining the health or environmental effects of redlining
have found an association with asthma, lack of health insurance,
and reduced present-day greenspace with more hazardous HOLC
grades.24,35–37

Through the CleanAir Act,38 the U.S. Environmental Protection
Agency (EPA) sets national standards for six criteria air pollutants,
including O3, NO2, and PM, all of which have been shown to harm
health. These pollutants have been monitored continuously at
>4,000 monitoring stations operated by states and local agencies
throughout the country.39 Although some states choose to monitor
UFPs, there is a lack of long-term and widespread UFP monitor-
ing.40 At this time, there is no standard metric of measurement for
UFPs. PNC is the most commonly used metric, but concentrations
vary owing to differences across instruments in the range of the par-
ticle sizes they measure and in their efficiency in counting par-
ticles.40 Few studies have examined disparities of UFPs and other
noncriteria air pollutants, such as BC, despite increasing evidence
that these pollutants are also associated with adverse health
effects.41–43 Similarly, to the best of our knowledge, no studies have
considered disparities associatedwith redlining grade andUFPs.

The primary aim of this paper was to examine how contempo-
rary income, race and ethnicity, and historic redlining grade
impact present-day UFP exposure disparities in the Seattle,
Washington, area. We compared UFP exposures between income
groups, racial and ethnic groups, and redlining grade to see how
much pollutant concentrations must decrease to make groups
with the highest exposures comparable to those with the lowest.
The disparities by redlining grade show the lasting effects of dis-
criminatory urban planning practices, whereas the disparities by
present-day income and race and ethnicity reflect both the
ongoing impacts of racist policies and the modern populations
that are disproportionately affected. Further, in descriptive analy-
ses, we estimated magnitudes of difference in pollutants between
HOLC Grade A and more hazardous grades and examined how
accounting for income and race and ethnicity impacts these esti-
mated differences. We additionally considered how these dispar-
ities relate to BC, NO2, and PM2:5 exposure levels and compared
relative disparities across pollutants to put our study results into
context with previous studies and identify the potential for cumu-
lative health effects for groups disproportionately exposed to

multiple pollutants. With the current lack of research on UFP dis-
parities, this paper will help inform future research and regulation
to prevent detrimental health effects.

Methods

Study Region
Our analyses used demographic data from the 2010 U.S. Census46

and the American Community Survey (ACS),45 aggregated from
2006–2010, as well as predicted pollutant concentrations obtained
by mobile monitoring.44 The study region was defined as the parts
of Seattle represented by these mobile monitoring data (Figure 1).
The unit of analysis was the census block, specifically any popu-
lated census blocks that fell completely within the modeling
region.

Demographic and Redlining Data
Our primary demographic variables were median household
income and race and ethnicity. We obtained income from the U.S.
Census Bureau’s ACS, aggregated from 2006–2010, available as a
continuous variable at the block group level.45 We obtained race
and ethnicity percentages from the 2010 U.S. Census, available at
the block level.46 These data were themost recently available at the
time our mobile monitoring campaign was conducted. We applied
block group incomes to each of the blocks contained within the
group. Of 21,535 total blocks with nonzero population in the study
region, 109 blocks without households (i.e., zero residential popu-
lation; 0.5% of blocks and 0.3% of population) and an additional
two blocks without household income data (0.01% of blocks and
0.2% of population) were excluded from the analysis, leaving
21,424 total blocks (1,914,992 people).We focused on six race and
ethnicity categories: Asian, Black, Hispanic, Native American,
non-Hispanic White, and Pacific Islander. Although the non-
Hispanic White category excludes all Hispanic individuals, the
race (Asian, Black, NativeAmerican, and Pacific Islander) and eth-
nicity (Hispanic) categories are not necessarilymutually exclusive,
but the degree of overlap between categories was minimal. Owing
to low population numbers, results for Native Americans and
Pacific Islanders should be interpretedwith caution (Table 1).

We obtained redlining data for Seattle from the Mapping
Inequality project from the University of Richmond’s Digital
Scholarship Lab.21 Based on a map created by the HOLC in
1936, the HOLC delineated and graded 60 areas in Seattle. Only
areas that were primarily residential received a grade. The grades
were characterized as “best” (A), “still desirable” (B), “declin-
ing” (C), and “hazardous” (D). Within the broader HOLC-graded
region, some areas were not primarily residential but were, rather,
deemed industrial or business at the time and were left ungraded.
We drew a boundary around the HOLC-graded region and
assigned the blocks that fell within the ungraded region grade
“X.” We included these ungraded areas in our study because
some do have a population today, a population that notably has
the lowest median income among the HOLC grades (Table 1).
Further, because these areas were deemed industrial, remaining
industrial infrastructure may affect exposure levels given that
they are potential sources of air pollution.

Of the ∼ 1,200 km2 covered by the mobile monitoring study
region, ∼ 1,020 km2 were covered by the 21,424 included census
blocks. For the redlining analysis, we categorized these blocks by
the HOLC-graded areas they intersected with. This included
6,359 blocks covering 119 km2, with 7:8 km2 of blocks assigned
to Grade A, 49:6 km2 to Grade B, 37:4 km2 to Grade C, and
24:1 km2 to Grade D. Eighty-five percent of these blocks inter-
sected with only one HOLC grade, and 15% of the blocks

Environmental Health Perspectives 077004-2 131(7) July 2023



(n=933) intersected with and were split among multiple grades,
such that an even share of the block’s population was attributed
to each grade. There were 492 populated blocks within the
ungraded interior region covering 7:9 km2 and assigned to grade
X. Blocks were only included as Grade X if no part of the block
intersected with a graded area and if the block fell completely
within the interior region (Table 1, Figure 1; a version of
Figure 1 that depicts traditional HOLC colors is available as
Figure S1). Maps were generated in Quantum Geographic
Information System (QGIS), using data from the ACS, the U.S.
Census, and the University of Richmond’s Mapping Inequality.

Air Pollution Data
We obtained air pollution data from a year-longmobile monitoring
campaign that measured multiple pollutants simultaneously during
288 d between March 2019 and March 2020.44 Measurements
were taken from nine fixed routes during all seasons, days of week,
andmost times of day tomaximize sampling temporality and under
a balanced design to target unbiased annual average estimates.44

Measurement days covered a median 112-km driving distance
over 5.2 h, comprising 4.1 h of driving plus 1.1 h of short-term

(2-min) stops at near-roadway locations. An average of 29 valid
2-min measurements were collected from each stop. UFP concen-
trations were measured as PNC for particles >20 nm (P-TRAK
8525; TSI, Inc.). BC was measured by light absorption (AethLabs
MA200), whereas NO2 was measured by the Aerodyne Research
Inc. CAPS NO2 monitor. PM2:5 was measured as light scattering
by a nephelometer (Radiance Research M903) and converted to
mass using a calibration equation.44 Roadside stop locations
included 304 residential locations, and 5 regulatory monitoring
locations.44 Given the intentionally balanced design, stop-level an-
nual averages were estimated by an unadjusted average of the win-
sorized 2-minmeasurementmedians.

Separate prediction models were developed for each pollu-
tant: UFP (PNC), BC, NO2, and PM2:5. Geographic covariate
predictors with sufficient variability and limited outliers among
the monitoring locations were selected from 350 candidate cova-
riates. The 191 selected variables were collapsed using the first
three components from partial least squares regression, and they
were used as covariates in universal kriging prediction models.44

Overall, the models showed good predictive performance with a
cross-validated R2 of 0.77 for UFP, 0.60 for BC, 0.77 for NO2,
and 0.70 for PM2:5.44 It is notable that, although the mobile

       Mobile Monitoring Area

Grade X Blocks

       X

HOLC Redlining Grades

       A

       B

       C

       D

      

      

      

      

      

     

Figure 1. Seattle study region with Home Owners’ Loan Corporation (HOLC) redlining grades, from A (“best”) to D (“hazardous”) and X (“interior uncatego-
rized”). Areas within the HOLC-graded region that do not show any blocks are areas without residential population in the 2010 U.S. Census. Maps were gener-
ated in Quantum Geographic Information System (QGIS) using data from the American Community Survey (ACS),45 the 2010 U.S. Census,46 and the
University of Richmond’s Mapping Inequality.21
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monitoring campaign measured PM2:5, the region’s low concen-
trations occasionally resulted in noisy readings near the instru-
ment’s limit of detection and thus some unstable readings.
Predictions for each pollutant were generated at block centroids.

Exposure Disparities
We calculated the population-weighted mean air pollution concen-
trations for nine income categories (≤$20,000, $20,000–$40,000,
$40,000–$50,000, $50,000–$60,000, $60,000–$70,000, $70,000–
$80,000, $80,000–$90,000, $90,000–$110,000, >$110,000), for
each race and ethnicity category (Asian, Black, Hispanic, Native
American, non-Hispanic White, Pacific Islander), and for each
HOLC grade (A, B, C, D, X). Income categories were selected
such that each break contained a similar number of blocks, except
for the <$20,000 income group, which contained fewer blocks but
was highlighted to show disparities for the lowest-income house-
holds. The population-weighted means were calculated using the
weighted.mean() function of the stats package (version 4.2.2) in R
(version 4.2.2; R Development Core Team). For the income analy-
sis, the block group–level income was first applied to each block,
and the block centroid air pollution prediction was weighted by the
block population. The mean air pollution for each income category
is theweighted average of the relevant predictions:
P

number of people in block ið Þ× pollutant concentration in block ið Þ
total number of people in income category k:

(1)

For race and ethnicity, the block centroid prediction was
weighted by the subset of the block-level population identifying
as that race and ethnicity:

X
number of people of race or ethnicity k in block ið Þ×

pollutant concentration in block ið Þ
total number of people of race or ethnicity k:

(2)

For HOLC grade, the mean was an average of block centroid pre-
dictions weighted by the total populations of each block within
that HOLC grade:
P

number of people in block ið Þ× pollutant concentration in block ið Þ
total number of people in HOLC grade k:

(3)

If a block was split between multiple grades, an even share of the
population was attributed to each grade.

There were many options as to how we could define our
HOLC-graded area when creating our study design. To ensure that
dividing the population evenly, as opposed to another method, did
not meaningfully affect results, we conducted two sensitivity anal-
yses to determine a) how including or excluding the blocks that fall
under multiple grades affected the results (Table S1), and b) how
splitting the block population evenly or weighing the split by the
area assigned to the grade affected the results (Table S2). We addi-
tionally conducted a sensitivity analysis by recreating the main
results of the paper with the data restricted to the HOLC-graded
area. However, because the redlining area was restricted to an
urban area of Seattle, exposure for people living in suburbs was
better represented by the overall study area.

To further examine air pollution exposure disparities, we created
separate population-weighted linear regression models to describe
present-day disparities by how much exposures would need
to change to make the groups with the highest exposure and
groups with the lowest comparable. The block centroid pollutantT
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predictions were the outcome, and our present-day demographic
variables were the predictors. In the first, we used the log10-trans-
formed block group–level median household income applied to
each block to produce an approximately linear relationship.
Similarly, to examine disparities by race and ethnicity, we fit sepa-
rate models for each race and ethnicity group using the block-level
percentages of that group. We restricted these analyses to the four
largest population groups (Asian, Black, Hispanic, non-Hispanic
White). For each regression model, we qualitatively compared the
linear model fit to a data smoother using visual inspection. The data
smoother was created using the geom.smooth() function of the
ggplot2 package (version 3.4.1) in R to assess the linearity of the
model. In a final set of analyses restricted to the HOLC-graded
region, we conducted two population-weighted regression analyses
to see whether disparities differed when considering historic HOLC
grades and present-day demographics: a) with HOLC grade alone,
and b) with HOLC grade adjusted for median household income
(log10-transformed) and non-Hispanic White block population per-
centage. For this analysis, we subtracted log($117,134) from income
and 85.8% from the non-Hispanic White percentage such that the
intercept in this analysis is the mean exposure for a block with
HOLC Grade A, 85.8% non-Hispanic White, and $117,134 average
income. This allows the intercept estimates for the single and multi-
ple regressions to be more comparable. For all regression analyses,
we also adjusted for spatial correlation in the data, using a general-
ized estimating equation (GEE) model with an identity link. This
GEE approach is equivalent to the restricted spatial GEE estimate
described by Hui and Bondell.47 These parameter estimates main-
tain all the variation associated with the covariates in the marginal
mean model while accounting for the remaining spatial correlation
in the standard error estimates. We fit the GEE model using the
geeglm() function from the geepack package (version 1.3.9) inR.

Results

Study Region and Data Summaries
The study region consisted of 21,424 blocks that had nonzero
household population and income data and fell within the mobile
monitoring region; this study region included much of the urban
core in the greater Seattle metropolitan area, comprising 1,914,992
people as of the 2010 U.S. Census.42 Demographic and exposure
data are summarized in Table 1. Notably, with medians of
4:6 lg=m3 and 8:6 ppb for PM2:5 and NO2, respectively, air pollu-
tion levels were low for our study region in comparison with other
urban areas in the United States and for the U.S. EPA annual stand-
ards of 12:0 lg=m3 for PM2:5 and 53 ppb for NO2.48 PM2:5 also
had little variation, with the interquartile range for the study region
being 4.2–5:0lg=m3. The most highly correlated pollutants were
NO2 and BC (r=0:91), and the pollutants with the lowest correla-
tion were PM2:5 and UFP (r=0:48). The correlations between
other pollutants were between 0.70 and 0.81: BC and UFP
(r=0:81), NO2 and UFP (r=0:81), BC and PM2:5 (r=0:73), and
NO2 and PM2:5 (r=0:70).

Analysis of the 2010 U.S. Census data indicates that, our
study region was predominantly non-Hispanic White, at a median
of 74% per block and a median of 8% Asian, 4% Hispanic, and
1% Black per block. Within the HOLC-graded region, HOLC
Grade A had a median of 88% non-Hispanic White, which
decreased to 52% for Grade D (Table 1). HOLC Grade A had a
median of 3%, 0%, and 0% Asian, Black, and Hispanic per block,
respectively, which increased to 11%, 9%, and 6% in Grade D.
Similarly, median household income decreased from $112,000 to
$59,000 between grades A and D. The demographics in our
Grade X were between grades B and C in percentage of Asian,
Black, and non-Hispanic White population and between grades C

and D in percentage of Hispanic population. The Grade X median
income ($50,000) was the lowest of all the grades. Finally, the
median pollutant concentrations in the HOLC-graded regions
were higher than the rest of the study region given that the
HOLC-graded region was in the urban core of Seattle and did not
include suburban areas. Many of the blocks with lower income
and a lower percentage of non-Hispanic White population were
in the southern part of the study region (Figure 2).

Exposure Disparities by Income
Table 2 gives the population-weighted pollutant means by income
group. The table suggests that the largest disparities were for NO2,
followed by UFP, BC, and PM2:5, by magnitude of percentage dif-
ference relative to the study region average concentration. Each pol-
lutant showed a meaningfully higher exposure in the lowest income
group of <$20,000. When comparing population-weighted means,
NO2 had the strongest disparity for the <$20,000 group; UFP dis-
parities were larger relative to the study region average in the
remaining categories. For UFP, the population-weighted mean ex-
posure was 1,990 pt=cm3 (22%) higher for blocks with a median
household income of <$20,000 compared with blocks with a me-
dian household income of between $20,000 and $40,000. In turn,
blocks in the $20,000–$40,000 income range had exposure levels
1,300 pt=cm3 (18%) higher than the study region average.

In the population-weighted, unadjusted linear regression model
with log10-transformed median household income as the predictor
variable, UFP concentration decreased by 183 pt=cm3 [95% confi-
dence interval (CI): 169, 197] for every 10% increase in income. BC
concentration decreased by 11:3 ng=m3 (95% CI: 10.6, 12.0), and
NO2 by 0:21 ppb (95% CI: 0.20, 0.22), for every 10% increase in
income (Table S3). The increase for PM2:5, although statistically
significant, is small. The log10-transformation of median household
income resulted in a more linear trend in the data. When comparing
the linear model to a data smoother, there was a deviation from line-
arity for the highest incomes, namely, >$100,000, where the regres-
sion estimated a lower exposure than the smoother (Figure S2). In
addition, for NO2, there was a deviation for the lowest incomes,
namely, <$30,000, where the regression again estimated a lower
exposure than the smoother.

Exposure Disparities by Race and Ethnicity
Table 3 gives the population-weighted pollutant means by racial
and ethnic group. For UFP, the average exposure for non-Hispanic
White residents in the study region was the lowest at 6,450 pt=cm3

and the highest for Black residents at 7,740 pt=cm3. This trend was
reflected in BC and NO2 as well, with non-Hispanic White resi-
dents experiencing the lowest concentrations and Black residents
experiencing the highest. There were disparities for the Hispanic,
Native American, and Pacific Islander residents for UFPs and BC.
However, UFP had a notably higher percentage difference when
comparing racialized groups to the overall average, indicating a
larger disparity. PM2:5 showed slight variation between all racial
and ethnic groups.

Figure 3 (and the corresponding Table S4) shows the mean
increase in pollutant concentrations and their 95% CIs for a 5%
increase in racial and ethnic percentage in linear regression models
fit separately by racial and ethnic group. There was a general pat-
tern across all pollutants that mean exposure decreased as the per-
centage of non-Hispanic White population increased, whereas
mean exposure increased as the percentage of Black and Hispanic
population increased. For Asian residents, an increase in the per-
centage of this population was associated with a decrease in PM2:5
and an increase in UFPs, BC, and NO2. Qualitatively, comparing
the regression model to a data smoother, the trend for non-
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Hispanic White residents was linear throughout for each pollutant
(Figure S3). The trend was also linear for Hispanic residents, but
the regression estimated a higher exposure than the smoother for
UFPs for the blocks with population percentages >50% (0.01% of
data) (Figure S4). For Black residents, the regression model esti-
mated a higher exposure for the blocks with percentages >35%
(0.03% of data) (Figure S5). The regression model estimated a
lower exposure for Asian residents for the blocks with percentages
>50% (0.1% of data) for each pollutant besides UFP (Figure S6).

Exposure Disparities by HOLC Grade
Table 4 lists the population-weighted pollutant means by HOLC
grade. Concentrations were similar between grades A and B for

UFPs, but they increased by 12% (940 pt=cm3) relative to Grade A
for Grade C, 28% (2,300 pt=cm3) for Grade D, and 49%
(4,600 pt=cm3) for Grade X. BC had a 12% (70 ng=m3) disparity
between grades A and D, and a 48% (349 ng=m3) disparity
between grades A and X, whereas NO2 had a 26% (2:7 ppb) and
58% (7:5 ppb) disparity for Grade A compared with grades D and
X, respectively. PM2:5 differed from the other pollutants in that its
increase in concentration relative to Grade A is lowest in Grade D.
For all pollutants, Grade X had the highest pollution levels.

Because the overall pollutant concentrations were higher in
the HOLC-graded region in comparison with the overall study
region, we conducted a sensitivity analysis for the separate race
and ethnicity and income analyses reported in Tables 2 and 3 re-
stricted to the HOLC-graded region only (Tables S5 and S6).

Table 2. Population-weighted mean pollutant concentration (2019–2020) by block-level income group (2006–2010 American Community Survey) and the per-
centage difference in comparison with the population-weighted average concentration of the Greater Seattle Area study region.

Income group
Population

(N)a
UFP

(pt=cm3)
Percentage difference
from average (%)

BC
(ng=m3)

Percentage difference
from average (%)

NO2

(ppb)
Percentage difference
from average (%)

PM2:5

(lg=m3)
Percentage difference
from average (%)

≤$20,000 29,840 10,000 40 724 33 13.9 46 5.2 12
$20,000–$40,000 226,576 8,010 18 599 14 10.0 14 4.8 4
$40,000–$50,000 224,697 7,380 10 568 9 9.4 8 4.7 2
$50,000–$60,000 251,393 7,330 9 549 5 9.3 7 4.7 2
$60,000–$70,000 260,149 6,690 0 527 1 8.9 2 4.6 0
$70,000–$80,000 225,710 6,400 −4 509 −2 8.5 −2 4.6 0
$80,000–$90,000 207,462 5,980 −11 481 −8 8.0 −8 4.4 −4
$90,000–$110,000 295,690 5,550 −18 454 −14 7.6 −13 4.4 −4
>$110,000 193,475 5,710 −16 453 −14 7.6 −13 4.3 −7
Overall population 1,914,992 6,680 — 520 — 8.7 — 4.6 —
aPopulation numbers do not add up to the total owing to rounding.
Note: —, not applicable; BC, black carbon; NO2, nitrogen dioxide; PM2:5, fine particulate matter; pt, particles; UFP, ultrafine particles.

A B

Median Household
Income ($)

      ≤ 20k

      20k - 40k

      40k - 50k

      50k - 60k

      60k - 70k

      70k - 80k

      80k - 90k

      90k - 100k

      100k - 110k

      > 110k

      

      

      

      

      

      

      

      

      

      

Non-Hispanic White (%)

      ≤ 35

      36 - 50

      51 - 65

      66 - 70

      71 - 80

      81 - 85

      86 - 90

      91 - 95

      96 - 100

      

      

      

      

      

      

      

      

      

Figure 2. Distribution of (A) non-Hispanic White percentage from the 2006–2010 American Community Survey (ACS)45 and (B) median household income from
the 2010 U.S. Census46 for blocks with household population in the study region. Legend breaks were selected such that each break contains a similar number of
blocks, except for the <$20,000 income group, which contained fewer blocks but was highlighted owing to large disparities. Note: k, thousand.
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Although the degree of disparities was smaller, the general pat-
terns observed in the HOLC-graded region were similar to those
of the entire study region.

Table 5 shows the results of two sets of population-weighted
regression analyses by pollutant within the HOLC-graded region,
namely, crude models with a) HOLC grade alone, and b) HOLC
grade adjusted for median household income and percentage of
non-Hispanic White population. The two continuous predictors
were centered as described in the “Methods” section, so the
Grade A means were similar in both models. In the single-
predictor models, the intercepts represent the marginal (unad-
justed) population-weighted means for HOLC Grade A.

The results show a complex relationship between these three
factors across all four pollutants. In the crude analysis, progres-
sively more hazardous graded areas generally had progressively
higher air pollution concentrations, with a few exceptions: There
was little relationship between grade and PM2:5, and slightly
lower UFPs for Grade B than Grade A. Adjusting the analysis for
median income and non-Hispanic White percentage attenuated
most of the existing relationships for grades B and C, except that

the difference between grades B and A for UFP became more
exaggerated. In contrast, the Grade D and X exposures were still
substantially higher than Grade A despite the attenuation for all
non-PM2:5 comparisons, consistent with the crude model results.

Sensitivity Analysis: HOLC-Graded Area
There were no meaningful differences between including or
excluding blocks that fell under multiple grades (Table S1). The
biggest difference was between average UFP exposures for
Grade D, which was a 2% difference. There was no meaningful
difference in weighing the population split compared with split-
ting it evenly either, with the results being even closer (Table
S2). As shown in Table S5, the decreasing trend across income
groups in the restricted redlining area is similar to the trend
across the overall study area (Table 2). There is a less dramatic
difference between the lowest income group and the next lowest
income group in the redlining area compared with the overall
study area. The median UFP concentrations of the lowest income
group (<$20,000) and the second lowest ($20,000–$40,000) for

Table 3. Population-weighted mean pollutant concentration (2019–2020) by racial and ethnic group (2010 U.S. Census) and the percentage difference in com-
parison with the population-weighted average concentration of the Greater Seattle Area study region.

Group
Population
[N (%)]

UFP
(pt=cm3)

Percentage
difference from
average (%) BC (ng=m3)

Percentage
difference from
average (%) NO2 (ppb)

Percentage
difference from
average (%)

PM2:5
(lg=m3)

Percentage
difference from
average (%)

Asian 293,808 (15) 6,890 3 524 1 8.8 1 4.5 −1
Black 124,656 (7) 7,740 15 566 8 9.4 7 4.7 3
Hispanic 180,656 (9) 7,060 6 535 3 8.8 1 4.6 0
Native American 14,692 (1) 7,210 8 547 5 9.2 5 4.7 3
Non-Hispanic White 1,210,551 (63) 6,450 −4 512 −2 8.6 −1 4.6 0
Pacific Islander 14,559 (1) 7,470 11 546 5 8.8 1 4.6 0
Overall population 1,914,992 6,680 — 520 — 8.7 — 4.6 —
Note: —, not applicable; BC, black carbon; NO2, nitrogen dioxide; PM2:5, fine particulate matter; pt, particles; UFP, ultrafine particles.

Figure 3.Mean difference (95% CI) in pollutant concentration (2019–2020) per 5% increase in percentage race and ethnicity group by census block. Point esti-
mates are regression estimates and error bars are 95% CIs. Each group was modeled separately in population-weighted linear regression models, with the per-
centage of that specific racial or ethnic group, from the 2010 U.S. Census,46 in the block as the predictor. Models accounted for spatial correlation using
generalized estimating equations with identity links. Data can be found in Table S4. Note: BC, black carbon; CI, confidence interval; NO2, nitrogen dioxide;
PM2:5, fine particulate matter; pt, particles; UFP, ultrafine particles.
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the study area were 10,000 pt=cm3 and 8,010 pt=cm3, whereas for
the redlining area, they were 10,300 and 9,590 pt=cm3, respec-
tively. This is a 22% difference between the lowest and second
lowest income group for the study area, whereas it is a 7% differ-
ence for the redlining area.

As shown in Table S6, the overall pollution levels for each
racial and ethnic group are higher in the redlining area compared
with the same set of results compiled for the overall study area
(Table 3). The average air pollution was more homogenous in the
redlining area compared with the overall study area, but the UFP
concentrations were still lowest for non-Hispanic White resi-
dents. There is a meaningful difference in UFP exposures for
non-Hispanic White residents vs. racial and ethnic minorities,
with the percentage difference for minorities relative to the over-
all population being between 7–9% for each group.

Discussion
The present study is one of only a few to examine UFP exposure
disparities by income, race and ethnicity, and HOLC grade and to
compare these with other pollutant disparities. Our findings sug-
gest that in the Greater Seattle Area there are disparities by
income, race and ethnicity, and HOLC grade for UFP, BC, NO2,
and PM2:5 and that those disparities are generally greatest for
UFPs, regardless of how the disparities are characterized. These
disparities were present even though pollutant concentrations are
generally low in the Greater Seattle Area. Concentrations of all
four pollutants were higher in lower-income communities than
higher-income communities. In comparison with the population-
weighted study region average concentration, exposure to both
UFP and NO2 was at least 40% higher on average in the lowest
(<$20,000) income group. For incomes between $20,000 and
$60,000, UFP concentrations were 9–18% higher than the aver-
age concentration; this was the largest relative disparity across
the four pollutants. In addition, historically racialized groups
were exposed to higher concentrations of UFPs than non-
Hispanic White residents on average. Black residents had the
highest exposures across all pollutants.

Our findings are consistent with and extend previous studies
that found NO2, PM2:5, O3, and carbon monoxide concentrations
to be higher for racialized people and PM to be higher in areas with
lower socioeconomic status.5–13 We extend those findings by
showing similar patterns with UFP and BC concentrations.
Although the NO2 and PM2:5 concentrations in our study region
were lower than U.S. EPA standards, we show that disparities in
these pollutants, especially in NO2, are still present. Further, the
associations for income and for each racial and ethnic group
revealed larger disparities for UFPs and BC than for NO2 and
PM2:5, which may lead to greater health disparities. As described
above, adverse health effects due to UFP exposure may be magni-
fied owing to the potential for UFPs to enter the bloodstream.28

We additionally extended findings from previous studies on
historical HOLC grade and air pollution to disparities for UFPs

and BC. Lane et al., Schuyler and Wenzel, and Kane previously
found disparities by HOLC grade for PM2:5, with Lane et al.
finding additional disparities for NO2, and Schuyler and Wenzel
for nitrogen oxide, sulfur dioxide, and volatile organic com-
pounds.31–33 We found that, in the parts of Seattle subjected to
historical redlining, neighborhoods that were once characterized
as hazardous were exposed to higher concentrations of UFP,
BC, and NO2 in 2019, with the largest differences apparent for
HOLC Grade D. Kane additionally compared PM2:5 concentra-
tions in non–HOLC-graded regions to HOLC-graded regions
within county boundaries, finding higher PM2:5 concentrations in
HOLC-graded regions.33 We also found that concentrations of
each pollutant were higher in HOLC-graded regions than non–
HOLC-graded regions (Table 1; study region section). We further
defined a Grade X for the interior uncategorized areas within the
HOLC-graded region, which were blocks with residential popula-
tions in the 2010 U.S. Census that were deemed to be business or
industrial areas in the 1930s. The elevated pollutant concentra-
tions were the highest in the Grade X area. One reason may be
that the industrial infrastructure remains and is a potential source
of air pollution, despite present-day residential population. These
disparities were greater than those separately observed by racial
and ethnic groups, even when the race and ethnicity analysis was
restricted to the HOLC-graded region (Table S6). Similar to the
other studies, we first calculated average concentrations by
HOLC grade, but because of the complex relationship between
redlining, income, and race and ethnicity, we then additionally
evaluated these associations in a multivariable analysis (Table 5).
We found, after adjusting for income and non-Hispanic White
population percentage, that although estimated concentrations for
less desirable HOLC grades were lower, there remained statisti-
cally significant elevated pollutant concentrations in areas previ-
ously assigned Grade D and Grade X.

Our goal was to describe disparities, rather than ask causal
questions. Thus, the multivariable analysis in Table 5 used
regression adjustment to make comparisons of the areas assigned
more hazardous grades with those assigned Grade A. Although
this is not a realistic counterfactual comparison across all grades,
owing to the low probability of any areas graded as hazardous
receiving an A grade, it did allow us to describe how much expo-
sures would need to decline in the groups with the highest expo-
sures to be comparable to those with the lowest. Further, in our
multivariable analyses, we were able to assess whether the
observed disparities differ when we consider HOLC grade
alone as compared to models that also consider modern-day
income and race and ethnicity percentage. The results show that
the grade-specific disparities indeed changed after adjusting for
modern-day census characteristics. After adjustment for income
and race and ethnicity, the disparities in grades D and X remained
statistically significant for UFPs, BC, and NO2. Although racial
and economic status were significant factors in assigning HOLC
grades, other factors, such as industrial presence, were higher in

Table 4. Population-weighted mean pollutant concentration (2019–2020) in blocks by historical Home Owners’ Loan Corporation (HOLC) redlining grade and
percentage differences in comparison with HOLC Grade A in Seattle. Present-day blocks that fall between multiple grades contribute population evenly to
each of those grades.

HOLC
grade

Population
(N)

UFP
(pt=cm3)

Percentage
difference from
Grade A (%)

BC
(ng=m3)

Percentage
difference from
Grade A (%)

NO2
(ppb)

Percentage
difference from
Grade A (%)

PM2:5
(lg=m3)

Percentage
difference from
Grade A (%)

A 15,884 7,150 — 547 — 9.3 — 4.8 —
B 188,178 7,050 −1 576 5 10.4 12 4.9 4
C 145,150 8,090 12 618 12 10.8 15 5.1 6
D 83,986 9,450 28 617 12 12.0 26 4.8 0
X 45,343 11,750 49 896 48 16.8 58 5.6 16

Note: —, not applicable; BC, black carbon; NO2, nitrogen dioxide; PM2:5, fine particulate matter; pt, particles; UFP, ultrafine particles.
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areas graded D and ungraded areas (Grade X), which may have
contributed to our findings.20 In the 1950s and 1960s, local gov-
ernments across the country zoned Black neighborhoods to per-
mit industrial activity but did not allow industry in White
communities.26 Furthermore, decades of disinvestment in Black
neighborhoods likely contributed to the exposure disparities we
observed. We continue to see the legacy of redlining in Seattle
today, with lower average incomes, higher proportions of racial-
ized groups, and overall higher pollutant concentrations in for-
merly redlined areas.

Schuyler and Wenzel and Kane both additionally compared
pollution exposures to asthma prevalence in their study regions,
finding a higher prevalence of asthma associated with lower
HOLC grades in Pittsburgh, Chicago, and Dallas-Fort Worth.32,33

Given that our study region was confined to the Greater Seattle
Area, it is noteworthy that our overall results aligned with previ-
ous research on air pollution exposure disparities. However, there
may be specific features of these data and this region, such as
lower variation of PM2:5 and lower levels of pollution overall,
that differ from those observed in other locations and result in dif-
ferent spatial patterns. Despite the lower levels of air pollutants,
disparities were still apparent in the Greater Seattle study region.
Prior studies on PM2:5 were also able to leverage consistent long-
term monitoring data, which is not yet readily available for UFPs.
It will be important to study changes in UFP exposure and dispar-
ities over time, and the associated health effects.

This study offers important strengths. The air pollution data
we used are a unique resource with multiple pollutants collected
simultaneously and modeled by the same study, thus strengthen-
ing the cross-pollutant comparisons. They were collected by a
mobile monitoring campaign that was designed to produce
unbiased estimates of annual average air pollutants, without
needing to adjust for short-term temporal trends as is commonly
incorporated into mobile monitoring study estimates, and to tar-
get residential rather than on-road exposures. Although some
studies use fixed site locations, many mobile monitoring studies
collect data only while the vehicle is moving (nonstationary sam-
pling), and thus the measurements and predictions represent on-
road exposures.49–51 Because the Seattle mobile monitoring
study used stationary sampling, where the vehicle stopped by
pulling off or to the side of the road to sample for 2 min, its meas-
urements more closely approximate off-road concentrations.
Furthermore, the 309 stop locations were selected to represent
residences of the target cohort, so that the predictions obtained
from this study are likely to represent residential exposures and
to be relevant for epidemiology, whereas the number of sites
allowed us to maximize spatial coverage.

The instrumentation and mobile monitoring approach used to
obtain the pollutant data in this study has both strengths and
weaknesses. Our mobile monitoring study annual averages were
derived from ∼ 29 measurements totaling an hour’s worth of
data at each stop, which we modeled to predict annual averages
at census block centroids.44 This study was not designed to char-
acterize the spatiotemporal nature of the variation in pollution
concentrations, and these averages are noisier than those from
long-term fixed site monitoring would be. In spite of the short
total monitoring duration at each location, mobile monitoring
studies are a useful approach for characterizing long-term aver-
age exposure to traffic-related air pollutants.50,52–54 This is partic-
ularly true for UFPs owing to the expense and practical
challenges of measuring them and their spatial and temporal het-
erogeneity.55 We contrast this with PM2:5, a more regional and
less spatially heterogeneous pollutant, which is not typically
measured in a mobile campaign. Our PM2:5 exposure data were
challenged additionally by low ambient levels close to theT
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instrument limit of detection. These pollutant and measurement
features were reflected in our data set where UFPs had the largest
relative spatial variability and PM2:5 the smallest.

Other limitations pertain to the demographic data. The years
of the ACS and U.S. Census data (2006–2010) do not directly
align with the exposure years (2019–2020). At the time of the
mobile monitoring study, the 2020 U.S. Census data were not yet
available, and predictions were made at block centroids following
the 2010 U.S. Census geographies. Although ideally our expo-
sure period and demographic data would align, we wanted to con-
duct our analysis at the finest scale possible, and even though
more recent ACS data (2015–2019) are available, these data are
only at the block group level and not the block level. Block-level
data permits better small-scale spatial matching to the HOLC
areas than block group data and thus more accurate population-
weighted exposure averages. Although there was no historical,
long-term source of UFP monitoring data in Seattle, Wang et al.
documented that modeled spatial surfaces of traffic-related pollu-
tants are stable over a 7-y period, so the temporal misalignment
of the demographic and pollutant data should have minimal
impact on these results.56 Other researchers have found that
although PM2:5 levels have widely decreased throughout the
country over the decades, relative exposure disparities have
remained.4 We hope that our study will contribute to future
research to learn whether and how disparities might change for
UFP once more long-term and widespread data are available. In
addition, there is the potential for uncertainty in the census data
itself, given that low-income neighborhoods have been shown to
have higher variation in data than high-income neighborhoods.57

Another limitation is that our classification of race and ethnicity
was dependent on census classifications. The census limited our
analyses to the groups (Asian, Black, Hispanic, Native American,
non-Hispanic White, and Pacific Islander) that we studied. We
would have liked to disaggregate the data further to, for example,
examine Native American and Pacific Islander populations in our
regression analyses as well but, unfortunately, the small popula-
tion sizes did not allow this. Native American and Pacific
Islander populations tend to suffer disproportionately from poor
health outcomes and have at times been excluded from public
health data collection.58 Also owing to small population counts,
we did not separately divide any groups other than White into
Hispanic and non-Hispanic subsets. The degree of overlap of the
Hispanic with the non-White groups was small such that the
impact on our results should be minimal. Last, we were unable to
disentangle the causal effects of the associations of exposure dis-
parities. Structural racism has had broad and enduring effects on
human health and exposure. A full understanding of its impacts
needs to extend well beyond documentation of exposure disparities.

Overall, this study allows a comparison of disparities in expo-
sure across both criteria air pollutants (NO2 and PM2:5) and less
commonly measured air pollutants (UFPs, BC) that were obtained
simultaneously from a mobile monitoring study. Racialized com-
munities, lower-income communities, and historically redlined
neighborhoods in the Seattle area were exposed to higher concen-
trations of UFPs, BC, NO2, and PM2:5. Concentrations were high-
est for the lowest income group (<$20,000 per household/y)
across all pollutants. Further, we observed large disparities by race
and ethnicity, especially for Black residents, and by redlining grade
for UFP, BC, and NO2. Disparities were largest for UFP and weak-
est for PM2:5. This multipollutant comparison is valuable for put-
ting the results of our study into context with previous studies,
most of which have focused on NO2 and PM2:5. The presence of
higher exposure disparities for UFPs reinforces the need for more
long-term monitoring and research on the health effects of UFPs,
which will in turn guide regulation of these particles. Promoting

cleaner air will help those disproportionately exposed to air pollu-
tion and suffering from its resulting health effects.
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