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A B S T R A C T   

Air pollution exposure during early-life is associated with altered brain development, but the precise periods of 
susceptibility are unknown. We aimed to investigate whether there are periods of susceptibility of air pollution 
between conception and preadolescence in relation to white matter microstructure and brain volumes at 9–12 
years old. We used data of 3515 children from the Generation R Study, a population-based birth cohort from 
Rotterdam, the Netherlands (2002–2006). We estimated daily levels of nitrogen dioxide (NO2), and particulate 
matter (PM2.5 and PM2.5absorbance) at participants’ homes during pregnancy and childhood using land-use 
regression models. Diffusion tensor and structural brain images were obtained when children were 9–12 years 
of age, and we calculated fractional anisotropy and mean diffusivity, and several brain structure volumes. We 
performed distributed lag non-linear modeling adjusting for socioeconomic and lifestyle characteristics. We 
observed specific periods of susceptibility to all air pollutants from conception to age 5 years in association with 
lower fractional anisotropy and higher mean diffusivity that survived correction for multiple testing (e.g., − 0.85 
fractional anisotropy (95%CI -1.43; − 0.27) per 5 μg/m3 increase in PM2.5 between conception and 4 years of 
age). We also observed certain periods of susceptibility to some air pollutants in relation to global brain and some 
subcortical brain volumes, but only the association between PM2.5 and putamen survived correction for multiple 
testing (172 mm3 (95%CI 57; 286) per 5 μg/m3 increase in PM2.5 between 4 months and 1.8 year of age). This 
study suggested that conception, pregnancy, infancy, toddlerhood, and early childhood seem to be susceptible 
periods to air pollution exposure for the development of white matter microstructure and the putamen volume. 
Longitudinal studies with repeated brain outcome measurements are needed for understanding the trajectories 
and the long-term effects of exposure to air pollution.   

1. Introduction 

There is growing evidence of the potential harmful effects of air 
pollution on brain development (Block et al., 2012). Due to the 

immaturity of detoxification mechanisms in fetuses and infants, the 
brain is considered particularly susceptible to external stressors during 
pregnancy and the first years of life, and exposures to air pollution 
during these developmental periods could lead to permanent alterations 
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in the brain (Block et al., 2012; Grandjean and Landrigan, 2014). A large 
number of studies suggest that higher exposure to air pollution during 
early-life is associated with lower cognitive abilities, and alterations in 
white matter microstructure and brain morphology (Lopuszanska and 
Samardakiewicz, 2020). Most studies focused on prenatal exposures, 
however, the brain is still developing until adulthood (DeBello and 
Knudsen, 2004; Giedd et al., 1999; Shaw et al., 2008), and may also be 
vulnerable to air pollution during childhood and adulthood (Rice and 
Barone, 2000; Stiles and Jernigan, 2010). 

To date, previous studies have investigated averaged exposure to air 
pollution over periods of time, and have not assessed the possible as
sociation of cumulative exposure. Thus, they did not take into account 
the variability of the exposure across time, and are prone to misclassi
fication (Loomis and Kromhout, 2004). Moreover, studies focusing on a 
given periods of time (e.g., childhood period) without considering the 
other periods of exposures (e.g., pregnancy period) may overestimate 
the health effect of the exposure during that period. In addition, average 
exposure estimates might not be detailed enough to identify which pe
riods of life are susceptible to air pollution, considering the numerous, 
timing-specific developmental phases of the brain (Casey et al., 2008; 
Stiles and Jernigan, 2010). This approach can produce biased estimates, 
in particular when the true critical windows do not match with the 
bound of the arbitrary periods of time, and mutual adjustment on the 
other periods of exposure may not be enough to eliminate bias (Wilson 
et al., 2017). 

Distributed lag non-linear model (DLNM) can address this limitation 
and help identify the periods of susceptibility to air pollution in a data- 
driven way (Gasparrini et al., 2010). It also permits considering an 
entire period of exposure (e.g., from conception to preadolescence) at a 
fine temporal scale, taking into account the correlation within time series. 
Few studies have applied DLNM to study the association between early-life 
exposure to air pollution and cognitive function or behavior problems in 
children (Chiu et al., 2016; Raz et al., 2018; Rivas et al., 2019; Wang et al., 
2021), but to our knowledge, none has applied DLNM to study brain 
development. As magnetic resonance imaging (MRI) data provides direct 
insights into brain structures, DLNM could potentially allow identification 
of pathways underlying any time-specific associations between exposure 
to air pollution and neurodevelopment (Guxens et al., 2018). 

We built on previous studies in the same population, in which we 
have previously identified associations between averaged prenatal and 
childhood exposure to air pollution and brain structure (Lubczyńska 
et al., 2020a, 2020b). We now reanalyzed the data using air pollution 
estimates with a finer temporal resolution and applying DLNM to 
identify the potential periods of susceptibility to air pollution between 
conception and age 8.5 years in relation to white matter microstructure 
and brain volumes. We hypothesized that the risk function between 
exposure to air pollution and brain outcomes is not constant over time, 
thus specific periods of susceptibility may be present. 

Therefore, we aimed to identify periods of susceptibility from 
conception to age 8.5 years to the exposure to three ubiquitous pollut
ants in relation to white matter microstructure and brain volumes in 
preadolescents aged 9–12 years. We hypothesized that exposure to air 
pollution during pregnancy and childhood was associated with lower 
fractional anisotropy and higher mean diffusivity. We postulated that 
exposure to air pollution during pregnancy and childhood was associ
ated with smaller volume of the cortical gray matter, the cerebral white 
matter, the corpus callosum, the cerebellum, the thalamus, the pallidum, 
and the hippocampus. Also, we posited that air pollution exposure 
during pregnancy and childhood was associated with larger caudate, 
putamen, amygdala, and nucleus accumbens volumes. 

2. Methods 

2.1. Study population 

This study used data from the Generation R Study, a population- 

based birth cohort set up in the area of Rotterdam, the Netherlands 
(Kooijman et al., 2016). A total of 8879 women were enrolled during 
pregnancy, and additionally 899 women were recruited shortly after the 
delivery between April 2002 and January 2006. We included only 
singleton deliveries in our study, resulting in 9610 mother-child pairs. 
When the children were between 9 and 12 years of age, we invited them 
to participate in an MRI session (n = 8548) (White et al., 2018). In total, 
3839 attended the MRI visit. From this group, we excluded those with 
poor brain MRI data quality. This resulted in a final study population of 
3515 participants. Parents provided written informed consent for 
themselves and their children. The Medical Ethics Committee of the 
Erasmus Medical Center in Rotterdam, the Netherlands, granted ethical 
approval for the study. 

2.2. Exposure to air pollution 

We estimated outdoor air pollution levels of nitrogen dioxyde (NO2), 
particulate matter (PM) with aerodynamic diameter <2.5 μm (PM2.5), 
absorbance of PM2.5 fraction (PM2.5absorbance) for each address that 
the participants have lived at during the period of interest, i.e. since 
conception until date of the MRI session, following a standardized 
procedure (Brunekreef, 2010). Details about the assessment are pro
vided in Appendix Methods S1 and were published in Guxens et al. 
(2022) In brief, three 2-week measurements of NO2 were performed in 
2009–2010 at 80 sites spread across the Netherlands and Belgium, and 
measurements of PM2.5 in 40 of those sites (Beelen et al., 2013; Cyrys 
et al., 2003; Eeftens et al., 2012b). PM2.5absorbance was measured in 
the PM2.5 filters (Eeftens et al., 2012b). Measurements performed at 
each site were averaged, resulting in one annual mean level for each 
pollutant per site. To adjust for temporal trends, we used data from a 
centrally located reference site chosen at a regional background loca
tion. A variety of geographic information systems (GIS) land use pre
dictors was then assigned to each monitoring site and linear regression 
modeling was applied to determine the combination of predictors 
explaining the levels of the pollutants most accurately, resulting in land 
use regression models (Beelen et al., 2013; Eeftens et al., 2012a). Next, 
we assigned the GIS predictors to each address of the participants from 
conception until the MRI session, and applied the land use regression 
models to predict air pollution levels at each address. R2 cross-validation 
were0.60 for PM2.5, 0.81 for NO2, and 0.89 for PM2.5absorbance. To 
capture the temporal trend and increase the temporal resolution, daily 
data from seven routine background monitoring sites were used to 
extrapolate the air pollution levels to the exact period of residency at 
each address, resulting in daily air pollution levels at each address the 
participants were living between conception until the MRI assessment 
(Brunekreef, 2012). For participants recruited after birth, we considered 
the address at birth as representative for the pregnancy period. We 
averaged the daily levels of each pollutant into periods of four weeks 
across pregnancy and across childhood, separately. 

2.3. Magnetic resonance imaging 

To familiarize the participants with the magnetic resonance envi
ronment, each child underwent a mock scanning session prior to the 
actual MRI session (White et al., 2013). The collection of data was 
performed at a single site, and all scans were performed on a 3 T General 
Electric scanner (GE, MR750W, Milwaukee, WI) using an 8-channel 
receive-only head coil. The brain MRI protocol included measure
ments of brain structural connectivity (i.e., white matter microstructure) 
using diffusion tensor imaging (DTI), and brain structural volumes using 
T1-weighted images. The sequence parameters, preprocessing, and 
assessment of the image quality are provided in Appendix Methods S2 
and S3 and were published in Muetzel et al. (2018). 

We processed the DTI data using the FMRIB Software Library (FSL), 
version 5.0.9 (Jenkinson et al., 2012). First, we assessed average frac
tional anisotropy (FA) and mean diffusivity (MD) values for twelve 
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commonly described white matter tracts (forceps minor and forceps 
major, and bilateral tracts of the cingulum bundle, corticospinal tract, 
inferior longitudinal fasciculus, superior longitudinal fasciculus, and 
uncinate) (Appendix Fig. S1). A factor analysis was run to produce a 
global metric of FA and a global metric MD of all twelve tracts based on 
the factor loadings (Muetzel et al., 2015). Global metrics are factors 
scores from a confirmatory factor analysis (i.e., standardized scores 
centered on 0 and ranging from roughly − 5 to 5 for FA, and − 0:5 to 0.5 
for MD) and thus do not conform to the standard positive values typi
cally seen with DTI. FA indicates the tendency for preferential water 
diffusion in white matter tracts, with higher values in well-organized 
white matter tracts. MD describes the magnitude of average water 
diffusion in all directions within brain tissue, with higher values 
generally occurring in less well-organized white matter tracts. 

We processed the structural MRI data through the FreeSurfer Image 
Analysis Suite 6.0 (Fischl, 2012). We calculated several brain volumes, 
including cortical gray matter volumes, cerebral white matter volume, 
corpus callosum volume, and cerebellum volume. We also calculated 
subcortical brain volumes including the thalamus, caudate nucleus, 
putamen, pallidum, hippocampus, amygdala, and nucleus accumbens. 
In case of bilateral volumes, we summed the volume of the left and the 
right hemisphere. 

2.4. Potential confounding variables 

We identified potential confounding variables based on up-to-date 
knowledge of the scientific literature, and on availability of data 
within the Generation R cohort (Guxens et al., 2018; Lubczyńska et al., 
2020a, 2020b) (Appendix, Methods S4). We collected the following data 
by questionnaires during pregnancy: maternal and paternal countries of 
birth (the Netherlands, other Western, non-Western), monthly house
hold income (<900, 900–1600, 1600–2200, >2200 euros), marital 
status (married, living together, no partner), maternal and paternal age 
at enrollment in the cohort (years), maternal and paternal educational 
levels (primary or lower, secondary, higher), maternal smoking and 
alcohol use during pregnancy (no, until pregnancy known, during 
pregnancy), parity (0, 1, ≥2 children), and maternal and paternal psy
chological distress (continuous, higher score representing higher 
distress) using the Brief Symptom Inventory (De Beurs, 2008). We 
calculated maternal and paternal body mass index (BMI) based on 
maternal and paternal weight and height (kg and cm, respectively) 
measured or self-reported in the 1st trimester of pregnancy. Maternal 
intelligence quotient (continuous) was assessed at child’s age of 6 years 
with Raven’s Advanced Progressive Matrices Test, set I (McKinzey et al., 
2003). We collected child’s sex (boy, girl) from hospital records at birth 
and child’s age (years) at the MRI session. 

2.5. Statistical analyses 

We first imputed missing potential confounding variables among all 
participants that had available data for all exposures and each set of 
outcomes separately (N = 2954 with white matter microstructure data, 
and N = 3133 with brain volumes data) using chained equations. We 
obtained 25 datasets for each set of outcomes and used the 25th in all of 
the analyses mentioned hereafter. Distributions between observed and 
imputed datasets were similar (Appendix Table S1). Based on observed 
values, families of the included participants were more likely to have 
higher education, have higher household income, be Dutch, and be 
married, as compared to families of participants that were not included 
(Appendix Table S2). We thus corrected for potential attrition bias using 
inverse probability weighting (Weisskopf et al., 2015; Weuve et al., 
2012) (Appendix Methods S5). In brief, we imputed missing covariates 
for all eligible subjects (N = 9610), and we used all the available in
formation to predict the probability to participate in each subsample (N 
= 2954 with white matter microstructure data, and N = 3133 with brain 
volumes data). We used the inverse of those probabilities as weights, so 

that results would be representative for the initial population of the 
cohort. 

We used DLNM to estimate the exposure-response relationship be
tween each air pollutant and each white matter microstructure and brain 
volume outcome, while simultaneously capturing the change of this 
exposure-response relationship along the lags (i.e., time periods) (Gas
parrini et al., 2010). All models were adjusted for the potential con
founding variables described in the section above. To account for 
potential temporal trends, we additionally adjusted for the year 
(2001–2005) and month of conception (January–December). We further 
adjusted corpus callosum, cerebellum, and subcortical volumes for 
intracranial volume to ascertain relativity to the head size. We did not 
adjust cortical gray matter, and cerebral white matter volumes for 
intracranial volume due to their high correlation (>0.8). 

DLNM are based on a cross-basis, a dimensional space of two func
tions that define the exposure-response relationship and the lag- 
response relationship, respectively (Gasparrini, 2014). First, we visu
ally inspected the relationship of each averaged exposure at each 
trimester of pregnancy and year of childhood with the outcome. We 
observed that all relationships were linear, and selected a linear 
regression shape for the exposure-response relationship. We also 
checked that the rest of assumptions of linear regression models were 
met (i.e. normality of the residuals, homoscedasticity, no collinearity 
between covariates). Next, we selected a natural cubic B-spline with an 
intercept for the lag-response relationship, assuming the association 
between exposure and outcome varies smoothly across lags (Gasparrini 
et al., 2010). Each lag corresponded to a four-week period. 

As we considered exposures starting at conception having the same 
time length for all children, we only included children born after 32 
weeks of gestation (N = 2911 with white matter microstructure data, 
and N = 3089 with brain volumes data) in the main analysis. This 
resulted in a pregnancy period of 9 four-week lags. We decided not to 
exclude preterm births, because prematurity may be a mediator in the 
pathway between air pollution and brain outcomes and their exclusion 
could lead to an incorrect specification of the estimates due to collider 
bias. For participants that were born between week 33 and 36, we 
averaged their available exposures between those weeks and considered 
this as representative of the 9th four-week lag. For participants that were 
born after week 36, we did not consider the exposure periods after week 
36 in the main analysis. The childhood period started at birth and in the 
main analysis it was truncated for all participants at the age of the 
youngest child undergoing the MRI session (8.5 years), corresponding to 
111 four-week lags. Because there is no a priori knowledge regarding the 
number and position of knots in the cross-basis matrix, we ran adjusted 
linear regressions between each exposure at each lag separately with 
each outcome. We plotted the beta coefficients and their 95% confi
dence intervals (CI) across time. Three researchers (ACB, MvdD, MG) 
visually inspected each plot independently and decided whether no 
knot, one knot, or several knots needed to be placed and in which lag, 
based on the number of changes in their slopes and the parsimony 
principle. Disagreements on knot placement between the 3 researchers 
were resolved by discussion. 

First, we assessed whether there were periods of susceptibility to 
each air pollutant between conception and 8.5 years in relation to each 
global brain white matter microstructure (i.e., global brain FA, global 
brain MD), global brain volume (i.e., cortical gray matter, cerebral white 
matter, corpus callosum, cerebellum), and subcortical brain volumes (i. 
e., thalamus, caudate nucleus, putamen, pallidum, hippocampus, 
amygdala, and nucleus accumbens) separately. A period of susceptibility 
was first identified by a statistically significant association between air 
pollution exposure and the outcome in a specific lag (p-value<0.05). 
Then, we corrected the p-values for multiple testing considering three 
exposures, two indicators of white matter microstructure, and eleven 
indicators of brain volumes. To confirm independence among the out
comes and the exposures, we extracted eigenvalues from individual- 
level matrix of phenotype data using the meff function from the poolr 
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package in R to confirm the effective number of tests, which was esti
mated at two (2 effective exposures* 1 effective outcome) for the white 
matter microstructure outcomes and fourteen (2 effective exposures* 7 
effective outcomes) for the brain volume outcomes, using the approach 
recommended by Galwey (2009). The new p-values were 0.05/2 =
0.025 for white matter microstructure outcomes, and 0.05/14 = 0.004 
for brain volume outcomes. We estimated the association of each period 
of susceptibility by combining the estimates of the consecutive statisti
cally significant lags that survived correction for multiple testing. For 
the confidence intervals, we considered the covariance matrix along 
consecutive statistically significant lags that survived correction for 
multiple testing. 

We conducted several sensitivity analyses for investigating the in
fluence of our methodological choices: i) we repeated the selection of 
the lag-response relationship (i.e., number and position of the knots) to 
minimize the Bayesian Information Criterion (BIC), in which the lowest 
BIC was a linear relationship (i.e., without a knot) in all models; ii) to 
investigate the influence of moderate to late premature birth, and the 
influence of exposure in late pregnancy, we only included children born 
after week 36 (N = 2797 with white matter microstructure data and N =
2973 with brain volumes data) and added a 10th four-week lag during 
pregnancy corresponding to the pregnancy period between week 36 and 
40,; iii) to investigate a possible selection bias we included very preterm 
and moderate to late preterm births and truncated the pregnancy period 
to week 28, resulting in a pregnancy period of 7 four-week lags (N =
2954 with white matter microstructure data and N = 3133 with brain 
volumes data); iv) to investigate the influence of exposure at a later 
postnatal period we included 124 lags during childhood, corresponding 
to children that attended the MRI session after 9.5 years (N = 2815 with 
white matter microstructure data and N = 3002 with brain volumes 
data); v) we estimated separately the associations between each air 
pollutant and the left and right brain volumes (i.e., cortical gray matter, 
cerebral white matter, cerebellum, thalamus, caudate nucleus, putamen, 
pallidum, hippocampus, amygdala, and nucleus accumbens) to investi
gate a potential hemisphere-specific effect; and vi) we stratifyed the 
models by sex to investigate a potential sex-specific effect. Finally, if we 
identified a window of susceptibility to air pollution with global brain 
FA or global brain MD, we followed-up the analyses by estimating the 
associations of each air pollutant and the twelve individual white matter 
tracts (i.e., forceps minor, forceps major, and bilateral tracts of the 
cingulum bundle, corticospinal tract, inferior longitudinal fasciculus, 
superior longitudinal fasciculus, and uncinate fasciculus). Sensitivity 
and follow-up analyses were not corrected for multiple testing (i.e. p- 
value<0.05). All analyses were carried out with R version 4.0.3 (R Core 
Team, 2020), the DLNM analyses were performed using the R package 
dlnm. 

3. Results 

3.1. Study population 

At enrollment, mothers were 31 years of age on average, 52% had a 
high education, and 58% were Dutch (Table 1). Mean air pollution 
exposure concentrations decreased for all pollutants between concep
tion and age 8.5 years. For example, NO2 concentrations were on 
average 39.5 μg/m3 during pregnancy and 28.6 μg/m3 between ages 8 
and 9 years (Table 2 and Appendix Table S3 and Fig. S2). Global brain 
FA was − 0.027 on average, and global brain MD was − 0.002, with an 
inverse correlation of 0.61 between global brain FA and MD (Appendix 
Table S4). Cortical gray matter volume was 582,106 mm3 on average 
and its correlation with other brain volumes varied from 0.29 with 
corpus callosum volume to 0.81 with cerebral white matter volume 
(Appendix Table S5 and Fig. S3). 

3.2. Periods of susceptibility to air pollution of white matter 
microstructure 

We observed a window of susceptibility to all air pollutants for each 
white matter microstructure outcome (Fig. 1, Table S3, and Table S6). 
After correction for multiple testing, we found that higher levels of NO2 
between 3.6 and 4.8 years of age were associated with lower global 
brain FA (− 0.02 (95%CI -0.04; − 0.00) per 10 μg/m3 increase in NO2) 
(Fig. 1 and Table 3). Higher levels of PM2.5 from conception to 4 years 
of age were associated with lower global brain FA (− 0.85 (95%CI -1.43; 
− 0.27) per 5 μg/m3 increase in PM2.5). Higher levels of PM2.5absorb
ance during the first 5 years of age were associated with lower global 
brain FA (− 0.18 (95%CI -0.31; − 0.05) per 10− 5 m− 1 increase in 
PM2.5absorbance). We observed similar periods of susceptibility for 
global brain MD, with higher levels of all air pollutants associated with 
higher global brain MD (Fig. 1, Table 3, and Table S6). 

Table 1 
Characteristics of the study population.  

Variable Study population (N = 3515) 

Maternal country of birth 
The Netherlands 57.6% 
other Western 8.4% 
non-Western 34.0% 

Paternal country of birth 
The Netherlands 68.1% 
other Western 6.0% 
non-Western 25.9% 

Monthly household income at enrollment 
<900€ 7.7% 
900–1600€ 14.3% 
1600–2200€ 14.5% 
>2200€ 63.5% 

Family status at enrollment 
married 50.3% 
living together 38.7% 
no partner 11.0% 

Maternal age at enrollment (years) 31.1 ± 4.9 
Paternal age at enrollment (years) 33.5 ± 5.4 
Maternal educational level 

primary or lower 6.7% 
secondary 41.0% 
higher 52.3% 

Paternal educational level 
primary or lower 5.1% 
secondary 38.9% 
higher 56.0% 

Maternal pre-pregnancy BMI (kg/m2) 23.4 ± 4.1 
Paternal BMI (kg/m2) 25.3 ± 3.3 
Maternal height (cm) 167.9 ± 7.4 
Paternal height (cm) 182.4 ± 7.7 
Maternal psychological distress during pregnancy 0.3 ± 0.3 
Paternal psychological distress during pregnancy 0.1 ± 0.2 
Maternal IQ score 97.6 ± 14.8 
Maternal smoking during pregnancy 

never 77.5% 
until pregnancy known 9.0% 
during pregnancy 13.5% 

Maternal alcohol use during pregnancy 
never 42.2% 
until pregnancy known 14.5% 
during pregnancy 43.3% 

Maternal parity 
no child 58.0% 
1 child 30.0% 
≥2 children 12.0% 

Child’s sex 
Boy 49.6% 
Girl 50.4% 

Child’s age at MRI session (years) 10.1 ± 0.6 

Values are mean ± standard deviation for continuous variables and percentage 
for categorical variables. Distribution is displayed over non-imputed values. 
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3.3. Periods of susceptibility to air pollution of brain volumes 

We observed some periods of susceptibility for cortical gray matter, 
cerebral white matter, corpus callosum, cerebellum, hippocampus, 
amygdala, and nucleus accumbens volumes, but these associations did 
not survive correction for multiple testing (Table 4, Fig. 2, Fig. 3, 
Table S7, and Table S8). When correcting for multiple testing, only the 
association between PM2.5 and putamen volume survived (172 mm3 

(95%CI 57; 286) per 5 μg/m3 increase in PM2.5 between 4 months and 
1.8 year of age) (Fig. 3). We found no period of susceptibility of air 
pollution in relation to thalamus, caudate, and pallidum volumes (Ap
pendix Fig. S4) 

3.4. Sensitivity and follow-up analysis 

When we used a linear association between each air pollutant and 
each brain volume outcome across time, the associations remained 
similar (Appendix Tables S9–S10). All results were similar when adding 
a 10th four-week lag during the prenatal period and excluding moderate 
to late preterms, when truncating the prenatal period to week 28 of 
pregnancy, and when extending the childhood period up to 9.5 years 
(Appendix Tables S11–S19). 

We found no evidence of differences by hemisphere for any of the 
bilateral brain volume (data not shown). We found no evidence either of 
sex-specific effect differences for any association between any air 
pollutant and any brain outcome (data not shown). 

Table 2 
Characteristics of the levels of air pollutants (Generation R, the Netherlands, 2002–2006) (N = 3515).   

Pregnancy Birth-1 year 1–2 years 2–3 years 3–4 years 4–5 years 5–6 years 6–7 years 7–8 years 8–9 years 

NO2 (in μg/m3) 39.5 ± 6.4 37.5 ± 5.4 34.9 ± 5.3 33.2 ± 5.6 33.3 ± 6.7 32.7 ± 7.0 32.2 ± 7.1 30.3 ± 6.7 29.5 ± 6.5 28.6 ± 6.3 
PM2.5 (in μg/m3) 19.8 ± 2.4 18.3 ± 1.4 17.5 ± 0.7 16.9 ± 1.0 16.5 ± 0.9 16.2 ± 0.7 16.7 ± 1.0 16.6 ± 1.1 15.8 ± 1.7 14.1 ± 1.4 
PM2.5 abs (in 10− 5/m) 1.7 ± 0.4 1.7 ± 0.3 1.6 ± 0.3 1.6 ± 0.3 1.6 ± 0.3 1.6 ± 0.3 1.5 ± 0.3 1.5 ± 0.3 1.4 ± 0.3 1.3 ± 0.3 

Values are mean ± standard deviation. 
NO2, nitrogen dioxide; PM2.5, particulate matter with aerodynamic diameter <2.5 μm; PM2.5abs, absorbance of PM2.5 filters. 

Fig. 1. Adjusted associations between exposure to air pollutants from conception to age 8.5 years and global fractional anisotropy and mean diffusivity at 9–12 years 
of age (N = 2911). 
Adjusted for maternal and paternal educational levels, monthly household income, maternal and paternal country of birth, maternal and paternal age at enrollment 
in the cohort, maternal smoking and alcohol use during pregnancy, parity, marital status, maternal and paternal psychological distress, maternal and paternal BMI, 
maternal intelligence quotient, child’s sex and age at the MRI session, year and month of conception. 
NO2, nitrogen dioxide; PM2.5, particulate matter with aerodynamic diameter <2.5 μm; PM2.5abs, absorbance of PM2.5 filters. 
Blackline represents the beta estimate of the association between the exposure at each specific lag and the outcome. Vertical gray, blue, and orange lines represent 
95% CI and indicate no divergence from the null, significant divergence from negative association, and significant divergence from positive association, respectively. 
Darker blue and orange colors indicate associations after correction for multiple testing (p-value < 0.025). . (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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Investigating the associations between each air pollutant and the 
individual white matter tracts, we observed periods of susceptibility to 
air pollution exposure between conception and 6 years of age in asso
ciation with lower FA and higher MD in the forceps minor, the left and 
right inferior longitudinal fasciculus, the left and right superior longi
tudinal fasciculus, and the left and right uncinate fasciculus tracts (Ap
pendix, Tables S21, S24-S26). We found additional periods of 
susceptibility to air pollution exposure between 1.5 and 4 years of age in 
association with lower FA in the forceps major tract, to air pollution 
exposure from conception to 4 years of age in association with lower FA 
in the left and the right corticospinal tract, and to air pollution exposure 
between 3 and 6 years of age in association with higher MD in the left 
and right cingulum bundle tract (Appendix, Tables S20, S22-S23). 

4. Discussion 

This study is one of the first to investigate the association of exposure 
to air pollution, estimated from conception to age 8.5 years on a monthly 
basis, with white matter microstructure and brain volumes. We observed 
specific periods of susceptibility from conception to age 5 years to air 
pollution for white matter microstructure. A period of susceptibility for 
putamen was also suggested, in the first 2 years of age. 

We have identified a period of susceptibility in relation to white 
matter microstructure to NO2 between 2 and 5 years of age, to PM2.5 
from conception until 5 years of age, and to PM2.5absorbance between 1 
and 5 years of age. White matter tracts emerge in the fetal brain between 
13 and 18 weeks of gestation, and all major white matter tracts are 
present by the end of gestation. Myelination begins at approximately 20 
weeks of gestation, advances rapidly throughout the first 5 years of life, 
and progresses until adulthood (Lebel and Deoni, 2018; White et al., 

2008; Yakovlev and Lecours, 1967). Previous work has linked air 
pollution to neuroinflammatory mechanisms and microglial activation, 
suggesting that air pollution exposure may interfere with neuro
genic/gliogenic events and myelination processes (Block et al., 2012; 
Boda et al., 2020; Calderón-Garcidueñas et al., 2012). Pujol et al. (2016) 
did not observe any cross-sectional association between exposure to 
elemental carbon or NO2 at school and white matter microstructure in 
8–12-year-old Spanish children. In 9-10-year-old children from the 
United States, Burnor et al. (2021) observed that residential PM2.5 
exposure at the time of the MRI assessment was associated with higher 
restricted isotropic diffusion, a marker of intracellular white matter 
microarchitecture, and lower MD. In the present study, we found no 
associations between exposure to air pollution at 8–9 years of age and 
white matter microstructure outcomes. Our results suggest a suscepti
bility to air pollutants of white matter microstructure, with less 
well-organized white matter tracts. This susceptibility seems to occur in 
particular during the period of rapid myelination of the brain. Due to the 
plasticity of the white matter, repeated measurements of the white 
matter microstructure would be necessary to investigate the potential 
longitudinal effects of air pollution. 

Regarding brain volumes outcomes, Cserbik et al. (2020) reported 
that residential PM2.5 exposure at the time of the MRI assessment was 
associated with larger right thalamic, right pallidum, and left nucleus 
accumbens volumes, and with smaller left putamen and left pallidum 
volumes in 9–10-year-old children from the United States. In our study, 
we did not observe a hemisphere-specific effect on air pollution on brain 
volumes, and we found that PM2.5 exposure in the first years of life was 
only associated with larger putamen volume. In a vertex-wise analysis, 
Beckwith et al. (2020) observed that higher residential elemental carbon 
levels in the first year of life were related to smaller regional gray matter 
volumes in the left pre- and post-central gyri, in the inferior parietal 
lobe, and in the cerebellum in 12-year-old children from the United 
States. In our study, we did not find windows of susceptibility to air 
pollution for the cortical gray matter and the cerebellum, although we 
used a different approach than this previous study that did not enable us 
to investigate region-specific associations. Mortamais et al. (2019) re
ported that higher levels of residential PM2.5 exposure during the 3rd 
trimester of pregnancy were associated with smaller corpus callosum 
volume in 8–12-year-old Spanish children, but this association did not 
survive correction for multiple testing. In the present study, we found 
null associations between PM2.5 levels and corpus callosum volume. We 
found some periods of susceptibility for cortical gray matter and cere
bral white matter volume, and corpus callosum, cerebellum, hippo
campus, amygdala, and nucleus accumbens volumes, but these 
associations disappeared after correction for multiple testing. We cannot 
rule out the possibility that we lacked statistical power to detect the 
windows of susceptibility to air pollution for brain volumes, if any. 
Moreover, the interpretation of the effect of growth patterns is limited 
by the design of our study, because the single MRI measurement pre
venting us to draw robust conclusions on potential long-term effects of 

Table 3 
Adjusted associations between exposure to air pollutants from conception to age 8.5 years and global brain fractional anisotropy and mean diffusivity at 9–12 years of 
age (N = 2911).  

Air pollutants Fractional anisotropy Mean diffusivity 

Lags Estimate (95%CI) * Lags Estimate (95%CI) * 

NO2 (Δ 10 μg/m3) 3.6 years–4.8 years − 0.02 (− 0.04; − 0.00) 2.2 years–4.7 years 0.01 (0.00; 0.01) 
PM2.5 (Δ 5 μg/m3) Conception – 3.9 years − 0.85 (− 1.43; − 0.27) 9 months - 4.4 years 0.06 (0.02; 0.10) 
PM2.5abs (Δ 10− 5 m− 1) 1.3 year - 4.5 years − 0.18 (− 0.31; − 0.05) 1.1 year - 4.8 years 0.02 (0.00; 0.04) 

Estimates and 95% CI from distributed lag non-linear model, adjusted for maternal and paternal educational levels, monthly household income, maternal and paternal 
country of birth, maternal and paternal age at enrollment in the cohort, maternal smoking and alcohol use during pregnancy, parity, marital status, maternal and 
paternal psychological distress, maternal and paternal body mass index, maternal intelligence quotient, child’s sex and age at the magnetic resonance imaging session, 
year and month of conception. 
* Associations after correction for multiple testing (p < 0.025). 
CI, confidence intervals; NO2, nitrogen dioxide; PM2.5, particulate matter with aerodynamic diameter <2.5 μm; PM2.5abs, absorbance of PM2.5 filters. 

Table 4 
Adjusted associations between exposure to air pollutants from conception to age 
8.5 years and subcortical brain volumes at 9–12 years of age (N = 3089).  

Air pollutants Putamen volume 

Lags Estimate (95%CI) *  

NO2 (Δ 10 μg/m3) – –  
PM2.5 (Δ 5 μg/m3) 4 months–1.8 year 172 (57; 286)  
PM2.5abs (Δ 10− 5 m− 1) – –  

Estimates and 95% CI from distributed lag non-linear model, adjusted for 
maternal and paternal educational levels, monthly household income, maternal 
and paternal country of birth, maternal and paternal age at enrollment in the 
cohort, maternal smoking and alcohol use during pregnancy, parity, marital 
status, maternal and paternal psychological distress, maternal and paternal body 
mass index, maternal intelligence quotient, child’s sex and age at the magnetic 
resonance imaging session, year and month of conception, and intracranial 
volume. 
* Associations after correction for multiple testing (p < 0.004). 
CI, confidence intervals; NO2, nitrogen dioxide; PM2.5, particulate matter with 
aerodynamic diameter <2.5 μm; PM2.5abs, absorbance of PM2.5 filters. 
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air pollution. 
Levels of NO2 and PM2.5 reported in the present study were above 

the 2021 World Health Organization guidelines (10 μg/m3 and 5 μg/m3, 
respectively) but all air pollutants were below the European Union 
standards, suggesting that air pollution may affect brain development, at 
lower levels than the current standards for air quality. In Europe, the 
predominant source of nitrogen gases is diesel fuel (Cyrys et al., 2003). A 
major fraction of PM2.5 is formed by gas-to-particle conversion pro
cesses from products of long-range transport (Cyrys et al., 2003). 
PM2.5absorbance characterizes local soot emissions from combustion 
sources (e.g., diesel vehicles and residential wood combustion) (Eeftens 
et al., 2012b). Air pollution can impact the brain structure through 
oxidative stress and neuroinflammation (Costa et al., 2019). Air pollu
tion has also been shown to activate the stress axis, including the 
hypothalamic-pituitary adrenal axis, and activate the release of stress 
hormones (Thomson, 2019). Chronic stress has been linked to alter
ations in various brain structures (Buss et al., 2012; Humphreys et al., 
2019; Lupien et al., 2011; Teicher et al., 2004). Our findings highlight 
the importance of prospective longitudinal studies, with repeated mea
surements of the exposure during pregnancy and childhood, when 
investigating the effects of early-life exposure to air pollution on the 
brain. 

Our study has several strengths, including i) its large sample size 
from a population-based cohort, ii) assessment of air pollution from 
pregnancy to 8.5 years of age in a very fine time scale, using a stan
dardized and validated method of back-extrapolation to the period of 
interest, iii) multimodal imaging with two sequence of MRI to investi
gate both white matter microstructure and brain volumes, iv) 

adjustment of various socioeconomic and lifestyle variables that are 
known to be associated with air pollution exposure and brain develop
ment, and v) the use of an advanced statistical method, namely DLNM, 
to estimate the association of exposure to air pollution from pregnancy 
to adolescence on white matter microstructure and brain volumes with 
unbiased estimates, to consider each 4-week periods separately, and to 
identify periods of susceptibility without defining arbitrary periods (e.g., 
trimesters of pregnancy) a priori. Another advantage of DLNM is the 
cross-basis that allows for the simultaneous evaluation of the lag- 
exposure-outcome relationship, thus overcoming the problem of multi
ple comparisons of an averaged exposure approach with repeated 
measurements. 

We also faced several limitations. First, sampling campaigns were 
carried out when participants were between 3.5 and 9 years of age. We 
used historical pollution data from routine monitoring stations to back- 
extrapolate the levels to the periods of interest for each child, which 
have been shown to remain spatially stable over time for a period up to 8 
or 18 years (Eeftens et al., 2012a; Gulliver et al., 2013), but we cannot 
discard the introduction of misclassification error. Second, the DLNM 
model requires tuning parameters (i.e., shape of the relationship), 
without clear guidelines, and has demonstrated to be sensitive to the 
parameters used in the analyses (Wilson et al., 2017). We have intended 
to overcome this methodological limitation by i) determining the posi
tion and the number of knots on a parsimonious principle, to not overfit 
the model, and ii) repeating the analyses with a linear lag-response 
relationship to minimize the BIC. Then, because the DLNM does not 
permit missing values in the exposure matrix, the main analyses 
included pregnancy exposure until the weeks 32–36 and childhood 

Fig. 2. Adjusted associations between exposure to air pollutants from conception to age 8.5 years and cortical gray matter, cerebral white matter, corpus callosum, 
and cerebellum volumes at 9–12 years of age (N = 3089). 
Adjusted for maternal and paternal educational levels, monthly household income, maternal and paternal country of birth, maternal and paternal age at enrollment 
in the cohort, maternal smoking and alcohol use during pregnancy, parity, marital status, maternal and paternal psychological distress, maternal and paternal BMI, 
maternal intelligence quotient, child’s sex and age at the MRI session, year and month of conception. Corpus callosum, and cerebellum volumes were additionally 
adjusted for intracranial volume. 
NO2, nitrogen dioxide; PM2.5, particulate matter with aerodynamic diameter <2.5 μm; PM2.5abs, absorbance of PM2.5 filters. 
Black line represents the beta estimate of the association between the exposure at each specific lag and the outcome. Vertical gray, blue, and orange lines represent 
95% CI and indicate no divergence from the null, significant divergence from negative association, and significant divergence from positive association, respectively. 
. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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exposure until the age of 8.5 years, in which extremely and very preterm 
children were excluded. However, we have conducted several sets of 
sensitivity analyses to evaluate the impact of the inclusion of larger 
periods of pregnancy and childhood exposure and a shorter period of 
pregnancy exposure, and we obtained similar associations, suggesting 
that our results were robust. Moreover, we have investigated the influ
ence of moderate to late premature birth, and a possible selection bias on 
preterm children, and we found no evidence of influence of premature 
birth on the associations nor on the windows of susceptibility. Third, we 
did not perform multi-pollutant analyses and we assessed each air 
pollutant separately with each brain outcome. We considered NO2, 
PM2.5, and PM2.5absorbance as markers of traffic-related air pollution. 
It is difficult to disentangle the effects of each air pollutant, but our 
results suggest that traffic-related air pollution is associated with brain 
development. Fourth, participants included in this study had a higher 
socioeconomic status than non-participants. We used inverse probability 
weighting to address that limitation, but we cannot rule out a potential 
selection bias because we might have missed important predictors of the 
risk of loss-to-follow-up. Fifth, despite our extensive selection of po
tential confounders, we cannot discard the possibility of residual con
founding. Moreover, we adjusted our models for covariates collected at 
one single timepoint, and we did not consider a possible time varying 
socioeconomic level and lifestyle environment of the participants during 
the period of interest of our study. Residual confounding could introduce 
bias and lead to incorrect estimates of the associations (Weisskopf et al., 
2018). Sixth, our study is based on a single measurement of the white 
matter microstructure and brain volume in preadolescence. Repeated 
measurements across time would give insight into trajectories of brain 
maturation, and could help to understand the potential long-term effects 

of air pollution exposure on the brain. 

5. Conclusion 

Our study demonstrates that exposures to various air pollutants from 
conception to age 8.5 years were associated with altered white matter 
microstructure in preadolescents of 9–12 years of age, with specific 
periods of susceptibility from conception to age 5 years. The first 2 years 
of life were also a likely susceptible period for the association between 
air pollution and larger putamen volumes in preadolescence. Overall, 
reducing the exposure to air pollutants during pregnancy and in infancy, 
toddlerhood, and early childhood seems to be essential to promote a 
normal brain development. 
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Guxens, M., Lubczyńska, M.J., Muetzel, R.L., Dalmau-Bueno, A., Jaddoe, V.W.V., 
Hoek, G., et al., 2018. Air pollution exposure during fetal life, brain morphology, and 
cognitive function in school-age children. Biol. Psychiatr. 84, 295–303. https://doi. 
org/10.1016/j.biopsych.2018.01.016. 

Humphreys, K.L., King, L.S., Sacchet, M.D., Camacho, M.C., Colich, N.L., Ordaz, S.J., 
et al., 2019. Evidence for a sensitive period in the effects of early life stress on 
hippocampal volume. Dev. Sci. 22, e12775 https://doi.org/10.1111/desc.12775. 

Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M., 2012. FSL. 
Neuroimage 62, 782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015. 

Kooijman, M.N., Kruithof, C.J., van Duijn, C.M., Duijts, L., Franco, O.H., van 
Ijzendoorn, M.H., et al., 2016. The Generation R Study: design and cohort update 
2017. Eur. J. Epidemiol. 31, 1243–1264. https://doi.org/10.1007/s10654-016- 
0224-9. 

Lebel, C., Deoni, S., 2018. The development of brain white matter microstructure. 
Neuroimage 182, 207–218. https://doi.org/10.1016/j.neuroimage.2017.12.097. 

Loomis, D., Kromhout, H., 2004. Exposure variability: concepts and applications in 
occupational epidemiology. Am. J. Ind. Med. 45, 113–122. https://doi.org/10.1002/ 
ajim.10324. 

Lopuszanska, U., Samardakiewicz, M., 2020. The relationship between air pollution and 
cognitive functions in children and adolescents: a systematic review. Cognit. Behav. 
Neurol. 33, 157–178. https://doi.org/10.1097/WNN.0000000000000235. 
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Pujol, J., Martínez-Vilavella, G., Macià, D., Fenoll, R., Alvarez-Pedrerol, M., Rivas, I., 
et al., 2016. Traffic pollution exposure is associated with altered brain connectivity 
in school children. Neuroimage 129, 175–184. https://doi.org/10.1016/j. 
neuroimage.2016.01.036. 

R Core Team, 2020. R: A Language and Environment for Statistical Computing. R 
Foundation for Statistical Computing, Vienna, Austria.  

Raz, R., Levine, H., Pinto, O., Broday, D.M., null, Yuval, Weisskopf, M.G., 2018. Traffic- 
related air pollution and autism spectrum disorder: a population-based nested case- 
control study in Israel. Am. J. Epidemiol. 187, 717–725. https://doi.org/10.1093/ 
aje/kwx294. 

Rice, D., Barone, S., 2000. Critical periods of vulnerability for the developing nervous 
system: evidence from humans and animal models. Environ. Health Perspect. 108 
(Suppl. 3), 511–533. https://doi.org/10.1289/ehp.00108s3511. 
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