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 2

Abstract  19 

 20 

Growing evidence links traffic-related air pollution (TRAP) to adverse health effects. We 21 

designed an innovative and extensive mobile monitoring campaign to characterize TRAP 22 

exposure levels for the Adult Changes in Thought (ACT) study, a Seattle-based cohort. The 23 

campaign measured particle number concentration (PNC) to capture ultrafine particles (UFP), 24 

black carbon (BC), nitrogen dioxide (NO2), fine particulate matter (PM2.5), and carbon dioxide 25 

(CO2) at 309 stop sites representative of the cohort. We collected about 29 two-minute visit 26 

measures at each site during all seasons, days of the week, and most times of day during a one-27 

year period. Validation showed good agreement between our BC, NO2, and PM2.5 measurements 28 

and regulatory monitoring sites (R2 = 0.68-0.73). Universal kriging–partial least squares models 29 

of annual average pollutant concentrations had cross-validated mean square error-based R2 (and 30 

root mean square error) values of 0.77 (1,177 pt/cm3) for PNC, 0.60 (102 ng/m3) for BC, 0.77 31 

(1.3 ppb) for NO2, 0.70 (0.3 µg/m3) for PM2.5, and 0.50 (4.2 ppm) for CO2. Overall, we found 32 

that the design of this extensive campaign captured the spatial pollutant variations well and these 33 

were explained by sensible land use features, including those related to traffic.   34 

 35 

Synopsis: We develop well-performing, long-term average pollutant exposure prediction models 36 

for epidemiologic application from an innovative and extensive short-term mobile monitoring 37 

campaign.   38 

 39 

40 
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 41 

1 Introduction 42 
 43 

An extensive body of evidence has linked air pollution to adverse health effects including 44 

respiratory, cardiovascular and mortality outcomes.1 Recent evidence has begun to link traffic-45 

related air pollution (TRAP) exposure to cognitive function among various populations, 46 

including the elderly.2–6 While TRAP is a complex mixture that varies over time and space, 47 

pollutants include ultrafine particles (UFP; typically defined as aerodynamic diameter ≤ 100 48 

nm), black carbon (BC), oxides of nitrogen including nitrogen dioxide (NO2), carbon dioxide 49 

(CO2), and carbon monoxide (CO).7 In particular, UFPs have increasingly been associated with 50 

important health outcomes including more neurotoxicity and systemic inflammation than larger 51 

particles.8–14 52 

To date, however, much of the epidemiology air pollution research has been limited to 53 

the federally defined criteria air pollutants, monitored nationwide through the EPA’s regulatory 54 

Air Quality System (AQS) monitoring network. This network has monitored criteria pollutant 55 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 14, 2022. ; https://doi.org/10.1101/2021.09.18.21263522doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.18.21263522
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4

levels throughout the US since the 1990s, and none specifically include UFPs.15 Furthermore, 56 

this network is spatially sparse and thus fails to capture the spatial variability of more quickly 57 

decaying pollutants, including many TRAPs.16 The Seattle Census Urbanized Area, for example, 58 

averages about 1 AQS monitor every 174 km2  (~14 active monitors within a land area of about 59 

2,440 km2), most of which measure fine particulate matter mass concentration with diameter of 60 

less than 2.5 µm (PM2.5) and BC.17,18  61 

Mobile monitoring campaigns for assessing air pollution exposure have been used since 62 

at least the 1970s and have become increasingly common in recent years in an effort to address 63 

the limitations of traditional fixed site monitoring approaches.19–25 Typically, a vehicle is 64 

equipped with air monitors capable of measuring pollutants with high temporal resolution. Short-65 

term sampling repeatedly occurs with this platform at predefined sites. Past work has shown that 66 

repeated short-term air pollution samples can be used to calculate unbiased long-term averages, 67 

thus reducing the need for continuous fixed-site monitoring.19,20 Because the sampling duration 68 

at individual sites can be quite short, campaigns can increase their spatial coverage with a single 69 

platform, thus making this approach more time- and cost- efficient than traditional fixed-site 70 

monitoring.  71 

Still, the designs of past mobile monitoring campaigns have arguably limited their 72 

epidemiologic application. Importantly, most campaigns have sampled during limited time 73 

periods, for example, weekday business hours during one to three seasons.21,26–28 We previously 74 

showed that these limited sampling campaigns likely result in biased long-term human exposure 75 

estimates because they do not capture the high temporal variability of many TRAPs, and that the 76 

exact degree of bias varies (is not consistent) across site.29 Additionally, many campaigns have 77 

sampled along non-residential areas such as highways and industrial areas where air pollution 78 
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levels may be much higher than the levels that most people are exposed to. Furthermore, most 79 

have collected non-stationary (mobile) on-road samples rather than stationary samples along the 80 

side of the road closer to participant residences. While non-stationary designs increase spatial 81 

coverage, further work is needed to demonstrate whether these are representative of residential 82 

human exposure levels.21,30 The additional bias that likely results from these limited sampling 83 

schemes is unclear. 84 

To address the limitations of past campaigns, we designed an extensive, multi-pollutant 85 

mobile monitoring campaign to characterize TRAP exposure levels for the Adult Changes in 86 

Thought (ACT) study cohort. ACT is a long-standing, prospective cohort study that has been 87 

investigating aging and brain health in the greater Seattle area since 1995.31 The campaign 88 

measured TRAP at 309 stationary sites (stops) representative of the cohort in a temporally 89 

balanced approach throughout the course of a year. The goal of this paper is to describe the 90 

mobile monitoring design’s sampling methodology and TRAP measures collected, and to 91 

develop exposure predictions for later application to the ACT cohort. To the best of our 92 

knowledge, this is one of the most extensive mobile monitoring campaigns conducted in terms of 93 

the pollutants measured, the spatial coverage and resolution, and the campaign duration and 94 

sampling frequency.  95 

 96 

2 Methods  97 

 98 

Briefly, multiple pollutants including particle number concentration (PNC), BC, NO2, 99 

PM2.5, and CO2 were simultaneously measured with high quality instrumentation at 309 stop 100 

sites off the side of the road along fixed routes. Sites were representative of the cohort’s large 101 
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spatial and geographical distribution throughout the greater Seattle area. A temporally balanced, 102 

year-long driving schedule that measured TRAP during all seasons, days of the week, and most 103 

times of the day enabled us to estimate unbiased annual average estimates at the site level. 104 

Details are described below. 105 

 106 

2.1 Spatial Compatibility of the Selected Stop Sites and the ACT Cohort 107 

 108 

We selected a mobile monitoring region in the greater Seattle, WA area that was roughly 109 

1,200 land km2 (463 mi2; Figure 1). The monitoring region was composed of Census Tracts 110 

where the majority of the ACT cohort had historically resided between 1989-2018 (87% = 111 

10,330/11,904 locations). This large region fell in western King County and southwest 112 

Snohomish County, and it included a variety of urban and rural areas with various land uses 113 

including residential, industrial, commercial, and downtown areas. We used the Location-114 

Allocation tool in ArcMap (ArcGIS v. 10.5.1)32 to select 304 stops within the monitoring region 115 

that were representative of the ACT cohort (approximately one monitoring site per 33 participant 116 

locations; see Supplementary Information [SI] Note S1 for details). Stops were spatially 117 

distributed so that they would cover all parts of the monitoring region. The exact sites selected 118 

were meant to minimize the distance between the monitoring and cohort locations. Five 119 

additional stops were collocations at nearby regulatory air quality monitoring sites measuring 120 

pollutants similar to our platform (see below). In total, there were 309 stops. The average (SD) 121 

distance between a cohort location and the nearest monitoring stop was 611 (397) m. The 122 

monitoring stops and cohort locations had similar distributions of various TRAP-related 123 
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covariates (e.g., proximity to roadways, airport, railyard), indicating good spatial compatibility 124 

(SI Figure S1).33   125 
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 126 

Figure 1. Mobile monitoring routes (n=309 stops along 9 routes) and jittered ACT cohort locations (n=10,330 unique locations). 127 
Inset map shows the monitoring area within Washington (WA) state. 128 

 129 
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 130 

2.2 Fixed Routes 131 

 132 

We used ArcMap’s Network Analyst New Route tool32 and Google Maps34 to develop 133 

nine fixed routes based on the 309 stop monitoring sites. Each route ranged from 75-168 km (47-134 

104 miles) in length and had 28-40 stops (SI Table S1). All routes started and ended at the 135 

University of Washington and were intended to maximize residential driving coverage (i.e., 136 

reduce highway driving and driving on the same roads). Routes were downloaded from Google 137 

Maps to a smart phone and Garmin GPS Navigation System, and navigation was set to replicate 138 

the same route each time regardless of traffic conditions.  139 

 140 

2.3 Sampling Schedule 141 

 142 

Sampling was conducted from March 2019 through March 2020 during all seasons and 143 

days of the week between the hours of 4 AM and 11 PM. Our previous work has shown that this 144 

balanced but slightly reduced sampling schedule taking driver safety and operational logistics 145 

into consideration should still generally produce unbiased annual averages.29 This work further 146 

showed that the temporal sampling design rather than the visit sampling duration has the largest 147 

impact on the accuracy of the annual average estimates, and that common sampling designs like 148 

weekday business and rush hours regularly produce more biased annual averages. To increase 149 

temporal coverage, routes were started at different times of the day and driven in both clockwise 150 

and counterclockwise directions. A single route was driven each day (~4-8 drive hours). Make-151 

up site visits were conducted throughout the study to resample sites with missing readings (i.e., 152 
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due to instrumentation or driver errors). Make-up visits occurred during similar times as the 153 

originally scheduled sampling time (i.e., season, day of the week, general time of day).  154 

Twenty-eight two-minute samples were scheduled to be collected at each stop site while 155 

the vehicle was parked along the side of the road. This design choice was justified by our 156 

additional analyses of one-minute data from a near-road and a background regulatory site in 157 

Seattle. These analyses showed that at least 25 two-minute samples were sufficient to produce 158 

annual average estimates with a low average percent error (See SI Figure S2). Furthermore, there 159 

was only a negligible improvement in annual average estimates when the sampling duration was 160 

extended from 2 to 60 minutes. 161 

 162 

2.4 Data Collection 163 

 164 

We equipped a Toyota Prius hybrid vehicle with fast-response (1-60 sec), high-quality 165 

instrumentation that measured various particle and gas pollutants. Pollutants included BC 166 

(AethLabs MA200), NO2 (Aerodyne Research Inc. CAPS), PM2.5 (Radiance Research M903 167 

nephelometer), CO2 (Li-Cor LI-850), and PNC with various instruments, including two TSI P-168 

TRAK 8525’s (one unscreened – the primary instrument in this analysis, and one with a 169 

diffusion screen),  a TSI NanoScan 3910, and Testo DiSCmini. PNC serves as a surrogate for 170 

UFP since most particles by count are smaller than 100 nm.35 CO measurements were also 171 

collected, but these were not included in this analysis because they did not meet our quality 172 

standards. The platform additionally collected temperature, relative humidity, and global 173 

positioning with real-time tracking. See SI Table S2 for instrumentation details, including the 174 

manufacturer-reported size ranges for the four PNC instruments. We had duplicates (back-ups) 175 
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of every instrument type that were periodically collocated for quality assurance purposes (see 176 

Quality Assurance and Quality Control). SI Note S2 and Figures S3-S4 have additional details 177 

on the platform configuration and data collection procedures. 178 

 179 

2.5 Quality Assurance and Quality Control 180 

 181 

We conducted various quality assurance and quality control (QAQC) activities 182 

throughout the study period to ensure the reliability and integrity of our data. Activities included 183 

calibrating gas instruments; checking particle instruments for zero concentration responses; 184 

assessing collocated instruments for agreement; inspecting time series data for concentration 185 

pattern anomalies; and dropping readings associated with instrument error codes or those outside 186 

the instrument measurement range. SI Section S1.3 has additional details.  187 

 188 

2.6 Site Visit Summaries 189 

 190 

All data analyses were conducted in R (v 3.6.2, using RStudio v 1.2.5033; see SI Note S3 191 

for computing details).36  192 

We calculated the median pollutant concentrations for each two-minute site visit. While 193 

means can be highly influenced by large concentration deviations (which may be important in 194 

some settings), medians are more robust to outliers and may better capture the typical values of 195 

skewed data. 196 

We estimated PM2.5 concentrations from nephelometer readings using a calibration curve 197 

fit to regulatory monitoring data between 1998-2017 (SI Equation S1). Nephelometer light 198 
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scattering is strongly correlated with PM2.5 and has been used in the Puget Sound region to 199 

monitor air quality since 1967.37 We fit the model using daily average measurements from nine 200 

non-industrial regulatory air monitoring sites in the region where both PM2.5 (using federal 201 

reference methods) and nephelometer light scattering data were collected. We excluded the years 202 

2008-2009 due to nephelometer instrumentation issues noted by the local regulatory agency. The 203 

model’s leave-one-site-out cross-validated R2 and root mean square error (RMSE) were 0.92 and 204 

1.97 µg/m3, respectively.  205 

Site visit medians and annual averages for BC, NO2 and PM2.5 estimated from these data 206 

were compared against estimates from the five regulatory air monitoring collocation sites.  207 

 208 

2.7 Spatial and Temporal Variability  209 
 210 

We ran analysis of variance (ANOVA) models for each pollutant to characterize the 211 

relative variability of the site visit level data over space, time, and within site. The independent 212 

variables for each pollutant model were the site (n=309), season (n=4), day of the week (n=7), 213 

and hour of the day (n=21), while the dependent variable was median visit concentrations. 214 

 215 

2.8 Estimation of Annual Averages 216 

 217 

We calculated winsorized annual average concentrations for each site such that 218 

concentrations below the 5th and above the 95th quantile concentration were substituted with the 219 

5th and 95th quantile concentration, respectively (mean of winsorized medians). This was done to 220 

reduce the influence of large outlier concentrations on the annual average. In sensitivity analyses, 221 

we calculated non-winsorized averages (mean of medians) and medians (median of medians).  222 
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 223 

2.9 Annual Average Prediction Models  224 

 225 
 226 

Development of annual average prediction models allows the predictions to be used for 227 

epidemiologic inference. The data were randomly split into a training-validation (90%, n=278 228 

sites) and a test (10%, n=31 sites) set. The training-validation set was used to select the 191 229 

geographic covariate predictors (e.g., land use, roadway proximity) that had sufficient variability 230 

and a limited number of outliers from 350 original covariates (see SI Notes S5 for details). These 231 

were summarized using pollutant-specific partial least squares (PLS) regression components. We 232 

built pollutant-specific universal kriging (UK) models for annual average concentrations, using 233 

log-transformed concentrations as the dependent variable and the first three geocovariate PLS 234 

principal components as the independent variables (Equation 1). We used UK rather than land 235 

use regression (LUR) alone since UK uses geospatial smoothing to capture any residual spatial 236 

correlation not otherwise captured by LUR. We selected the kriging variogram model for the 237 

geostatistical structure using the fit.variogram function in the gstat38 R (v 3.6.2, using 238 

RStudio v 1.2.5033)36 package. 239 

 240 

��������� 	 
 � � ���
�

���

�  � 

Equation 1. Universal kriging with partial least squares models for annual average pollutant concentrations. Conc is the 241 
pollutant concentration, �

�
 are the PLS principal component scores (M=3), � and �

�
 are estimated model coefficients, and � is 242 

the residual term with mean zero and a modeled geostatistical structure. 243 

 244 

We used RMSE and mean square error (MSE) -based R2 to evaluate the performance of 245 

each pollutant model on the native scale using ten-fold cross-validation and test sites. We used 246 
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MSE-based R2 instead of traditional, regression-based R2 because it evaluates whether 247 

predictions and observations are the same (around the one-to-one line) such that it assesses both 248 

bias and variation around the one-to-one line. Regression-based R2, on the other hand, solely 249 

assesses whether pairs of observations are linearly associated, regardless of whether observations 250 

are the same or not.  251 

 252 

3 Results 253 

 254 

3.1 Data Collected 255 

 256 

After dropping stop concentrations that did not meet the quality assurance standards 257 

(0.61%), the final analyses included over 70,000 two-minute median stop samples (almost 9,000 258 

samples per instrument) collected over the course of 288 drive days from 309 monitoring sites 259 

(Table S7). Sites were sampled an average of 29 times, ranging from 26 to 35 times. Due to the 260 

logistical constraints of sampling 309 sites with one platform along nine fixed routes, some sites 261 

were visited fewer times of the day than other sites, though sampling times were still well 262 

distributed throughout the day (e.g., morning [e.g., 7 AM], afternoon [e.g., 3 PM] and evening 263 

[e.g., 8 PM]; see SI Figure S7). SI section S2.1 Site Visits has additional details on the visit-level 264 

pollutant concentrations used to estimate site annual averages. 265 

 266 

3.2 Collocations at Regulatory Monitoring Sites 267 

 268 
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Median two-minute BC, NO2 and PM2.5 measurements from mobile monitoring stops 269 

were generally in agreement with measurements from regulatory sites (MSE-based R2: BC = 270 

0.69, NO2 = 0.71, PM2.5 = 0.61; SI Figure S12). Annual average estimates from our mobile 271 

monitoring campaign measurements were similar to annual average estimates from comparable 272 

two-minute samples at regulatory monitoring sites used as collocations, and these were in 273 

moderate agreement with true annual average concentrations at those sites (based on all of the 274 

available data during the study period; SI Figure S13). 275 

 276 

3.3 Spatial and Temporal Variability 277 

 278 

Pollutant-specific ANOVA models of winsorized site visit concentrations indicated most 279 

of the concentration variability occurred within sites, rather than across sites or over time (SI 280 

Figure S14). After accounting for time and site, PNC from the P-TRAK instrument had the 281 

highest within-site variability (82% of the total), followed by PM2.5 (87%), BC (80%), CO2 282 

(70%), and lastly, NO2 (66%). CO2 (27%) had the most temporal variability, followed by NO2 283 

(24%), BC (16%), PM2.5 (13%), and PNC (6%), respectively. Finally, PNC (12%) had the most 284 

spatial variability, followed by NO2 (10%), BC (4%), CO2 (3%) and PM2.5 (<1%), respectively. 285 

Unlike other pollutants, PNC had more spatial than temporal variability. SI Figure S14 shows 286 

similar results for other PNC instruments.  287 

 288 

3.4 Annual Average Estimates 289 

 290 
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 Estimated annual average pollutant concentrations across all monitoring sites are shown 291 

in SI Figure S15. There was a 5- to 6- fold difference between the lowest and highest site 292 

concentrations of PNC, NO2, and BC. On the other hand, PM2.5 had a 2-fold difference across 293 

sites, while CO2 varied little across sites. Among PNC instruments, the screened P-TRAK 294 

measured the lowest concentrations and had the smallest variability; the P-TRAK, which did not 295 

screen out particles below 36 nm, had the second-highest averages with approximately double 296 

the values and more variability. The DisSCmini and Nanoscan had higher medians, more 297 

variability, and more outlying annual average concentrations. SI Figures S16-S17 map these 298 

concentrations. The locations with the highest BC, NO2, and PNC concentrations were near the 299 

Seattle urban core. High PNC concentration sites were additionally located at more southern 300 

locations near the area’s major airport, the Seattle-Tacoma (Sea-Tac) International Airport. Sites 301 

with elevated PM2.5 and CO2 levels were dispersed throughout the monitoring region.   302 

 303 

3.5 Prediction Models 304 

 305 

Based on the training-validation set, the first three PLS principal components captured 306 

between 49-51% of the observed concentration variability for each pollutant model. Loadings 307 

from the first PLS principal component indicated that normalized difference vegetation index 308 

(NDVI), length of bus routes, major roadways, land development, population density, and truck 309 

routes were strong predictors of air pollution in the region, with some pollutants, for example 310 

PNC, being more influenced by these land features (SI Figure S18). Cross-validated MSE-based 311 

R2 (and RMSE) values for UK-PLS models were 0.77 (1,177 pt/cm3) for PNC, 0.60 (102 ng/m3) 312 

for BC, 0.77 (1.3 ppb) for NO2, 0.70 (0.3 µg/m3) for PM2.5, and 0.51 (4.2 ppm) for CO2 (SI Table 313 
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S9). In the independent test set, these results differed somewhat with estimates of MSE-based R2 314 

(and RMSE) of 0.78 (815 pt/cm3) for PNC, 0.80 (60 ng/m3) for BC, 0.84 (0.9 ppb) for NO2, 0.73 315 

(0.3 µg/m3) for PM2.5, and 0.77 (2.7 ppm) for CO2. Sensitivity analyses using mean of medians 316 

and median of medians annual averages performed similar or slightly lower due to changes in the 317 

number of influential points and/or reduced overall variability (SI Table S9). These model 318 

performances are reflected in the generally good agreement between the estimates and cross-319 

validated predictions (Figure S19). All PNC instruments do show a few underpredicted 320 

observations.  321 

Model predictions for the monitoring region are shown in Figure 2 (predictions from 322 

additional PNC instruments are shown in Figure S20). While PM2.5 and CO2 are fairly spatially 323 

homogeneous, PNC, BC, and NO2 (traditional TRAPs) show higher concentrations in the urban 324 

core and along major roads. In addition, PNC shows higher concentration near the area’s major 325 

airport. All the PNC instruments reflect this broad pattern, although there are differences across 326 

instruments in the areas with the highest predicted concentrations. 327 

 328 
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329 

Figure 2. UK-PLS pollutant predictions for the monitoring region.  330 

 331 
 332 

Pearson correlation coefficients (R) for pollutant model predictions at the 309 monitoring 333 

sites and all instruments are shown in SI Figure S21. Different PNC instruments were generally 334 

well correlated with each other (R = 0.85-0.97). Overall, PNC from the P-TRAK, BC, and NO2 335 

were well correlated with each other (R = 0.81-0.92), and moderately correlated with PM2.5 and 336 
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CO2 (R = 0.39-0.70). CO2 and PM2.5 were moderately correlated with each other (R = 0.46). The 337 

biggest deviations from a linear association were evident for the predicted high concentrations 338 

from the DiSCmini; this was particularly apparent in its relationship with BC, NO2, PM2.5, and 339 

CO2. 340 

 341 

4 Discussion  342 

 343 

In this paper, we describe the design of an innovative mobile monitoring campaign 344 

specifically developed to estimate unbiased, highly spatially resolved, long-term TRAP 345 

exposures in an epidemiologic cohort. To date, this is one of the most extensive mobile 346 

monitoring campaigns conducted in terms of the pollutants measured (five pollutants measured 347 

with eight different instruments, not including CO) spatial coverage (~1,200 land km2), sampling 348 

density (309 monitoring sites along 9 routes, or 1 monitor every 3.9 land km2), and sampling 349 

frequency (7 days a week; 288 days over a one-year period) and duration (~5 driving hours per 350 

day between the hours of 4 AM – 11 PM). The spatial resolution achieved by this campaign was 351 

significantly greater than would be expected from fixed regulatory monitoring approaches. We 352 

had one monitor per 3.9 km2 of land area rather than 183 km2 (6 regulatory sites in the 353 

monitoring area), almost a 50-fold increase. The average (SD) distance from an ACT cohort 354 

location to the nearest monitoring site was 611 (397) m rather than 5,805 (2,805) m to an AQS 355 

site, almost a ten-fold difference. Monitor proximity to prediction (i.e., cohort) locations, both in 356 

terms of geographic and covariate distance, is an important determinant of accurate exposure 357 

assessment.39,40 Additionally, we previously showed that the extensive temporal sampling of this 358 

campaign across hours, days of the week and seasons is expected to produce more accurate and 359 
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unbiased annual average estimates as compared to more common campaigns with reduced 360 

sampling.29  361 

A unique aspect of this campaign was the collection of stationary samples along the side 362 

of the road. While most other campaigns have only collected non-stationary, on-road samples, 363 

various studies have shown that mobile samples are generally higher in concentration than 364 

stationary samples.21,41–44 The completion of our stationary and non-stationary campaign 365 

positions us to conduct future work on how non-stationary data may be used responsibly for 366 

epidemiologic applications. Among the relatively few campaigns that have collected stationary 367 

rather than mobile samples alone, most have sampled for longer than two minutes (about 15-60 368 

minutes per stop).45 Our analyses indicated that shorter sampling periods produce comparably 369 

good estimates without adding excessive amounts of stationary sampling time to mobile 370 

monitoring campaigns (See SI Figure S2). Our use of a hybrid vehicle meant that the vehicle’s 371 

engine was off and it operated by battery during stop sampling periods, thus reducing the 372 

possibility of self-contamination.  373 

ANOVA model results indicate differences across pollutants in terms of their spatial and 374 

temporal variability. This finding is particularly relevant for short-term mobile monitoring 375 

campaigns, which could design their campaigns to adequately capture the variability of the 376 

pollutants of interest. These findings suggest that repeated sampling at any given site is crucial 377 

since most of the variability for all measured pollutants was seen within sites, even after 378 

adjusting for time. Following that, all pollutants other than PNC had relatively more temporal 379 

than spatial variability. Campaigns measuring these pollutants may thus benefit by inclusion of 380 

more temporally-balanced site visits. PNC, on the other hand, has slightly more spatial than 381 

temporal variability suggesting that both are important. The implementation of these concepts for 382 
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epidemiologic exposure assessment should translate to reduced exposure misclassification. 383 

Overall, our results are in line with past literature that has shown differing spatial and temporal 384 

contrasts across pollutants,46,47 though our work increases the robustness of these findings using 385 

a more spatially resolved, multi-pollutant dataset that includes less commonly measured PNC.  386 

The findings from this campaign demonstrate the region’s generally low air pollution 387 

levels. The range of annual concentrations across sites for PM2.5 (3.4-7.2 µg/m3) and NO2 (3.9-388 

23 ppb) were well below the National Ambient Air Quality Standards (NAAQS) annual average 389 

levels of 12 µg/m3 and 53 ppb, respectively.48 Annual PNC (~7,000 pt/cm3) and BC (~600 390 

ng/m3) site concentrations were lower than what others have reported in cities throughout the 391 

world where mean study values range from roughly 6,000-64,000 PNC pt/cm3 and 400-14,000 392 

BC ng/m3 (PNC21,42,43,49–63; BC19,21,43,52,53,58,63–75). While CO2 site concentrations (417-455 ppm) 393 

were above the 2019 global average of 412 ppb,76 they were in line with past work noting 394 

elevated carbon footprint levels in dense, high-income cities and affluent suburbs.77,78 Still, the 395 

high concentration variability seen across sites for pollutants like PNC, BC and NO2 suggests 396 

that future epidemiological analyses may have more power to observe health effects from these 397 

pollutants than those that are less spatially variable, for example PM2.5 and CO2. 398 

The similarity between BC, NO2 and PM2.5 measurements from our campaign and 399 

collocated regulatory monitoring sites confirms that our campaign estimates were generally 400 

accurate. Some of the discrepancies between the two monitoring approaches may be due to 401 

differences in the sampling instrumentation, the exact sampling location, and quality assurance 402 

and quality control procedures. While we were unable to compare CO2 or PNC measurements to 403 

regulatory observations, duplicate instrument collocations generally showed good agreement (SI 404 
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Figure S6). Additionally, CO2 instruments were regularly calibrated and PNC instruments 405 

completed zero checks (SI Table S3, Figure S5).  406 

We observed elevated annual average pollutant levels near areas with low green space (as 407 

quantified by normalized difference vegetation index [NDVI]), bus routes, major roadways, and 408 

impervious surfaces. These findings are generally in line with past work.79  409 

While future mobile monitoring campaigns may be guided by the design and findings 410 

from this study, it’s notable that the unique geographical, meteorological and source 411 

characteristics of different airsheds may produce slightly different results. These results do 412 

highlight, however, the importance of collecting multi-pollutant measurements, particularly in 413 

urban or other areas characterized by major emission sources such as airports or railroad 414 

systems, which may be important contributors to local and/or regional air pollution levels. This is 415 

particularly true for PNC given the limited monitoring data available and its unique spatial and 416 

temporal patterns. More generally, multi-pollutant exposure assessment is a growing interest in 417 

the field of air pollution epidemiology,46,80–83 and something that we are positioned to make a 418 

meaningful contribution to in future work.   419 

While UFPs are generally characterized as particles under 100 nm in diameter, this 420 

definition is not standardized and varies from instrument to instrument as well as study to study. 421 

Since most particles by count are in the smaller size range with few above 100 nm,35 PNC should 422 

adequately characterize UFPs. Moreover, the collection of PNC from multiple instruments in a 423 

field setting is unique to this study. PNC measures from different instruments were strongly 424 

correlated with each other, and they produced broadly similar spatial surfaces, strengthening our 425 

confidence in the quality of our measurements. Differences in the reported PNC levels across 426 

instruments, however, can be attributed to multiple factors including differences in technology, 427 
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each technology’s unique particle size detection efficacy, and built-in calibration (if present), all 428 

of which impact the reported particle size ranges and concentrations of each instrument. 429 

Differences across PNC instruments in the predicted absolute concentrations as well as overall 430 

spatial surfaces highlight these differences. By comparing PNC levels from the unscreened and 431 

screened P-TRAK, for example, we see that roughly half of the measured (and predicted) 432 

particles are between 20-36 nm (SI Figure S20). Furthermore, these smaller particles are more 433 

concentrated near the area’s major airport, the Sea-Tac International Airport. The DiSCmini also 434 

captures this rise in PNC near the airport but shows much lower relative concentrations 435 

elsewhere, suggesting it measures smaller particles well. Reasons could include the different 436 

measurement technology as well as the manufacturer’s reported lower particle size cut of 10 nm. 437 

The NanoScan total concentration, on the other hand, reports concentrations that are roughly 438 

50% higher than the unscreened P-TRAK, with elevated PNC levels near the airport, but also in 439 

other parts of the monitoring region, including south of the airport along major roadways and at 440 

the Seattle urban core. Elevated PNC levels are thus predicted from the NanoScan in a larger 441 

area of the monitoring region.   442 

It is an open question whether the use of different PNC instruments across epidemiologic 443 

studies makes cross-study comparisons and coherent causal determinations difficult, or whether 444 

these differences still produce interpretable findings for the field as a whole.84 We are well-445 

positioned to further investigate this question of how different instruments pick up UFPs in 446 

future work. We observed, for example, a slightly non-linear relationship between the DiSCmini 447 

and all other PNC instruments when the predicted concentrations were high (SI Figure S21). A 448 

non-linear trend was also present when comparing the BC, NO2, PM2.5, and CO2 predictions to 449 

those from the DiSCmini, but less so when comparing these to the PNC predictions from other 450 
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instruments. Furthermore, we will be able to use of size-resolved particle counts from the 451 

NanoScan (13 size bins, data not shown) or by looking at the differences between the unscreened 452 

and screened P-TRAKs, where the minimum sizes are 20 and 36 nm, respectively, in order to 453 

characterize size-specific exposure surfaces, sources, and health effects. 454 

A feature of mobile monitoring campaigns is their reliance on repeated, short-term 455 

samples in order to achieve increased spatial coverage when compared to traditional long-term 456 

monitoring approaches. Since we collected about 29 two-minute samples per site (about an hour 457 

of data), we recognize that the resulting annual average site estimates are noisy. Still, with MSE-458 

based R2 values of 0.77 for PNC and 0.60 for BC, our models performed better than many other 459 

short-term stationary and non-stationary monitoring campaigns (R2 of approximately 0.13-0.72 460 

for PNC21,42,43,49,50,53–56,58–63,68,85–91 and 0.12-0.86 for BC.21,53,58,63,68,71,72,75 Figure 3 illustrates 461 

these results as well as those from other long-term stationary campaigns. There are several 462 

features of our study design that could have impacted our strong model performances. For PNC, 463 

Saha et al. (2019) reported that short-term stationary (collecting short-term samples while 464 

stopped, as opposed to while moving or traditional long-term stationary sampling) studies like 465 

ours have generally sampled between 60-644 sites, sampled each site between 15 minutes and 3 466 

hours, and collected between 1-5 repeat samples per site. Similarly, BC studies like this one have 467 

generally sampled 26-161 sites, sampled each site about 30 minutes, and collected about 2-3 468 

samples per site. Campaigns with more site counts have generally collected fewer repeat samples 469 

per site. Compared to earlier studies, we sampled more sites than most fixed and short-term 470 

stationary studies (309 sites). This dense monitoring network covered a larger geographic area 471 

and likely allowed us to capture hotspots that may have otherwise been missed by more sparse 472 

monitoring networks. Additionally, we visited each site for shorter periods of time (2 minutes), 473 
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which allowed us to collect more repeat site visits (approximately 29) than what most studies 474 

have done. While our resulting total site sampling durations (~58 minutes) were similar to other 475 

short-term stationary studies, we captured more temporal variability by sampling year-around 476 

during all days of the week and most times of the day, a limitation of most past campaigns. SI 477 

Figures S22-S23 summarize these as well as other short-term non-stationary mobile monitoring 478 

and long-term stationary designs for PNC21,42,43,49,50,53–63,68,85–92 and BC.21,53,58,63–75 479 

 480 

481 

Figure 3. Cross-validated model R
2
 estimates from our and other PNC

21,42,43,49,50,53–63,68,85–90,92
 and BC

21,53,58,63–75
 482 

studies. Studies are stratified by whether the sampling type was traditional, fixed site sampling (long-term stationary), short-483 
term mobile monitoring campaigns that collected on-road data while in motion (short-term non-stationary), or short-term 484 
mobile monitoring campaigns that collected data while stopped (short-term stationary). Figure does not include Saha et al. 485 
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(2021),
91

 who used a mixed sampling approach for PNC from multiple sources (R
2
: 0.54-0.72). Horizontal dashed line is the R

2
 for 486 

this study. Plots show the average R
2
 from a study if multiple models were presented without a clear primary model.  487 

 488 

In terms of our modeling approach, long-term averaging and winsorizing reduces the variability 489 

of the observations and focuses on the spatial contrasts of interest; this could have resulted in 490 

better performing models than had we modeled concentrations without aggregating them to a 491 

annual averages (e.g., stop medians). Sensitivity analyses using mean of (non-winsorized) 492 

medians, for example, generally resulted in slightly lower performing PNC and PM2.5 models 493 

due to the inclusion of more influential points in the models. Using a measure more robust to 494 

extreme observations, the median of medians, produced lower performing CO2 models due to the 495 

further reduction in variability. Still, we reported good out-of-sample MSE-based R2 estimates, 496 

which better characterize a model’s predictive performance at new locations and are generally 497 

lower than the in-sample regression-based R2 estimates that many studies report. We estimated 498 

these higher model performances despite the lower air pollution levels in our monitoring region, 499 

which can make it harder to get good prediction performance due to reduced variability (e.g., 500 

CO2).  501 

Overall, these results demonstrates that the design of this campaign captured the spatial 502 

pollutant variations that can be explained by sensible land use features well, including those 503 

related to traffic. These data will thereby produce robust and representative long-term average 504 

TRAP exposures for the ACT cohort. Next steps include applying these prediction models to the 505 

cohort and conducting inferential analyses to determine the association of these pollutants with 506 

brain health. The rich dataset from this extensive campaign also provides an excellent foundation 507 

for investigating many important questions about how to best design mobile monitoring 508 

campaigns for application to subsequent epidemiologic studies. 509 
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